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ABSTRACT
This paper presents a practically efficient implementation for non-
linear acoustic echo cancellation (NAEC). The echo path is modeled
by a novel hybrid Taylor-Volterra pre-processor followed by a linear
FIR filter. A cascaded block RLS and unconstrained FLMS adaptive
algorithm is developed to jointly identify the pre-processor and the
FIR filter. This implementation is validated via simulations.

Index Terms— Nonlinear acoustic echo cancellation, block
RLS, FLMS, hybrid Taylor-Volterra model

1. INTRODUCTION

Acoustic echo cancellation (AEC) is one of the enabling technolo-
gies for two-party or multi-party voice communications, e.g., video-
conferencing. Since the idea was first developed in the early 1960s,
traditional AEC approaches have had many successful applications
and real-time systems. But when coming to implementations on mo-
bile devices, they are found to fall short of required performance,
mainly because of the common assumption they made that echo
paths are linear and can be modeled by linear finite impulse response
(FIR) filters. On typically low cost and power efficient mobile de-
vices, low-quality and overdriven audio components (e.g., converter,
amplifier, loudspeaker, and microphone) can introduce nonlinear
distortion which FIR filters cannot represent and deal with. This
leads to strong residual echoes, which greatly impair communica-
tion quality.

In the last two decades, great efforts have been made to com-
pensate nonlinearities in AEC and a large number of nonlinear AEC
(NAEC) methods have been proposed. These methods may differ
in what type of nonlinearities (static or dynamic) are involved. But
a practically popular, common choice is to place a nonlinear pre-
processor in front of the linear FIR filter, including Volterra filter
based algorithms [1, 2] and polynomial-based approaches [3, 4, 5].
The normalized least mean squares (NLMS) [3] and recursive least
squares (RLS) [4] approaches have been developed for the pre-
processor’s adaptation.

This paper considers a novel hybrid Taylor (polynomial) and
Volterra filter for the pre-processor, and presents a more efficient
NAEC implementation which jointly adapts the pre-processor and
the FIR filter using a block RLS method and the frequency-domain
LMS (FLMS) algorithm, respectively.

2. SIGNAL MODELS

Mobile phone audio systems are complicated and many parts can
introduce nonlinear distortion. The dominant source of nonlinearity
may vary from phone to phone. So there are a large number of signal
models that have been considered in the literature, including

1) Static power filter [3, 5, 6],
2) Cascaded dynamic power filter [7],
3) Parallel dynamic power filter [8], and
4) Second-order Volterra filter [1].

Figure 1 depicts the structures of these models. They all have pros
and cons. The static power filter is simple but cannot handle dynamic
nonlinearities. Both the cascaded and parallel dynamic power filters
may suffer from the system identifiability ambiguity issue, which
means that they can be reduced. The second-order Volterra filter
sacrifices the power of modeling high-order (higher than the 2nd or-
der) static nonlinearities for mathematical tractability. Through a
little bit of tweaking, we can reach a better balance point between
simplicity and power of representation: we put a 2nd-order Volterra
filter side-by-side with a higher (than 2nd) order Taylor (power) filter
as shown in Fig. 2. This still rather simple structure can model not
only static amplifier soft-clipping saturation but also dynamic loud-
speaker nonlinearities. We refer to this new proposed model as the
hybrid Taylor-Volterra (HTV) model for NAEC.

Following this HTV model, the output echo is mathematically
expressed as

y(n) = hT
[
X(1)(n)g1 + X(2)(n)g2 + X(3+)(n)g3+

]
+ v(n),

(1)
where n is the discrete time index, (·)T denotes the transpose of a
vector or a matrix,

h �
[
h0 h1 · · · hL−1

]T
,

L is the length of the adaptive filter that models the linear part of the
echo path centered by the near-end surrounding sound field,

X(1)(n) �

⎡
⎢⎢⎢⎣

x(n) x(n− 1) · · · x(n−M1 + 1)
x(n− 1) x(n− 2) · · · x(n−M1)

...
...

. . .
...

x(n− L+ 1) x(n− L) · · · x(n− L−M1 + 2)

⎤
⎥⎥⎥⎦ ,

g1 �
[
g1,0 g1,1 · · · g1,M1−1

]T
,

M1 is the memory length of the first-order Volterra kernel,

X(2)(n) �
[

x(2)(n) x(2)(n− 1) · · · x(2)(n− L+ 1)
]T

,

x(2)(n) �
[
x2(n) · · · x(n)x(n−M2 + 1)

x2(n− 1) · · · x(n− 1)x(n−M2 + 1)

· · · x2(n−M2 + 1)
]T

,

g2 �
[
g2,(0,0) · · · g2,(0,M2−1) g2,(1,1) · · · g2,(1,M2−1)

· · · g2,(M2−1,M2−1)

]T
,
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Fig. 1: Structures of the signal models that were considered in the
literature for NAEC: (a) static power filter, (b) cascaded dynamic
power filter, (c) parallel dynamic power filter, and (d) second-order
Volterra filter.
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Fig. 2: Structure of the proposed hybrid Taylor-Volterra (HTV)
model for NAEC.

