
User Space TCP - Getting LKL Ready for the Prime Time

H.K. Jerry Chu, Yuan Liu
Google Inc.

1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
hkchu@google.com, liuyuan@google.com

Abstract

Running the networking stack in the user space is not new. The
conventional wisdom is that the network stack must bypass the
kernel in order to meet the performance requirements of a class
of applications that demand super-low latency.
This paper describes an experiment we’ve undertaken to pro-
vide a production- strength user space TCP stack for a different
use case inside Googles internal production network.
We choose a Linux based open source project called Linux
Kernel Library (LKL) as a base for our effort, and have made
significant contribution to it since late last year, improving both
its quality and performance. During the time, we discovered a
number of architectural constraints inherited in the LKL’s cur-
rent design and implementation, and gained valuable insights
into the pros and cons of the different approaches to user space
TCP.

Keywords
user space TCP, Linux kernel library

Introduction
It is a common belief that OS bypass is a necessity in order
for the networking stack to meet the requirement of a class of
applications from HPC to Wall Street that demand µsec-scale
tail latency. Most of the commercial user space networking
stacks are geared toward those applications. Moreover, spe-
cial interconnects such as Infiniband and RoCE have been de-
ployed inside datacenters replacing TCP protocol as the trans-
port that boast lower latency, higher throughput while using
less CPU cycles.

We are faced with different challenges. First there is a set
of legacy use cases where TCP is required for backward com-
patibility. Second, Google’s vast internal networks are de-
signed to only carry internally generated traffic for a number
of reasons. They range from tight security requirements, DOS
prevention, to better resource control. Network traffic initi-
ated externally and destined to services provided by Google
must first be terminated at Google Front-ends (GFEs), which
have been fortified to withstand adversary conditions, such as
the ever increasing DOS attacks. But this comes at a steep
computational cost.

With the rise of Cloud Computing, the boundary between
internal and external networks have blurred. Nowadays pack-

ets destined for Google services may be initiated from a for-
eign stack installed by a cloud customer running directly in-
side Google’s data center. If these “guest” packets created by
untrusted stacks are allowed into our internal networks un-
changed, and terminated directly by the Linux kernel TCP
stack running on our internal servers, it poses a very high se-
curity risk. On the other hand, forcing all the guest packets
to route through GFEs in order to subject them to the rigor-
ous checks and filtering is undesirable, both from the cost and
performance stand points.

Running a TCP stack in the user space to terminate guest
connections provides a solution that much reduces our expo-
sure to the security risk, from the whole OS kernel down to
a single user process. It also provides us high velocity in de-
ploying to the fleet any bug fixes we may find in the stack.
Moreover, it allows more accurate and tighter resource con-
trol, and finer grained accounting, as compared to the kernel
stack. For this reason different stacks employed by Google
Cloud Platform (GCP) all provide their own user space TCP
stacks, written in a variety of languages from C, C++ to Go.

As our cloud business grows, many of these small home
grown TCP stacks, initially written for their individual needs,
start showing signs of cracking due to their immaturity,
and suffer quality, performance, or interoperability problems.
This is not a surprise given the complexity and versatility
of the TCP protocol. It may be possible to demonstrate
an over-the-weekend TCP implementation that can perform
some simple handshake when no packet is dropped by the
network. It’s yet another story to come up with one that can
reliably inter-operate with the rest of the Internet.

This paper presents our effort in the past year to provide
a production- strength user space TCP stack based on LKL.
The rest of the paper is organized as follows: Section “Land-
scape of User Space Networking Stacks” gives a short survey
of existing user space TCP stacks and our effort for finding
one that best suits our needs. Section “Linux Kernel Library”
introduces LKL and the various network configurations we
use. Section “Minimizing Latency - the Holy Grail” details
our efforts to cut down the latency of the LKL stack. Sec-
tion “Large Segment Offload, the Key to Max Throughput”
describes how we boost LKL’s throughput performance. Sec-
tion “Taming the Copy Overhead” describes our effort to cut
down the number of copy operations. Section “Debugging
Facility” describes a very useful facility we’ve added to make



it easy to retrieve MIB counters from the LKL stack. Sec-
tion “Linker and Loader Issues” documents an example of
challenges in compiling kernel code as a user library. We
conclude with a TODO list for the future.

