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ABSTRACT

Existing unbiased learning-to-rank models use counterfactual infer-
ence, notably Inverse Propensity Scoring (IPS), to learn a ranking
function from biased click data. They handle the click incomplete-
ness bias, but usually assume that the clicks are noise-free, i.e., a
clicked document is always assumed to be relevant. In this paper,
we relax this unrealistic assumption and study click noise explicitly
in the unbiased learning-to-rank setting. Specifically, we model
the noise as the position-dependent trust bias and propose a noise-
aware Position-Based Model, named TrustPBM, to better capture
user click behavior. We propose an Expectation-Maximization algo-
rithm to estimate both examination and trust bias from click data
in TrustPBM. Furthermore, we show that it is difficult to use a pure
IPS method to incorporate click noise and thus propose a novel
method that combines a Bayes rule application with IPS for unbi-
ased learning-to-rank. We evaluate our proposed methods on three
personal search data sets and demonstrate that our proposed model
can significantly outperform the existing unbiased learning-to-rank
methods.
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1 INTRODUCTION

Implicit user feedback (such as clicks, dwelling time etc.) is rou-
tinely logged in many applications such as web search and personal
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email search. Using this data for learning-to-rank (LTR) is attrac-
tive not only because it is abundantly available, but also because
it is the only viable large-scale labeled data for many applications
like personal search [32, 33]. Moreover, unlike explicit relevance
judgments obtained from experts or crowd-sourcing which can be-
come obsolete quickly, implicit feedback reflects the time-varying
preferences of the actual user population and is easy to maintain.

Despite these clear benefits, LTR from implicit feedback, in par-
ticular clicks on search results, is challenging due to inherent biases
in user behavior. For example, due to position bias, a result dis-
played at a higher position is more likely to receive clicks than a
result at a lower position. Thus directly using clicks as relevance
judgments can lead to biased results because (1) clicks are incom-
plete as relevant documents may be missed non-uniformly and
(2) clicks are noisy since a click does not necessarily imply the
document is relevant.

Recently, unbiased LTR has been actively studied as a promis-
ing approach to learn from biased click logs. It is based on coun-
terfactual inference [21] and has been shown to outperform the
traditional click modeling approaches [3]. The commonly used tech-
nique in unbiased LTR is Inverse Propensity Scoring (IPS). Different
from the traditional IPS approaches used in counterfactual infer-
ence where the propensity is known, a key question in unbiased
LTR is how to estimate the propensity — the probability that the
relevance of a result is observed. Examination-based click mod-
els, and the Position-Based Model (PBM) in particular, have been
leveraged for this. A nice property of PBM is that the examination
bias in it is the propensity needed. Different techniques have been
proposed to estimate the examination bias using result random-
ization [21, 32], random pairs harvesting [2], a regression-based
Expectation-Maximization (EM) technique [33], and a dual learning
algorithm [3].

Existing PBM methods mainly focus on addressing the click in-
completeness bias, by assuming that clicks are noise-free. Such
an assumption is unrealistic. How to address click noise for unbi-
ased LTR is still an open question. Joachims et al. [21] showed the
robustness of the IPS-based approach when position-independent
constant noise is present in click data. However, as the user study
in [19] showed qualitatively, there is a trust bias after examining
results, capturing the intuition that users may overestimate (or
underestimate) the relevance of a result given its high (or low)
position, due to their trust in the effectiveness of the search applica-
tion to rank relevant documents higher. Thus a non-relevant result
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may be clicked and a relevant result may not be clicked, and the
probabilities are not constant but depend on the position of the
result.

Trust bias can be thought of as another form of position bias,
but to the best of our knowledge, it has not been quantitatively
formulated in the existing literature. In this paper, we introduce
a noise-aware PBM, named TrustPBM, to model trust bias in user
clicks. The standard PBM model assumes that an examined and
relevant document is always clicked. We extend it to capture the
following uncertainty: after examination, a relevant document can
be missed, and meanwhile a non-relevant document can be clicked.
TrustPBM is a click model that gives a rigorous mathematical for-
mulation of the trust bias. However, its bias parameters cannot be
estimated based on intervention like the result randomization used
for PBM. Even if we can estimate bias parameters in TrustPBM, it
is still unclear how to use them for unbiased LTR.

In this paper, we first show that TrustPBM can be effectively es-
timated using an EM algorithm, inspired by the previous work [33].
Since TrustPBM is no longer a factorization model, a purely IPS
method for unbiased LTR is not feasible. We thus derive a novel
and mathematically principled Bayes-IPS correction that uses a
Bayesian approach for trust bias and IPS for examination bias. Con-
ceptually, the Bayes-IPS method addresses both click incomplete-
ness bias (using IPS) and click noise (using Bayes rule) for unbiased
LTR.

