
acmqueue | november-december 2018 1

S
ite reliability engineering, or SRE, is a software-
engineering specialization that focuses on the
reliability and maintainability of large systems.
In its experience in the field, Google has found
some critical but oft-neglected metrics that are

important for running reliable services.
This article, based on Ben Treynor’s talk at the Google

Cloud Next 2017 conference,7 addresses those metrics,
specifically for product development and SRE teams,
managers of such teams, and anyone else who cares
about the reliability of web products or infrastructure. To
further explain its approach to product reliability, Google
has published Site Reliability Engineering: How Google
Runs Production Systems1 (hereafter referred to as the
SRE book) and The Site Reliability Workbook: Practical
Ways to Implement SRE2 (hereafter referred to as the SRE
workbook).

Critical but
oft-neglected
service metrics
that every SRE
and product
owner should
care about

BENJAMIN TREYNOR SLOSS, SHYLAJA NUKALA, AND VIVEK RAU

1 of 20 TEXT
ONLY

Metrics
	That
Matter

sre metrics

acmqueue | november-december 2018 2

WHY METRICS MATTER
One of the most important choices in offering a service
is which service metrics to measure, and how to evaluate
them. The difference between great, good, and poor metric
and metric threshold choices is frequently the difference
between a service that will surprise and delight its users
with how well it works, one that will be acceptable for
most users, and one that will actively drive away users—
regardless of what the service actually offers.

For example, it is not uncommon to measure the QPS
(queries per second) received at a web or API server, and to
assess that this metric indicates good service health if (a)
the graph of the metric over time has a smooth sinusoidal
diurnal curve with no unexpected spikes or troughs, and
(b) the peaks of the curve are rising over time, indicating
user growth. Yet this is a poor metric choice—at best it
will provide the operator with a lagging indicator of large-
scale problems. It misses a host of real, common problems,
including partial unreachability, error rates in the 0.1–3
percent range, high latency, and intervals of bad results.

These problems lead to unhappy users and service
abandonment—yet throughout it all, the QPS Received
graph continues to show its happy sinusoidal curves and to
provide a soothing sense that all is well. The best that can
be said about the QPS Received metric is that it’s relatively
simple to implement—and even that is a problem, because
it is often implemented early and thus takes the place of
more sophisticated and useful metrics that would provide
an operator with more accurate and useful data about the
service.

What follows are the types of metrics that the Google

2 of 20sre metrics

acmqueue | november-december 2018 3

SRE team has adopted for Google services. These metrics
are not particularly easy to implement, and they may
require changes to a service to instrument properly. It has
been our consistent experience at Google, however, that
every service team that implements these metrics is happy
afterward that it made the effort to do so. The metrics
investment is small compared with the overall effort to
build and launch the service in the first place, and the
prompt payback in user satisfaction and usage growth is
outsized relative to the effort required. We believe you will
find this is true for your service, too.

LESSON 1: MEASURE THE ACTUAL USER EXPERIENCE
The SRE book emphasizes that speed matters to users, as
demonstrated by Google’s research on shifts in behavior
when users are exposed to delayed responses from a
web service.3 When services get too slow, users start to
disengage, and when they get even slower, users leave.
“Speed matters” is a good axiom for SREs to apply when
thinking about what makes a service attractive to users.

A good follow-up question is, “Speed for whom?”
Engineers often think about measuring speed on the server
side, because it is relatively easy to instrument servers
to export the required metrics, and standard monitoring
tools are designed to capture such metrics from servers in
dashboards and highlight anomalies with alerts. What this
standard setup is measuring is the interval between the
point in time when a user request enters a data center and
the point in time when a response to that request leaves
the data center. In other words, the metric being captured
is server-side latency. Measuring server-side latency is not

3 of 20sre metrics

acmqueue | november-december 2018 4

sufficient, though it is better than not measuring latency
at all. Measuring and reporting on server-side latency can
be a useful stopgap while solving the harder problem of
measuring client-side latency.