Landscape of User Space Networking Stacks
As described previously, given the complexity of the TCP
implementation and our requirement for a high quality,
production-strength TCP stack, we decided against writing
one from scratch, and started looking in the existing open
source space.

There are quite a few user space networking stacks out
there. We have a preference for a Linux based one, both
for its quality, performance, rich feature set, where Google
has made significant contribution, and our familiarity with it,
since Google’s data centers mostly run on the Linux OS.

Library operating system (LibOS) [6] first caught our at-
tention. It seemed to be a good candidate, based on Linux,
focusing only on the networking stack hence likely requiring
a smaller footprint, and possibly avoiding the complexity and
performance overhead of a full-blown OS. It confines all the
changes to an architecture directory arch/lib hence allow-
ing it to adapt easily to future kernel releases.

User-mode Linux (UML) [2] was brought up as another
candidate. But it does not seem to match our model of link-
ing the networking code with the application. It may be pos-
sible or even not difficult to do so but we do not have enough
expertise to assess further. Some other team inside Google
had previously evaluated UML and decided the ptrace syscall
overhead was too high before they went on to create their own
stack. (Unfortunately, as we discovered later, syscalls in LKL
are quite expensive too.)

After an initial evaluation of LibOS, we discovered the
project seemed still in an early stage hence implementations
in many areas seemed incomplete resulting in many bugs for
our use case. This has been confirmed by the author of Li-
bOS that it was targeted initially for a network simulator to
run Linux TCP code, hence the various race conditions we
encountered when using it in a different environment were
not an issue for the simulator. Also it confirmed our worry
that it can be more difficult and error-prone to try to carve out
a piece of code as complicated as the network stack, which is
fully integrated with the rest of kernel, and use it as a stand
alone piece of software, rather than taking the kernel as a
whole. A lots of kernel internal interfaces will have to be
exposed and replaced by new code in the user runtime, which
can compromise the original high quality of the monolithic
kernel.

On the other hand, LKL seemed to be much further along
in development. Like LibOS, it was also done as an archi-
tecture port to the Linux kernel hence changes are isolated
under an architecture directory arch/lkl. If it ever makes
into the upstream kernel repository, the maintenance cost will
be reduced to a minimum.

But as we discovered later, the higher quality resulted from
taking the whole kernel in one piece also comes with a steep
performance price.

Linux Kernel Library
The open source project was created by Octavian Purdila1

with a detailed paper published in 2010 [5].
Like UML, LKL was done as an architectural port of

Linux. It relies on a set of “native operations” supplied by
the host OS to glue the LKL kernel to the host environment.
Its architecture is illustrated in Figure 1.

Application

Linux Kernel Networking Stack

Virtio-Net Driver

Virtio-Net Device

Host OS

LKL Syscall API
LKL

LKL Arch

Host Ops

Figure 1: LKL architecture.

For the networking stack inside LKL to communicate with
the outside world, one simply plugs a virtio-net virtual “de-
vice” into LKL. Currently there are quite a few virtio-net de-
vices available for LKL already. The list includes tuntap, raw
socket, VDE, dpdk,..., etc. We’ve written a RDMA based de-
vice to allow LKL to run directly on top of RoCE capable
NICs, bypassing the host OS all-together. This is shown in
Figure 2.

Two other network configurations pertaining to our work
are illustrated below. Figure 3 illustrates our first application
where LKL is linked with a TCP proxy to terminate connec-
tions from VM guests. The proxy then relays the guest re-
quests to Google’s backend servers through the usual socket
or other networking API provided by the host OS.

Figure 4 shows the second configuration that simply runs
LKL on top of a TAP device to inject or retrieve packets
to/from the host kernel. This configuration allows two socket
applications, one running on top of LKL, the other running
on top of the host OS to communicate, and is easy to setup so
we use it often for debugging and regression test purpose.