M2 is the memory length of the second-order Volterra kernel,

X(3+)(n) �

⎡
⎢⎢⎢⎣

x3(n) · · · xP (n)
x3(n− 1) · · · xP (n− 1)

... · · ·
...

x3(n− L+ 1) · · · xP (n− L+ 1)

⎤
⎥⎥⎥⎦ ,

g3+ �
[
g3 g4 · · · gP

]T
,

P is the order of the polynomial, and v(n) denotes the sum of local
speech and additive noise.

Let’s define

X(n) �
[

X(1)(n) X(2)(n) X(3+)(n)
]
, (2)

g �
[

gT
1 gT

2 gT
3+

]T
. (3)

Then (1) is reduced to a more compact form

y(n) = hT X(n)g + v(n). (4)

It is worth noting that if M1 = M2 = 1, then the HTV filter is
simply a P -th order power filter. If P = 2, then it is a pure second-
order Volterra filter. But they all share the same mathematical form
of (4), differing only in how X(n) is constructed from the input x(n)
and how many coefficients g has.

3. CASCADED NLMS ADAPTIVE FILTERS

In the theory of nonlinear system identification, the widely used and
studied Hammerstein model consists of a static nonlinear unit fol-

lowed by a dynamic linear time-invariant (LTI) FIR filter. The HTV
model is not a typical Hammerstein system since its input nonlinear-
ity is dynamic and is represented by a 2nd-order Volterra filter. But
the cascaded NLMS adaptive filtering algorithm that was developed
for Hammerstein systems [3] can also work for the HTV model.

To begin, we define the HTV error signal at time n and the mean
square error (MSE) function as follows

e(n) � y(n)− ŷ(n) = y(n)− ĥ
T

X(n)ĝ, n = 0, 1, 2, · · · (5)

J � E{e2(n)}, (6)

where E{·} denotes the mathematical expectation. To minimize
the MSE, the nonlinear and linear filter coefficients can be jointly
adapted via the following NLMS updating rules:

e(n) = y(n)− ĥ
T
(n− 1)X(n)ĝ(n− 1), (7)

ĝ(n) = ĝ(n− 1) +
μg · e(n)XT (n)ĥ(n− 1)

ĥT (n− 1)X(n)XT (n)ĥ(n− 1) + δg
, (8)

ĥ(n) = ĥ(n− 1) +
μh · e(n)X(n)ĝ(n− 1)

ĝT (n− 1)XT (n)X(n)ĝ(n− 1) + δh
, (9)

where μg and μh are step sizes, δg and δh are regularization factors.

4. CASCADED BLOCK RLS AND FLMS ADAPTIVE
FILTERS

It is well known that the NLMS is simple, but slow in convergence
particularly for colored speech inputs. It has been shown in [3] that a
sophisticated step-size control is crucial to the performance of joint
NLMS adaptation of a polynomial pre-processor and an FIR filter.
The optimum step-size control depends on the assumed form of input
nonlinearity and hence is difficult to implement. As a result, the
NLMS is deemed practically ineffective for AECs.

In this paper, we suggest to use the RLS method for the adapta-
tion of the nonlinear preprocessor coefficients ĝ(n) in (8), similar to
what was proposed in [9]. The RLS has much faster convergence and
much smaller final misalignment than the NLMS. Furthermore we
intend to replace the NLMS adaptation of the FIR filter by the FLMS
approach. The FLMS enjoys two main advantages: 1) low complex-
ity thanks to the use of the Fast Fourier Transform (FFT), and 2) fast
convergence due to the fact that the discrete Fourier transform (DFT)
can approximately decorrelates the input signals and adaptation can
be independently optimized in each frequency bin. So the FLMS
adaptation is a popular choice in real-time linear AECs. Since the
FLMS processes the input data block by block, we want to derive a
block-based RLS adaptation scheme for the nonlinear pre-processor.