The problem is that users have no interest in this
server-side metric. Users care about how fast or slow
the application is when responding to their actions, and,
unfortunately, this can have very little correlation with
server-side latency. Perhaps these users have a cheap
phone, on a slow 2G network, in a country far away from
your servers; if your product doesn’t work for them, all
your hard work building great features will be wasted,
because users will be unhappy and will use a different
product. The problem will be compounded if you are
measuring only server-side latency, because you will be
completely unaware that the product is slow for users.
Even if you get anecdotal reports of slowness and try to
follow up on them, you will have no way of determining
which subset of users is experiencing slowness, and when.

To measure the actual user experience, you have to
measure and record client-side latency. It can be hard
work to instrument the client code to capture this latency
metric and then to ship client-side metrics back to the data
center for analysis. The work may be further complicated
by the need to handle broken network connections by
storing the data and uploading it later.

Though difficult, client-side metrics are essential and
achievable.

For a browser application, you can write additional
JavaScript that gathers these statistics for users on
different platforms, in different countries, etc., and send

4 of 20sre metrics

acmqueue | november-december 2018 5

these statistics back to the server. For a thick client, the
path is more obvious, but it’s still important to measure the
time from the moment the user interacts with the client
until the response is delivered. Either way, instrumenting
the user experience takes a relatively small fraction of the
effort previously expended to write the entire application,
and the payback for this incremental effort is high.

To take an example from Google’s own history, when
Gmail was launched, most users accessed it through
a web browser (not a mobile client), and Google’s web
client code had no instrumentation to capture client-side
latency. So, we relied on server-side latency data, and the
response time seemed quite acceptable. When Google
finally launched an instrumented JavaScript client, at
first we didn’t believe the data it was sending back—it
seemed impossible that the user experience was that bad.
We went through the denial stage for a while, and then
anger, and eventually got to bargaining.4 We made some
major changes to how the Gmail server and its client
worked to improve our client-side latency, and the reward
was a visible inflection point in Gmail’s growth once the
user experience improved. The long-term trends in our
monitoring dashboards showed users responding to the
improved product experience. For around three percent of
the effort of writing and running Gmail, there was a major
increase in its adoption and user happiness.

Many techniques are available to application developers
for improving client-side response times, and not all of
them require large engineering investments. Google’s
PageSpeed project was created to share with the
world the company’s insights into client-side response

5 of 20sre metrics

acmqueue | november-december 2018 6

optimization, accompanied by tools that help engineers
apply these insights to their own products and web pages.5
One of the obvious rules is to reduce server response
time as much as possible. PageSpeed analysis tools also
recommend various well-known techniques for client-side
optimization, including compression of static content,
using a preprocessor to “minify” code (HTML, CSS, and
JavaScript) by removing unnecessary and redundant text,
setting cache-control headers correctly, compressing or
inlining images, etc.

To recap, measure the actual user experience by
measuring how long a user has to wait for a response after
performing an action on your product. Do this, even though
it is often not easy. Experience says that it will be well
worth the effort.

LESSON 2: MEASURE SPEED AT THE 95TH AND 99TH
PERCENTILES
While “Speed matters” is a good axiom when thinking about
user (un)happiness, that still leaves an open question about
how best to quantify the speed of a service. In other words,
even if you understand and accept that the value of the
latency metric (time to respond to user requests) should
be low enough to keep users happy, do you know precisely
what metric that is? Should you measure average latency,
median latency, or nth-percentile latency?

In the early days of Google’s SRE organization, when we
managed relatively few products other than Search and
Ads, SLOs (service-level objectives) were set for speed
based on median latency. (An SLO is a target value for a
given metric, used to communicate the desired level of

6 of 20sre metrics

acmqueue | november-december 2018 7

performance for a service. When the target is achieved,
that aspect of the service is considered to be performing
adequately. In the context of SLOs, the metric being
evaluated is called an SLI, or service-level indicator.)