After flushing out many bugs initially, we managed to link
LKL with our internal applications and it appeared to work
pretty well. But we quickly discovered its performance over-
head was much higher than the native stack. The following
sections described some of our efforts to narrow the perfor-
mance gap with the native OS.

1octavian.purdila@intel.com



Socket

TCP

IP
Virtio-Net 

Driver
Virtio-Net 

Device

LKL

RDMA 
Device

Socket

TCP

IP
Virtio-Net 

Driver
Virtio-Net 

Device

LKL

RDMA 
Device

Host 1

App

Host 2

App

Ethernet

Figure 2: LKL on top of RDMA.

Guest OS

Socket

TCP

IP

Virtio-Net 
Driver

App
Socket

TCP

IP

Virtio-Net 
Driver

Virtio-Net 
Device

LKL

Proxy

Socket

TCP

IP

Host 1

Hypervisor

Virtio-Net 
Device

Ethernet

Socket

TCP

IP

Ethernet

Host 2

Google 
Service

Figure 3: LKL TCP proxy.

Minimizing Latency - the Holy Grail
Our initial performance test showed LKL exhibited 4X la-
tency as compared to the native, host stack. This did not come
as a complete surprise due to LKL’s design as explained be-
low.

Various parts of the kernel code have a general assump-
tion that all the threads executing the kernel code are under
the direct control of the kernel scheduler. Some of the kernel
code even has dependency on threads running with a kernel
stack, and will access the stack frame based on the structure
of a kernel stack. Since LKL retains much of the kernel code
including the kernel scheduler, threads created by the appli-

Socket

TCP

IP
Virtio-Net 

Driver
Virtio-Net 

Device

LKL

TAP 
Device

Socket

TCP

IP

App AppHost

Host kernel

Figure 4: LKL on top of TAP.

cation and scheduled by the host scheduler can not safely ex-
ecute the LKL kernel code directly. Instead, a corresponding
“shadow” LKL kernel syscall thread must be created for each
application thread to handle all syscalls on its behalf. Though
there is no longer a mode switch from user space to kernel, a
context switch from application thread to LKL kernel thread
is required.

Figure 5 describes the process of running a LKL syscall.
Any host thread calling LKL syscalls must trigger an LKL
IRQ to switch to LKL “kernel space”. LKL IRQ is han-
dled by LKL idle thread or any LKL kernel thread that re-
enables IRQ. The IRQ handler wakes up the LKL kernel
syscall thread corresponding to the original host thread mak-
ing the syscall to actually run the kernel syscall code on its
behalf. On completion, it unblocks the host thread through a
host semaphore.

Host Thread

Host Thread

LKL Kernel Thread
Serving IRQ

LKL Kernel Thread
Serving IRQ

LKL Kernel Syscall Thread

LKL Kernel Syscall Thread

LKL IRQ

IRQ handler

Wake Up

run syscall

Wake Up

Figure 5: Process of running a LKL syscall. Each dashed line
represents a context switch.

As shown above, each LKL syscall incurs three additional
context switches; each costs several microseconds. It’s much



more expensive than the cost of native syscalls (e.g., non-
blocking socket read typically takes less than 1 µs).

Pin Threads to a Single CPU
One can often get a performance boost by pinning threads to
CPUs to take advantage of better cache locality and to avoid
the expensive inter-processor interrupt (IPI) calls. Our bench-
mark shows context switch using semaphore takes ~2.5 µs on
average but only ~1.5 µs if on the same core. When we pin all
threads onto a single CPU core using taskset(1), we see
big improvement on TCP_RR latency. However, taskset
is not always the best option in reality. The application may
contain parallel threads that best perform with multiple cores.

We decided to pin LKL kernel threads with
sched_setaffinity(2) internally without involv-
ing the host threads. Thus we benefit from the faster context
switch on the same core without losing any parallelism
because LKL is anyway a uniprocessor architecture.

Direct Syscall
LKL syscall is much slower than the native syscall due to the
three additional context switches as described above. A sim-
ple benchmark shows LKL getpid(2) takes roughly 10 µs
while host only takes 0.02 µs (20 ns). Even with taskset,
it takes 3 µs. Can we do better?