We empirically evaluate our method on click logs from search
services for Gmail, Google Drive, and Gmail Expert users. Our
TrustPBM estimates obtained via the EM algorithm reveal novel
insights into the nature of relevance noise present in real settings.
Most interestingly, we observe that most of the noise comes from
highly ranked irrelevant documents being judged relevant, while
relevant documents tend to be judged accurately even at lower
positions. Moreover, our results demonstrate that the TrustPBM
fits the click data better than the plain PBM. Furthermore, ranking
models trained with the Bayes-IPS correction have superior live
experiment metrics than those trained with only the IPS correction
based on PBM, estimated either via EM or result randomization.

In summary, the contributions of this paper are as follows:

e We propose TrustPBM, a novel click model that captures both
position-dependent click incompleteness and click noise.

e We extend the EM algorithm designed for PBM to TrustPBM
and show that it can effectively estimate the model parame-
ters for TrustPBM.

e We present a novel Bayes-IPS correction method for unbi-
ased LTR based on the parameters in TrustPBM estimated
by the EM algorithm.

e We validate our approach on large-scale click logs. The ex-
perimental results show interesting patterns for user behav-
ior and our proposed Bayes-IPS method achieves superior
results compared to baselines.

The rest of the paper is organized as follows. In Section 2, we
review previous related work. We describe our TrustPBM model
in Section 3 and the EM algorithm for its parameter estimation in
Section 4. Our Bayes-IPS approach for unbiased LTR is presented
in Section 5. We report our evaluation on click logs in Section 6.
Finally, we conclude this paper and discuss future work in Section 7.
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2 RELATED WORK

Leveraging user interaction data such as clicks has been shown to
be quite promising in improving search quality. A simple approach
is to use click and non-click information as relevance judgment of
results. This can be used for evaluation or to train a new ranking
function in the LTR setting. However, such an approach can lead to
misleading evaluation results or sub-optimal ranking functions due
to various types of bias in click data, e.g., position bias [19], presen-
tation bias [35], and trust bias [19, 25]. In the past, a large amount of
research has been devoted to extracting more accurate signals from
click data. For example, some heuristic methods have been proposed
to address the position bias by utilizing the pairwise preferences
between clicked and skipped documents (e.g., SkipAbove) [18-20].
Though these methods have been found to provide more accurate
relevance assessments, their data is fundamentally biased. For ex-
ample, a ranking function trained based on the SkipAbove heuristic
tends to reverse the presented order due to its sampling bias [18].

Recently, unbiased LTR has been actively studied to learn a rank-
ing function from click data based on the counterfactual inference
framework [21]. With the assumption that feedback is noise-free,
it provides an IPS-based correction method which is a provably
unbiased and consistent approach to LTR even with biased feed-
back data. The IPS method requires knowledge of the propensity of
obtaining a particular feedback signal. Click modeling, especially
PBM, has been used for estimating propensity. Under this model,
Wang et al. [32] proposed a result randomization method that ran-
domly shuffles the top n results and uses the average CTR at each
position as the propensity. Joachims et al. [21] proposed a pivot-
based randomization where position 1 and k are randomly shuffled.
The relative propensity between these two positions px/p; can be
derived and this is sufficient for LTR. Wang et al. [33] proposed a
RandPair approach where adjacent positions are randomly flipped
to obtain pk+1/p, and a chain rule is used to estimate the ratio pr/p;.
Wang et al. [32] extended the PBM model to let the propensity
depend on query or user contexts, in addition to positions. All of
these approaches require interventions.

The more recent development in unbiased LTR is on how to
estimate propensity without interventions. Wang et al. [33] pro-
posed a regression-based EM algorithm to fit the PBM model to
the regular click logs without interventions. Similarly, Ai et al. [3]
presented a framework to jointly learn an unbiased ranker and
an unbiased propensity model from regular click data. Agarwal
et al. [2] proposed a method for harvesting naturally randomized
pairs from logs of multiple rankers in operational systems. All of
these methods are based on the standard PBM model and do not
address position-dependent click noise.

With the propensity estimated, the IPS-based approach is also
used for search quality evaluations, in addition to learning a rank-
ing function. For example, Carterette and Chandar [6] extend the
counterfactual inference framework [21] by considering the case
of evaluating new rankers that can retrieve previously unseen doc-
uments. Chandar and Carterette [7] studied the click-through bias
in the cascade model for evaluation.