Over the years, particularly as the use of Search
expanded to other continents, we learned that users could
be unhappy even when we were meeting and beating our
SLO targets. We then conducted research to determine
the impact of slight degradations in response time on user
behavior, and found that users would conduct significantly
fewer searches when encountering incremental delays
as small as 200 milliseconds.3 Based on these and other
findings, we have learned to measure “long-tail” latency—
that is, latency must be measured at the 95th and 99th
percentiles to capture the user experience accurately.
After all, it doesn’t matter if a product is serving the
correct result 99.999 percent of the time if five percent
of users are unhappy with how long it takes to get that
correct result.

Once upon a time, Google used to measure only raw
availability. In fact, most SLOs even today are framed
around availability: how many requests return a good
result versus how many return an error. Availability was
computed the following way:

% Availability = 1 - % error responses

Suppose you have a user service that normally responds
in half a second, which sounds good enough for a user on
a smartphone, given typical wireless network delays. Now
suppose one request in 30 has an internal problem causing

7 of 20sre metrics

acmqueue | november-december 2018 8

a delay that leads to the mobile client app retrying the
request after 10 seconds. Now further suppose that the
retry almost always succeeds. The availability metrics (as
computed above) will say “100% availability.” Users will
say “97% available”—because if they are accustomed to
receiving a response in 500 milliseconds, after three to
five seconds they will hit retry or switch apps. It doesn’t
matter if the user documentation says, “The application
may take up to 10 seconds to respond”; once the user base
is trained to get an answer in 500 milliseconds most of
the time, that’s what they’ll expect, and they’ll behave
like a 10-second response delay is an outage. Meanwhile,
the SREs will (incorrectly) be happy, at least for the time
being, because their measurements say the service is
100 percent available. This disconnect can be avoided by
correcting the availability computation as follows:

Therefore, when an SLO is defined for long-tail latency,
you must choose a target response time that does not
render the service effectively unavailable. The 99th-
percentile latency should be such that users experiencing
that latency do not find it completely unacceptable
relative to their expectations. Note that their expectations
were probably set by the median latency. You really
do need to know what your users consider minimally
acceptable. A good practice is to conduct experiments
that measure how many users are actually lost as latency
is artificially increased. These experiments should be

8 of 20

	 % Availability = 1 - % (error responses + slow responses)

sre metrics

acmqueue | november-december 2018 9

conducted infrequently,
using a tiny fraction of
randomly sampled users
to minimize the risk to
your product’s brand and
reputation.

A good practical rule of
thumb learned from these
experiments at Google is
that the 99th-percentile
latency should be no more
than three to five times
the median latency. This
means that if a hypothetical
service with median latency
of 400 milliseconds starts
exhibiting more than
two seconds response
time for the slowest one
percent of requests, this
is undesirable. We tune
our production systems
such that if this undesired
behavior continues for
some predefined period,
an alert will fire or some
automated corrective
action will be taken (such
as shifting traffic around or
provisioning more servers).
We find that the 50th-, 95th-,

9 of 20

How to define percentile-based SLOs
	 There is a technique to phrasing SLO
	 definitions optimally—a linguistic point
illustrated here with an amusing puzzle. Consider
these two alternative SLO definitions for a given
web service, using slightly different language in
each definition:
1. The 99th-percentile latency for user requests,
averaged over a trailing five-minute time window,
will be less than 800 milliseconds.
2. Ninety-nine percent of user requests, averaged
over a trailing five-minute time window, will
complete in less than 800 milliseconds.

Assume that the SLO will be measured every
10 seconds in either case, and an alert will be fired
if N consecutive measurements are out of range.
Before reading further, think about which SLO
definition is better, and why.
The answer is that from a user-happiness
perspective, the two SLOs are practically
equivalent; and yet, from a computational
perspective, alternative number 2 is distinctly
superior.

To appreciate this, consider a hypothetical
web service receiving 10,000 user requests per
second, on average, under peak load conditions.
With SLO definition 1, the measurement algorithm
actually has to compute a percentile value every
10 seconds. A naive approach to this computation
is as follows:

3

sre metrics

acmqueue | november-december 2018 10

and 99th-percentile latency
measures for a service are
each individually valuable,
and we will ideally set SLOs
around each of them.