As mentioned before, some part of kernel code, especially
in the scheduler area relies on the fact that all threads (or
LWPs to be more correct) executing the kernel code are orig-
inally created by the kernel. Specifically every thread execut-
ing the kernel code must have a valid task_struct. Since
every host thread making a LKL syscall for the first time will
cause a shadow LKL kernel thread to be created, we’ll let
the host thread borrow its shadow thread’s task_struct
as follows:

• Lock LKL. A global mutex lock is added and any thread
that runs LKL kernel code must acquire this lock.

• Save current task_struct (of whoever happens to be
running in the LKL kernel) and IRQ status.

• Change current to point at the shadow task_struct
and enable IRQ.

• Run syscall.

• Restore current task_struct and IRQ status.

• Unlock LKL.

One may notice we don’t adjust the scheduler status in
LKL so in the run queue, it’s still the original tasks. That
means the host thread can’t block in the LKL kernel. To make
blocking syscall work requires changing the generic sched-
uler code unfortunately, to hijack __schedule(). I.e., in-
stead of letting the host thread execute the LKL kernel sched-
uler code directly, we make it block on a host semaphore,
which will be posted by the shadow thread when LKL sched-
ules it again.

To achieve the best latency number, dyntick-idle mode is
disabled in LKL. Otherwise the LKL idle thread must be
woken up after every direct syscall to pick up any possible
changes to the system (e.g. another thread is waken up by the

syscall). By disabling dyntick-idle mode, the wake up is done
by LKL timer ticks, which can happen in parallel. This opti-
mization saves several microseconds at the cost of waking up
LKL every 10 ms (HZ=100).

With direct syscall, LKL getpid() now takes only 0.1
µs now.

Latency Evaluation
Figure 6 shows the 1-byte TCP_RR latency of different ap-
proaches, using the kernel-bypass configuration as shown in
Figure 2. With busy polling, which saves one context switch
at each end, 33 µs is achieved compared to 23 µs of the host
stack. That’s within 1.4X of the host. Without busy polling,
40 µs (1.8X) is required. Some heuristic can be applied here
to avoid busy poll indefinitely.

0 20 40 60 80 100
Latency (us)

host base

busy poll
+ direct syscall

+ pin LKL

direct syscall
+ pin LKL

pin LKL

taskset

lkl base

Figure 6: 1-byte TCP_RR latency. lkl base: baseline
of LKL using RDMA; taskset: pin all threads to a sin-
gle CPU; pin LKL: pin only LKL kernel threads; direct
syscall: allow host thread directly to run LKL syscall;
busy poll: busy poll incoming packet in RDMA virtio
device; host base: baseline of the host TCP stack.

The biggest gap between LKL and the host is the IRQ han-
dling of incoming packets. In LKL, IRQ is handled by the
LKL idle thread, or any LKL kernel thread that re-enables
IRQ, which means a context switch is needed, hence much
slower than the real hardware IRQ. A direct IRQ handling
mechanism is being experimented during the preparation of
this paper.

Large Segment Offload, the Key to Max
Throughput

Although having the whole kernel code in LKL incurs sig-
nificant syscall and latency overhead as described above, it
does provide a major upside - many kernel features are read-
ily available and just work. E.g., GSO is provided in the ker-
nel netdev layer independent of the network driver. Virtio-net
driver also supports GRO. Either gives a boost to the through-
put performance while remaining completely transparent to
the rest of the device code, configuration, or the environment
LKL is running within as shown later.

For the optimal throughput performance, it’s best to main-
tain large segments, i.e., to avoid segmentation as further
into the network path as possible. To avoid segmentation



for virtio-net, we added to the LKL device the support of all
flavors of segmentation offload. The device code that man-
ages the descriptor rings was also enhanced to support both
big_packets and mergeable_rx_bufs modes, in ad-
dition to the regular MTU as described later. With these en-
hancements, we enable large segments to travel between the
guest and a local LKL client without ever being segmented
or checksummed, thus greatly improve the throughput per-
formance.

Figure 7 compares the netperf throughputs among a num-
ber of different offload configurations based on the setup de-
scribed in Figure 3.