Given the data {x(i), y(i)} and all the linear filter estimates
ĥ(i − 1) for 1 ≤ i ≤ n, the RLS algorithm minimizes the sum
of squared errors equipped with a leaky memory:

Jĝ(n) �
n∑

i=1

λn−i
g e2(i) =

n∑
i=1

λn−i
g

[
y(i)− ĥT (i− 1)X(i)ĝ

]2

= ĝT R(n)ĝ − 2rT (n)ĝ +
n∑

i=1

λn−i
g y2(i), (10)

where 0 < λg < 1 is an exponential forgetting factor, and

R(n) �
n∑

i=1

λn−i
g XT (i)ĥ(i− 1)ĥT (i− 1)X(i), (11)

r(n) �
n∑

i=1

λn−i
g y(i)XT (i)ĥ(i− 1). (12)
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Table 1: Joint adaptation of the HTV model using the block RLS
and FLMS algorithms (pseudocode).

L: filter length, Ls: block shift (Ls ≤ L), 2L: FFT size
μh: step size, λg, λh: forgetting factors
F2L×2L: Fourier matrix

W01
L×2L �

[
0L×L IL×L

]
and W10

L×2L �
[

IL×L 0L×L

]
Initialize ĝ(0), ĥ(0),R(0), r(0), S(0)

ĥf,2L = F2L×2L

[
ĥ
T
(0) 0T

L×1

]T
For m = 1, 2, · · · (block iteration)

For i = 1, 2, · · · , Ls (iterate over all samples of the block)
n = (m− 1)Ls + i;

R(n) = λgR(n− 1) + XT (n)ĥ(m− 1)ĥ
T
(m− 1)X(n);

r(n) = λgr(n− 1) + y(n)XT (n)ĥ(m− 1);

end
ĝ(m) = R−1(n)r(n)
Use ĝ(m) to pre-process X(mLs) and X((m− 1)Ls) and get

d2L(m) �
[

XT (mLs) XT ((m− 1)Ls)
]T

ĝ(m)

Construct yL(m) �
[
y(mLs − L+ 1) · · · y(mLs)

]T
Compute

D(m) = diag{F2L×2Ld2L(m)}
S(m) = λhS(m− 1) + (1− λh)D∗(m)D(m)

eL(m) = yL(m)− W01
L×2LF−1

2L×2LD(m)ĥf,2L(m− 1)

Extract the last Ls samples from eL(m) to get

e(m) �
[
e(mLs − Ls + 1) · · · e(mLs)

]T
Update

ef,2L(m) = F2L×2L

[
0T
L×1 eTL(m)

]T
ĥf,2L(m) = ĥf,2L(m− 1) + μh(1− λh)×

[S(m) + δhI2L×2L]
−1 D∗(m)ef,2L(m)

ĥ(m) = W10
L×2LF−1

2L×2Lĥf,2L(m)

end

Differentiating (10) and equating the result to zero yields

R(n)ĝ = r(n). (13)

Solving this normal equation (13) for ĝ leads to the RLS estimate of
the pre-processor coefficients at time n

ĝ(n) = R−1(n)r(n). (14)

In a block-processing framework, the nonlinear pre-processor
coefficients will be updated only once at the end of each block and so
the matrix inversion in (14) needs to be computed just once for each
data block. But R(n) and r(n) should still be recursively updated
sample by sample. For brevity and clarity, the joint RLS and FLMS
adaptations of the HTV model filters are summarized in Table 1.
Note that here an unconstrained version of the FLMS algorithm [10]
is incorporated.

5. SIMULATIONS

Here we consider a synthesized HTV nonlinear echo system. The
input nonlinearity is a static soft-clipping function given by

f(x) =
γx√

x2 + γ2
, (15)
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Fig. 3: Comparison of the performance of the joint NLMS adapta-
tion of the HTV nonlinear pre-processor and FLMS adaptation of the
linear FIR filter on white and speech inputs in terms of (a) ERLE, (b)
linear FIR NPM, (c) nonlinear pre-processor NPM, and (d) estimated
input nonlinearity.

where γ is the maximum output amplitude as x goes to infinity. Such
a nonlinearity is memoryless such that M1 = M2 = 1. The acoustic
impulse response is extracted from the AIR multichannel impulse
response response database [11]. The 60 dB reverberation time is
160ms. The sampling rate is 16 kHz and we truncate the impulse
response to Lt = 1024 taps. The input signal to the echo system
can be either a white random signal or clean speech. Without loss
of generality, the speech is taken from a continuous speech story
corpora and the speaker is male. At the output of the echo system,
only white noise is added at a signal-to-noise ratio (SNR) of 35 dB,
implying no local speech.

In the simulations, we keep the length of data to 60 s. For the
first 40 s, the simulated NAEC algorithms adapt as they are supposed
to do. But we freeze them afterwards, which simulates the case of
double talks and helps check whether the adaptive algorithms may
have overfitted the data.