Our recommendations
for latency metrics can
be applied equally well to
other kinds of SLIs, some of
them applicable to systems
that are not web services.
As discussed in the SRE
book, storage systems
also care about durability
(whether data is available
when needed), and data-
processing pipelines care
about throughput and
freshness (how long it takes
for data to progress from
ingestion to completion).

For more advice on
how to create SLOs for a
service, read chapter 2,
“Implementing SLOs,” in the

	 SRE workbook.

LESSON 3: MEASURE FUTURE LOAD
Demand forecasting, or quantifying the future load on
a service, is different from typical SLO measurement
because it’s not a metric you monitor, nor a cause for

3 Store the response times for 10,000 × 300 = 3
million queries in memory to capture five minutes’
worth of data (this will use >11MB of memory to
store 3 million 32-bit integers, each representing
the response time for one query in milliseconds).
3 Sort these 3 million integer values.
3 Read the 99th-percentile value (i.e., the
30,000th latency value in the sorted list,
counting from the maximum downward).

More efficient algorithms are definitely
available, such as using 16-bit short integers for
latency values and using two heaps instead of
sorting a linear list every 10 seconds, but even
these improved approaches involve significant
overhead.

In contrast, SLO definition 2 requires storing
only two integers in memory: the count of user
requests with completion times greater than
800 milliseconds, and the total count of user
requests. Determining SLO compliance is then a
simple division operation, and you don’t have to
remember latency values at all.

Be sure to define your long-tail latency SLOs
using format 2.

3 10 of 20sre metrics

acmqueue | november-december 2018 11

generating alerts. Demand forecasting makes a service
reliable by providing the information needed to provision
the service such that it can handle its future load while
continuing to meet its SLOs. The more effort you put
into generating good demand forecasts, the less you will
need to scramble at the last minute to add more compute
resources to the service because it’s melting down in the
face of an unforeseen increase in traffic.

Load on a service is measured using different
combinations of metrics depending on the type of service
being discussed, but a common denominator unit for many
services is QPS. Layered on top of QPS might be other
service-dependent metrics such as storage size (gigabytes
or terabytes), memory usage, network bandwidth, or I/O
bandwidth (gigabits per second).

It’s useful to break demand growth down into organic
and inorganic. Organic growth is what you can forecast
by extrapolating historical trends in traffic, and the
forecasting problem can often be addressed using
statistical tools. Inorganic growth is what you forecast
for one-time events such as product launches, changes
in service performance, or anticipated changes in user
behavior, among other factors, and this growth cannot be
extrapolated from historical data. Prediction of inorganic
growth is less amenable to statistical tools and often
relies on rules of thumb and estimates derived from similar
events in the past. In the time leading up to a service
launch, when there is not enough historical data available
to make an organic growth forecast, teams estimate
demand using techniques applicable to inorganic growth.

11 of 20sre metrics

acmqueue | november-december 2018 12

Forecasting organic growth
For mature products that have been in operation for a few
years, you can forecast organic growth using statistical
methods. Note that linear regression is not a useful tool
in most cases, because it doesn’t capture seasonal traffic
fluctuations; it also doesn’t work if growth is not linear.
Many web services see significant drops in traffic (the
“summer slump”) because of the midyear vacation season,
and, conversely, see big spikes in traffic during the year-end
shopping season, followed by a major “holiday dip” in the last
week of the year, followed in turn by a “back-to-work bounce”
at the start of the new year (see figure 1). At Google, we even
account for predictable changes with a cycle time of several

12 of 20

predicted
actual

Jul
07

Apr
07

Jan
07

Oct
07

Jul
08

Apr
08

Jan
08

Oct
08

Jul
09

Apr
09

Jan
09

Oct
09

Jul
10

Apr
10

Jan
10

Oct
10

Jan
11

FIGURE 1: average weekly Google Search Traffic

sre metrics

acmqueue | november-december 2018 13

13 of 20

	 The royal wedding as seen by
	 Google search monitoring
	 Daily traffic fluctuations are far less important for capacity
	 planning than monthly or yearly increases, but they provide an
amusing illustration of the impact of external world events on the load
presented to a web service. The chart in figure 2 was generated by the
system that monitors load on Google’s Search product and represents
the number of search QPS on April 29, 2011, during the wedding of Prince
William and Kate Middleton. The time values on the Y-axis are in the
Pacific time zone (eight hours behind UK time), and the traffic pattern
neatly captures key events during the ceremony. It is evident from charts
like this one that when something really interesting happens in the world,
people briefly stop searching the web, and when that event is over, they
promptly resume searching.