0 2 4 6 8 10
Bulk data throughput (Gbps)

large segments

csum offload

GRO/GSO

baseline
guest->LKL
LKL->guest

Figure 7: TCP_STREAM throughput with VM inside a
16-CPU container, LKL configured with 256MB mem-
ory. baseline: all offload features disabled; GRO/GSO:
GRO/GSO enabled in LKL; csum offload: LKL GRO +
csum offload; large segments: all offload features en-
abled; LKL uses the mergeable_rx_bufs mode

Linux kernel has over the years accumulated a large num-
ber of “offload” features in its netdev and driver layers. With
the exception of GSO and GRO, most of the offload features
require some form of support from the NIC devices. When
we started to work on LKL a few months ago, its “virtual
NIC” device, i.e., the “virtio-net” did not have much offload
support. So we started with ~2Gbps throughput for the bulk
data transfer for both directions between a Linux guest and
the TCP proxy. We had to disable TSO in the guest be-
cause LKL’s virtio-net device could not handle any segment
large than the regular Ethernet MTU. The same applied to TX
checksum offload.

After removing a few unnecessary copy operations in our
code bridging the guest and LKL, we managed to triple
the throughput from the guest to the proxy to 6.3Gbps.
We discovered the GRO support in the virio-net driver also
contributed - without it the throughput would be less at
~5.5Gbps. (But for some reason throughput went a bit higher
at ~5.8Gbps if we disabled GSO in the guest.) Likewise for
the LKL/TCP proxy to the guest direction, once we enabled
CSUM offload (VIRTIO_NET_F_CSUM) in the LKL virtio-
net device, GSO is automatically enabled by the LKL kernel
and boosted the throughput from ~2Gbps to 4.5Gbps.

The above is one example of the advantage of linking in the
whole kernel code - some of the desirable features like GSO
and GRO just work with little or no change required.

Support of VIRTIO_NET_F_GUEST_CSUM device fea-
ture was added next so that the TCP checksum calcula-
tion can be bypassed on both sides between the guest and
the proxy. This further improved throughput to 7.2Gbps.
The next step was to allow large segments to flow end to
end between the guest and the TCP proxy. For the LKL
to the guest direction, support for another device feature
VIRTIO_NET_F_HOST_TSO4 was added to the LKL’s
virtio-net device code. The guest side’s virtio-net device
in the hypervisor can already handle large receive segments
hence was ready to go. This change more than doubled the
throughput from 4.5Gbps to 9.5Gbps.

The other direction required more work. Virtio-net
driver supports two different large receive modes. The
big_packets mode is enabled by the device feature
VIRTIO_NET_F_GUEST_TSO4 or like, which constructs
descriptors in the RX descriptor ring as a set of chains.
Each chain contains enough buffer space to accommodate the
largest possible segment size, i.e., 64KB. The other, possi-
bly more space efficient mode mergeable_rx_bufs, en-
abled by the device feature VIRTIO_NET_F_MRG_RXBUF,
allows the device to consume as many descriptors as it needs
for each inbound packet.

We added support for both modes and boosted the through-
put to more than 10Gbps from 7.2Gbps.

Taming the Copy Overhead
When moving data across different software components,
memory copy is often the most convenient, and sometimes
the only viable option. Using copying to transfer data be-
tween two distinct software components avoids any need for
coordination between the two, sometimes residing in differ-
ent protection domains. Once data is copied over, the buffer
management code from the two software components can run
independently to manage their own buffers, thus greatly sim-
plifies their code logic.

The downside of copying is the significant cost of CPU
cycles, especially when large segments are employed end-to-
end. In the TCP proxy bulk-data throughput benchmark, there
are four socket calls and copy operations involved. They are
between the guest and the guest kernel, TCP proxy and the
LKL kernel, TCP proxy and the host kernel, and finally the
netperf or netserver and the host kernel. To transfer packets
between LKL’s virtio-net device and the one inside the hy-
pervisor, two more copies are made. Hence a total of six data
copies are invoked for each byte of data transferred; and the
copy overhead ballooned to ~30% of the total CPU time after
we enabled large segments end-to-end.