IPS was developed in causal inference [28] and is a widely ac-
cepted technique for handling sampling bias. It has been employed
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in unbiased evaluation and learning [1, 11, 22, 23, 29, 30]. The com-
mon assumption in most of these studies is that the propensities
are under the system’s control and are thus known. In the unbiased
LTR setting, however, propensities arise from user behavior and
thus need to be estimated. While the IPS can be used to address the
sample bias or click incompleteness, it is not straightforward for
click noise.

Besides PBM, there are many other click models for extracting
relevance signals from click data. Click models are parameterized
generative models [9] and their parameters are typically estimated
via generative maximum likelihood under specific modeling as-
sumptions about user behavior. There are two classic click models:
the PBM model [27] and the Cascade model [10]. Based on these
two models, more advanced models have been developed. For exam-
ple, the user browsing model (UBM) [12] extends PBM to condition
the examination on a previously clicked position, in addition to
the position of the current result. The dynamic Bayesian network
model (DBN) [8] and the click chain model (CCM) [15] extend the
Cascade model to handle multiple clicks. Both models assume a
sequential user behavior over the result list. They focus on mod-
eling the probability that document gets examined depending on
the previous documents and differ in their modeling formulation.
DBN and CCM are different from PBM and UBM in that the exami-
nation of a later document depends on the relevance of previous
documents. However, most of these models assume clicks are noise-
free. The focus of this paper is on click noise, specifically trust bias.
We propose the TrustPBM model by extending the standard PBM
model.

Though, in theory, the estimated examination probability in any
click model can be used in unbiased LTR, the PBM model is more
robust given that the examination does not depend on the relevance
of previous documents since estimating relevance is as hard as
learning a ranking function and thus leads to high variance of the
estimated examination probability. Our TrustPBM model enjoys
the same advantage where the trust bias depends on positions only.

The alternate approach of directly using position as a feature
is generally not effective for learning a ranking function. This is
because the position of a result is highly predictive of its click rate,
however, the position feature cannot be used during inference time
when a collection of documents must be scored to determine their
positions in the presented ranking. Using the position feature in
training and then unplugging it during inference leads to worse
results [33].

3 TRUST ENHANCED POSITION-BASED
MODEL

3.1 Position-Based Model

The Position-Based Model (PBM) is a simple generative model. It has
been extensively used in unbiased LTR due to its simplicity. Most
existing click models have the examination hypothesis. Suppose we
have N positions, and for a query g, document d is displayed at
position k € [1, N]. A click can be generated only after the user
examines the result. In the PBM model, the user clicks the document
if and only if they examine the document and the document is
relevant. The examination only depends on the position k, but
not on q or d. Such a model factors out g and d, and makes the
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estimation of the probability of examination simpler and more
robust, compared to other click models.

Formally, let C be a binary random variable signifying whether
the user clicks document d, E whether the user examines the docu-
ment, R for the true relevance and R to represent the perceived or
judged relevance. The PBM makes the following assumptions

C=1oE=1,R=1
ReR
Pr(E = 1|q,d, k) = Pr(E = 1|k)
Pr(R|q,d, k) = Pr(R|q, d)

Thus, the probability of examining a document only depends on
the position k and the perceived relevance is the same as the true
relevance. Based on these assumptions, the PBM has the following
probability for a click.

Pr(C = 1|¢,d,k) =Pr(E = 1,R = 1|q,d, k)
=Pr(E=1,R=1]q,d, k)
= Pr(E = 1]k) Pr(R = 1|q, d)
= OkYq,d
where we use 0 and y, g as short-hands for the probabilities.

3.2 Trust Bias

The PBM model and its extensions [32] have a noise-free assump-
tion that perceived relevance is the same as the true relevance. This
is not the case in general. How to model the relation between per-
ceived relevance and true relevance is relatively less studied, even in
the click models. DBN [8] is one of the few models that incorporates
this relation. In DBN, a set of document-dependent parameters a4
are introduced to model the relation between perceived relevance
and true relevance:

Pr(R = 1|q,d) = ag Pr(R = 1|q,d)

where a parameter ay depend on the document d. The intuition
is that the probability of true relevance is a discounted version of
perceived relevance and that the discount is document-dependent.
As a result, the model has a large number of additional parameters
that equals to the number of unique documents in the data.