3

sre metrics

balcony kiss

carriage procession

wedding service

Thu
21:00

Thu
22:00

Thu
23:00

Fri
0:00

Fri
1:00

Fri
2:00

Fri
3:00

Fri
4:00

Fri
5:00

Fri
6:00

Fri
7:00

Fri
8:00

Fri
9:00

75

70

65

60

55

50

45

40

35

30

Q
PS

 (t
ho

us
an

ds
)

April 29, 2011

FIGURE 2: Royal Wedding searches

acmqueue | november-december 2018 14

years, caused by events such as the FIFA World Cup.
Google uses a variety of forecasting models that

attempt to capture seasonality on a monthly or annual
time scale. There is uncertainty in forecasts, and they
imply a confidence level, so rather than forecasting a line,
we are forecasting a cone. Any given statistical model has
its strengths and weaknesses, so many Google products
use outputs generated from a large ensemble of models,6
which include variants on many well-known approaches,
such as the Bass Diffusion Model; Theta Model; logistic
models; Bayesian Structural Time Series; STL (seasonal and
trend decomposition using Loess); Holt-Winters and other
exponential smoothing models; seasonal and other ARIMA
(autoregressive integrated moving average)-based models;
year-over-year growth models; custom models; and more.

Having generated independent estimates from each
model in the ensemble, we then compute their mean after
applying a configurable “trimming” parameter to eliminate
outlier estimates, and this adjusted mean is used as the
final prediction. Depending on the scale and global reach
of a service and its different levels of adoption in different
parts of the world, it might be more accurate to generate
continent-level or country-level forecasts and aggregate
them instead of attempting to forecast at the global level.

It is important to compare forecasts regularly with actual
traffic in order to tune the model parameters over time
and improve the accuracy of the models. Experience shows
that the trimmed mean of the ensemble of models delivers
superior accuracy compared with any individual model.

Forecasting inorganic growth
Inorganic growth is generated by one-time events that

14 of 20sre metrics

acmqueue | november-december 2018 15

have no periodicity,
such as launches of
new products, new
features, or marketing
promotions, or changes
in user behavior that
are triggered by some
extraneous factor
for which the timing
is predictable but the
resulting peak traffic
volume has a high
degree of uncertainty
(like the FIFA World Cup
or the Royal Wedding),
among others. Inorganic
growth involves an
abrupt change in traffic,
and is intrinsically
unpredictable because it
is triggered by an event
that hasn’t happened
before. When the product
owners and SREs have
advance notice of such
growth, such as when
planning for a new
feature launch, they
need to apply intuition
and rules of thumb to
estimating post-launch

15 of 20

Google Analytics lesson learned
	 An interesting case study of inorganic
	 growth that was not generated by
any engineering change and was not small
involves the initial launch of Google Analytics, a
service for gathering and analyzing traffic to any
website. Google had acquired Urchin Software
Corporation for its web-analytics product
that provided traffic collection and analytics
dashboards to paying customers. The inorganic
traffic growth event occurred when the product
was made available for free under the Google
brand, permitting any website owner to sign up
for it at no charge. Google correctly anticipated
a flood of new users, based on prior experience
launching the Keyhole (later called Google Earth)
subscription-based product for free. Therefore,
we carefully load tested and provisioned the
product for the expected increase in traffic.