Removing the copy at the virtio-net TX direction seems
feasible if buffers are consumed and completed by the recepi-
ent in the FIFO order. Otherwise one will have to separate the
management of avail ring and used ring, allowing buffers
to be loaned out and returned independently of their original
positions in the queues. The RX direction seems more diffi-
cult. One has to either ensure the virtio device implementa-
tion pre-posting buffers early enough before packets arrive so
that packets can land directly on the buffers, or to change the
virtio-net driver implementation to allow taking buffers sup-



plied by the device, rather than having the kernel replenish
the buffer ring.

As for the socket calls, literatures are abundant (e.g., [1])
on how to avoid the copy there. We initially thought it would
be easier for LKL because there is no issue with the change of
protection domains - LKL kernel and users share the same ad-
dress space and privilege, therefore buffers are readily acces-
sible from both sides without requiring any additional work.
Furthermore, LKL employs a no-MMU architecture hence no
virtual memory and buffers are always memory resident with
no need to lock down their backing pages.

Unfortunately it’s not that simple. Although buffer ad-
dresses are always valid therefore simple CPU loads/stores
always work from both the user and the kernel sides, the
main data structure struct sk_buff aka skb used by
the Linux kernel networking code often maintains data seg-
ments in an array frags involving the struct page data
structure. The latter is used to keep track of memory at the
physical level even on architectures without an MMU. Even
if we manage to avoid the use of frags and fit the whole
large segment in the skb head using just the memory ad-
dress, when the skb hits the IO layer, the kernel will still need
to lookup the backing page to perform device IO.

Since the host thread making the socket call is for-
eign to the LKL kernel, any kernel attempt to look up
the backing page on a host supplied buffer address will
fail. This implies a set of syscalls requiring such opera-
tions, such as vmsplice(2) will not work with buffers
allocated by the host. One solution (provided by Octa-
vian Purdila) is for the user to use LKL mmap(2) with
MAP_ANONYMOUS|MAP_PRIVATE flag to allocate LKL
“kernel memory” to use. This unfortunately requires appli-
cation changes, and may be awkward since applications often
employs iovec to compose the protocol headers and pay-
load from different parts of memory.

A separate syscall will need to be invented for the applica-
tion to know when it’s safe to reuse a buffer, i.e., when the
LKL kernel TCP stack is done with it. Linux kernel does not
currently provide such an interface. We will have to continue
to work on it.

For the LKL RX side, zero-copy socket seems easier. One
would need to translate the pages from skb’s frags back to
memory address. This is pretty straightforward given LKL’s
no-MMU and FLATMEM architecture. We will also need a
separate syscall for the application to release the skb back to
the LKL kernel.

Unfortunately more details have to be deferred as we are
not able to complete the work originally planned.

Debugging Facility
There are a vast number of system tools available for the
Linux OS. Networking diagnosis tools such as netstat/ss,
ethtool, tcpdump, and many others from iproute2, net-tools
packages are indispensable for Linux networking engineers
to perform debugging, system diagnosis and tuning of a live
Linux networking stack effectively.

Since LKL has most of the kernel code linked with it, it
supports all the ioctl, netlink socket, /proc, etc interfaces re-
quired for these tools to work. Unfortunately, given LKL

lives in the user space, it’s confined to the single process
space where the kernel instance is booted. It seems difficult
to bridge calls between a diagnosis tool running in a different
process with an LKL instance.

As a starter, we’ve provided a simple solution to enable
access to counters and parameters inside an LKL instance’s
procfs, sysfs,..., etc. Upon receiving a specific signal(7),
the process running LKL will spawn a thread to provide a
simple command line interface to the LKL console, allow-
ing one to mount special filesystems like procfs, sysfs,..., etc.
Then one can use simple cd, ls, cat, echo, commands to re-
trieve any counter or set/tune any parameter desired. This
simple facility has proven to be extremely useful, allowing us
to retrieve the most basic information such as SNMP coun-
ters, or turning a simple knob in the stack.

A more general approach to support those tools directly is
to have a syscall proxy to pass calls between processes, like
the rump sysproxy [3].