The performance of NAEC algorithms is assessed by three mea-
sures:
1) Echo return loss enhancement (ERLE):

ERLE � 10 log10

〈
y2(n)

〉
t

〈e2(n)〉t
, (16)
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where 〈·〉t denotes the average of data over a period of t and
e(n) is the NAEC residual signal. In our simulations, t is set
to 200ms and the ERLE analysis window is shifted once every
10ms.

2) Normalized projection misalignment (NPM) of the linear FIR
filter (which can absorb a gain ambiguity) [12]:

NPM
(

ĥ, ht

)
� 20 log10

∥∥∥ht − αĥz

∥∥∥
‖ht‖

, (17)

where ‖·‖ denotes the Euclidean norm of a vector, α �(
hT

t ĥz

)
/
(

ĥ
T

z ĥz

)
, and ĥz �

[
ĥ
T

0T
(Lt−L)×1

]T
is a zero-

padded vector of ĥ that matches the length of ht.
3) NPM of the static nonlinear pre-processor [13]:

NPM
{
f̂(x|ĝ), ft(x)

}
� 10 log10

∫ b

a

[
ft(x)− βf̂(x|ĝ)

]2
dx

∫ b

a

f2
t (x)dx

,

(18)
where ft(x) and f̂(x|ĝ) denote respectively the true and esti-
mated pre-processor nonlinearity, (a, b) is the interested range
of inputs, and

β �
∫ b

a
ft(x)f̂(x|ĝ)dx∫ b

a
f̂2(x|ĝ)dx

.

The first experiment compares the performance of NLMS adap-
tation of the HTV nonlinear pre-processor on white and speech in-
puts. The linear FIR filter is adapted by using the FLMS algorithm.
The results are plotted in Fig. 3. Simulation parameters are: soft
clipping γ = 0.75, L = 768, μg = 5 × 10−3, μh = 0.3, P = 5,
Ls = 128.

When the input signal is white noise, the NLMS adaptation
of the pre-processor can effectively identify the input nonlinearity
while the FLMS adaptation of the linear FIR filter yields very low
final misalignment. But when the input signal becomes speech, the
algorithm does not work as well: it is clear from Fig. 3(d) that the es-
timated input nonlinearity is significantly different from the ground
truth. Note that the soft-clipping input nonlinearity merely affect
data with large magnitudes. When the input is white noise which
has a uniform distribution over (−1, 1), the soft-clipping can be fully
excited and so it is easy to identify. But speech is generally a super-
Gaussian random process and only occasionally has very large sam-
ples (not even to mention frequent silent periods in speech signals).
So the input nonlinearity is not fully excited and the identification
problem becomes difficult for the NLMS adaptive algorithm.

The second experiment intends to validate the performance of
the proposed block RLS+FLMS algorithm. A comparison is made
against the NLMS+FLMS algorithm. The input is speech, soft clip-
ping γ = 0.75, L = 768, P = 5, Ls = 128, μg = 5 × 10−4 and
μh = 0.3 for the NLMS+FLMS, λg = 0.999995 and μh = 0.3 for
the RLS+FLMS implementation. The results are collected in Fig. 4.

The block RLS converges much faster than the NLMS for identi-
fying the nonlinear pre-processor. After convergence, the input non-
linearity estimated by the RLS is very close to the ground truth. Note
that what we are interested here is the nonlinear function only over
the range of inputs. For the NLMS, we have chosen a much smaller
step size μg = 5 × 10−4 (in comparison with 5 × 10−3 in the pre-
vious experiment) but unfortunately a satisfactory convergence has
not yet been reached at 40 s.
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Fig. 4: Comparison of the joint RLS+FLMS and joint
NLMS+FLMS adaptations of the HTV model for AEC in terms of
(a) ERLE, (b) linear FIR NPM, (c) nonlinear pre-processor NPM,
and (d) estimated input nonlinearity.

The presence of a mild soft-clipping input nonlinearity does not
seem to significantly affect the performance of the linear filter FLMS
adaptation: the accuracy of the estimated input nonlinearities by the
NLMS and block RLS algorithms makes no meaningful difference
in linear filter NPM [see Fig. 4(b)]. But including a nonlinear pre-
processor in the echo-path model and being able to accurately iden-
tify it leads to higher ERLE levels, particularly after adaptation is
frozen [see Fig. 4(a)].

6. CONCLUSIONS

This paper studied the NAEC problem and presented a practically
efficient implementation. A hybrid Taylor-Volterra model was pro-
posed for parameterizing the echo path input nonlinearities on mo-
bile devices. It makes a better balance between simplicity and power
of representation. A block RLS algorithm was developed for adap-
tation of the nonlinear pre-processor and the linear FIR filter was
jointed adapted by the unconstrained FLMS algorithm. Simulation
results showed that the presented NAEC implementation is fast in
convergence and is free from data overfitting.
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