Our prediction for core product usage then
performed reasonably well, but we had forgotten
to account for traffic to the signup page! The page
where new users signed up was backed by a single-
threaded SQL database with limited transaction
capacity, placing a strict and previously unknown
limit on the number of signups per second,
resulting in a stream of public complaints from
users about site slowness and unavailability. We
learned this lesson well, and our product launch
checklist afterwards contained the question, “Do
new users have to sign up for your service, and if
so, have you estimated and tested the load on your
signup page?”

3

sre metrics

acmqueue | november-december 2018 16

traffic, and understand that their predictions will have a
higher level of uncertainty.

General rules for forecasting inorganic growth for
product/feature launches include the following:
3 �Examine historical traffic changes from past launches of

similar or analogous features.
3 �For country- or market-specific launches, consider past

user behavior in that market.
3 �Consider the level of publicity and promotion around the

launch.
3 �Add a margin of uncertainty to the forecast where

possible, by provisioning three to five times the
resources implied by the forecast.

3 �While traffic from brand-new products is harder to
predict, it is also usually small, so you can overprovision
for this traffic without incurring too much cost.

LESSON 4: MEASURE SERVICE EFFICIENCY
SRE teams should regularly measure the efficiency of
each service they run, using load tests and benchmarking
programs to determine how many user requests per
second can be handled with acceptable responses
times, given a certain quantity of computing resource
(CPU, memory, disk I/O, network bandwidth, etc.). While
performance testing may seem an obvious best practice, in
real life teams frequently forget about service efficiency.
They may benchmark a service once a year, or just before
a major release, and then assume unconsciously that
the service’s performance remains constant between
benchmarks. In reality, even minor-seeming changes to
the code, or to user behavior, can affect the amount of

16 of 20sre metrics

acmqueue | november-december 2018 17

resources required to serve a given volume of traffic.
A common way of finding out that a service has become

less efficient is through a product outage. The SRE team
may think they have enough capacity to serve peak traffic
even with two data centers’ worth of resources turned
down for maintenance or emergency repairs, but when the
rare event occurs where both data centers are actually
down during peak traffic hours, the performance of the
service radically degrades and causes a partial outage
or becomes so slow as to make the service unusable. In
the worst case, this can turn into a “cascading failure”
where all serving clusters collapse like a row of dominoes,
inducing a global product outage.

Ironically, this type of massive failure is triggered by the
system’s attempt to recover from smaller failures. One
cluster of servers happens to get a higher load for reasons
of geography and/or user behavior, and this load is large
enough to cause all the servers to crash. The traffic load-
balancing system observes these servers going offline
and performs a failover operation, diverting all the traffic
formerly going to the crashed cluster and sending it to
nearby clusters instead. As a result, each of these nearby
servers now gets even more overloaded and crashes as
well, resulting in more traffic being sent to even fewer live
servers. The cycle repeats until every single server is dead
and the service is globally unavailable.

Services can avoid cascading failures using the drop
overload technique. Here the server code is designed to
detect when it is overloaded and randomly drop some
incoming requests under those circumstances, rather than
attempting to handle all requests and eventually melting

17 of 20sre metrics

acmqueue | november-december 2018 18

down. This results in a degraded customer experience
for users whose requests are dropped, but that can be
mitigated to a large extent by having the client retry the
request; in any case, slower responses or outright error
responses to a fraction of users are a lot better than a
global service failure.

It would be better, of course, to avoid this situation
altogether, and the only way to do that is to regularly
measure service efficiency to confirm the SRE team’s
assumptions about how much serving capacity is available.
For a service that ships out releases daily or more
frequently, daily benchmarking is not an extreme practice—
benchmarking can be built into the automated release
testing procedure. When newly introduced performance
regressions are detected early, the team can provision
more resources in the short term and then get the
performance bugs fixed in the long term to bring resource
costs back in line.

If you run your service on a cloud platform, some
cloud providers have an autoscaling service that will
automatically provision more resources when your service
load increases. This setup may be better than running
products on premises or in a data center with fixed
hardware resources, but it still does not get you off the
hook for regular benchmarking. Even though the risk of a
complete outage is lower, you may find out too late that
your monthly cloud bill has increased dramatically just
because someone modified the encoding scheme used
for compressing data, or made some other seemingly
innocuous code change. For these reasons, it is a best
practice to measure service efficiency regularly.