Linker and Loader Issues
We have encountered a number of mysterious failures from
the GNU compiler/linker, either during the compiling/static-
linkage time or, worse, at runtime when an application is be-
ing loaded. Fortunately our intern Andreas Abel2 has been
able to resolve most of the issues for us. The following is one
example where we hit a bug that affects LKL used as library
code. Applications linked with LKL statically will trigger a
segmentation fault during loading, well before execution.

The problem has to do with position independent code
(PIC) and kallsyms. kallsyms adds kernel debug sym-
bols to the .rodata section that eventually goes into the
.text segment. Those symbols reference the address of the
.text section and require a relocation at runtime when com-
piled as PIC, which is called TEXTREL. When TEXTREL ex-
ists together with an ifunc that produces a type of relocation
calling a function in the .text section, a segmentation fault
may happen. libatomic is an example usage of ifunc to
select the best implementation based on hardware at runtime.
When the loader processes TEXTREL , it makes the .text
segment writable temporarily. Since, SELinux, for example,
does not allow a segment to be both writable and executable
at the same time, the loader sets the permissions of the seg-
ment to read/write. However, when it processes the reloca-
tion of the ifunc, it tries to execute code in the .text seg-
ment (which is at this point not executable) and segmentation
fault is thrown. This issue in the loader is already noticed and
patches were proposed but rejected due to the requirement of
SELinux [4].

The workaround is quite simple. Just turn off
CONFIG_KALLSYMS, or move the kallsyms data from
the .rodata section to the writable .data section. This is-
sue demonstrates some unexpected challenges in using Linux
kernel code as a user library.

Conclusion
LKL has carried us a long way toward providing a viable user
space TCP stack for Google internal use. We still have much

2mail@andreasabel.de



work to do; and the following is only a partial list:

• Complete the socket zero-copy work and continue to try to
remove remaining copy operations.

• Figure out a less disruptive way to support direct syscall
while still keeping all the performance gains.

• Attempt the syscall proxy approach to enable more diag-
nosis tools to run on top of LKL.

• Since LKL does not support SMP, its current performance
is capped by how much performance a single CPU core
can deliver. One workaround is to shard the application
port number space thus allowing multiple LKL instances
to run simultaneously. In the long run SMP support seems
to be the way to go.

Finally it would be best for the user community if LKL can
be accepted into the upstream kernel at some point. We do
not have enough knowledge about LKL’s past to assess how
much obstacle there may be but will work with the maintainer
and the rest of the community to achieve this.

Acknowledgments
Two early members of the team Xiao Jia and Patrick Collins
made significant contributions to get our project off the
ground locally. We’d also like to thank Andreas Abel for
fending off a slew of linker/loader related bugs during his in-
ternship with us. Hajime Tazaki, the author of LibOS and
now an active contributor of LKL, has provided helpful in-
sights to us. Finally kudos goes to the LKL open source
maintainer Octavian Purdila for continuing to improving the
codebase.

References
[1] Chu, J. 1996. Zero-Copy TCP in Solaris. In Proceedings

of the USENIX 1996 Annual Technical Conference. San
Diego, CA: USENIX Association.

[2] Dike, J. 2000. A user-mode port of the linux kernel.
In Proceedings of the 4th Annual Linux Showcase & Con-
ference - Volume 4, ALS’00, 7–7. Berkeley, CA, USA:
USENIX Association.

[3] Kantee, A. 2011. Kernel servers using rump. http://
www.netbsd.org/docs/rump/sysproxy.html.
[Online; accessed 09-Sep-2016].

[4] 2015. PIE binary with STT_GNU_IFUNC
symbol and TEXTREL segfaults on x86_64.
https://sourceware.org/ml/libc-alpha/
2015-08/msg00419.html. [Online; accessed
30-Aug-2016].

[5] Purdila, O.; Grijincu, L. A.; and Tapus, N. 2010. LKL:
The linux kernel library. In 9th RoEduNet IEEE Interna-
tional Conference, 328–333.

[6] Tazaki, H.; Nakamura, R.; and Sekiya, Y. 2015. Library
operating system with mainline linux network stack. net-
dev0.1.