18 of 20sre metrics

acmqueue | november-december 2018 19

For additional details, see
chapter 11, “Managing Load,” in
the SRE workbook. This chapter
contains two case studies of
managing overload.

CONCLUSION
The metrics discussed in
this article should be useful
to those who run a service
and care about reliability. If
you measure these metrics,
set the right targets, and go
through the work to measure
the metrics accurately, not as
an approximation, you should
find that (1) your service runs
better; (2) you experience fewer

outages; and (3) you see a lot more user adoption. Most of
us like those three properties.

References
1. �Beyer, B., Jones, C., Petoff, J., Murphy, N. R. 2016. Site

Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media.

2. �Beyer, B., Murphy, N. R., Rensin, D. K., Kawahara, K.,
Thorne, S. 2018. The Site Reliability Workbook: Practical
Ways to Implement SRE. O’Reilly Media.

3. �Brutlag, J. 2009. Speed matters. Google AI Blog; https://
research.googleblog.com/2009/06/speed-matters.html.

4. �Kübler-Ross “five stages of grief” model; https://

Related articles

3 A Purpose-built Global Network:
Google’s Move to SDN
A discussion with Amin Vahdat, David Clark,
and Jennifer Rexford
https://queue.acm.org/detail.cfm?id=2856460

3 From Here to There, the SOA Way
Terry Coatta
SOA is no more a silver bullet than the
approaches which preceded it.
https://queue.acm.org/detail.cfm?id=1388788

3 Voyage in the Agile Memeplex
Philippe Kruchten
In the world of agile development,
context is key.
https://queue.acm.org/detail.cfm?id=1281893

19 of 20sre metrics

https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
https://landing.google.com/sre/book.html
http://shop.oreilly.com/product/0636920132448.do
http://shop.oreilly.com/product/0636920132448.do
https://research.googleblog.com/2009/06/speed-matters.html
https://research.googleblog.com/2009/06/speed-matters.html
https://en.wikipedia.org/wiki/K%C3%BCbler-Ross_model

acmqueue | november-december 2018 20

en.wikipedia.org/wiki/K%C3%BCbler-Ross_model.
5. �Analyze and optimize your website with PageSpeed

tools. 2018. Google Developers; https://developers.
google.com/speed/

6. �Tassone, E, Rohani, F. 2017. Our quest for robust time
series forecasting at scale. The Unofficial Google Data
Science Blog; http://www.unofficialgoogledatascience.
com/2017/04/our-quest-for-robust-time-series.html.

7. �Treynor, B. 2017. Metrics that matter (Google Cloud
Next); https://youtu.be/iF9NoqYBb4U.

Benjamin Treynor Sloss started programming at age 6 and
joined Oracle as a software engineer at age 17. He was a
software engineer at Oracle and Versant, then worked in
engineering management at E.piphany, SEVEN, and finally
Google (2003-present). His current team of approximately
4,700 at Google is responsible for site reliability engineering,
networking, and data centers worldwide.

Shylaja Nukala is a technical writing lead for Google Site
Reliability Engineering. She leads the documentation,
information management, and select training efforts
for SRE, Cloud, and Google engineers. She has a Ph.D. in
communication studies from Rutgers University.

Vivek Rau is a site reliability engineer at Google, working on
CRE (customer reliability engineering). The CRE team teaches
customers core SRE principles, enabling them to build and
operate highly reliable products on the Google Cloud Platform.
Rau has a B.S. degree in computer science from IIT-Madras.
Copyright © 2018 held by owner/author. Publication rights licensed to ACM.

20 of 20sre metrics

https://en.wikipedia.org/wiki/K%C3%BCbler-Ross_model
https://developers.google.com/speed/
https://developers.google.com/speed/
http://www.unofficialgoogledatascience.com/2017/04/our-quest-for-robust-time-series.html
http://www.unofficialgoogledatascience.com/2017/04/our-quest-for-robust-time-series.html
https://youtu.be/iF9NoqYBb4U