In this paper, we model the relation between perceived relevance
and true relevance based on trust bias introduced in [19]. In this
user study, eye tracking was used to monitor examination. The
study showed that, after examination, users tend to trust the results
presented higher on the result page more, demonstrated by higher
click ratio despite the fact that the documents are both examined
and their expected relevance is the same. This suggests a position-
dependent trust bias in addition to examination bias, due to which
higher ranked non-relevant documents may be clicked and lower
ranked relevant documents not clicked. However, this has not been
mathematically formulated in the past. In this paper, we model the
trust bias as follows,

PrR=1R=1E=1k) =€
Pr(R=1R=0,E=1k) = ¢,

SinceC =1 © E = 1,R = 1, we have Pr(C = 1R = 1,E =
1,k) = e; and Pr(C = 1|R = 0,E = 1,k) = € - Intuitively, after
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examination, a relevant document at position k can be missed with
probability 1 — el‘:, but a non-relevant document can be clicked
mistakenly with probability €, . Notice that the noise is position-
dependent. A similar formulation has been studied in [21] where
the noise is constant across positions.

3.3 TrustPBM

We enhance the PBM model by explicitly modeling the trust bias
introduced above. We have

Pr(R=1|E=1,q,d,k)
=Pr(R=1R=1,E = 1,k)Pr(R = 1|q, d)
+Pr(R=1|R=0,E = 1,k) Pr(R = 0|q, d)
=€ Vq.d € (1=vqa)
Thus, in TrustPBM, the probability of a click is given as
Pr(C = 1|q,d, k) = Pr(E = 1|k) Pr(R = 1|E = 1,q,d, k)
= Oc(egvga + € (1= vg.a)

PBM can be viewed as a special case of TrustPBM, where e]: =1
and €, = 0 to reflect the noise-free assumption. Both PBM and
TrustPBM model examination bias in the same way. On the other
hand, TrustPBM is different from DBN. The noise depends on posi-
tion only, not on the document. Compared to PBM, we introduce
2N more parameters into the model where N is usually small (e.g.,
10), so the model complexity of TrustPBM is much smaller than
DBN.

The TrustPBM parameters can be estimated using logged click
data. Let £ be the logged data consisting of tuples (g, d, k, c) for each
received user query g, each document d displayed at any position
k and a binary indicator ¢ for whether the document was clicked
or not (i.e. the realized value of the random variable C). Then, the
log-likelihood of generating L (over the randomness in user click
behavior) is,

logPr(L) = Z
(g.d,k,c)e L
+(1=c)log(1 - Ok(efvg.a + € (1~ yg,a))-

In order to find the parameters that maximize the above log-likelihood

clog O(efvq.a + € (1= vg,a)

objective, we use Expectation-Maximization, extending the Regression-

based EM method for the plain PBM in [33].

4 ESTIMATION VIA
EXPECTATION-MAXIMIZATION

As we will show in Section 5, we only need the parameters 6y,
e]:, and € for unbiased LTR. However, unlike the standard PBM
model whose parameters can be estimated based on result random-
ization, TrustPBM does not allow estimation of these parameters
using a randomized data set. In this paper, we extend the previ-
ously proposed regression-based EM algorithm [33] to estimate the
parameters.

In the standard EM procedure, parameters are estimated by al-
ternating Expectation and Maximization steps until convergence.

Suppose {9](:), e;(t), e;(t) :k € [N]} and {y;t)d : q,d € L} are the

parameter estimates at iteration ¢ (initialized appropriately at the
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first iteration). We will get a new set of parameter estimates after
iteration t + 1.

4.1 Expectation Step

In the Expectation step at iteration ¢ + 1, the posterior distribution
of the hidden variables of examination E and true relevance R given
the observed click data £ is expressed in terms of the parameter
estimates at iteration t, as shown in Figure 1 (we omit superscript
(t) for readability). All the formulas follow directly from Bayes rules.
For instance, in the third from last equation, we have

Pr(E=0,R=1|q,d,k,c =0)

_ Pr(C=0|E=0,R=1,q,d,k)Pr(E = 0,R = 1|q,d, k)
- Pr(C = 0|q,d, k)

_ Pr(E=0,R=1]|q,d, k)

T Pr(C=0|g.d.k)

_ Pr(E = 0]k) Pr(R = 1|q,d)

- Pr(C = 0|q,d, k)

since Pr(C = 0|E = 0,R = 1,q,d,k) = 1, and examination and
relevance are independent events. Also, a click means that the docu-
ment must have been examined and thus Pr(E = 0,R = 1|q,d, k,c =
1) = 0 in the second equation.

4.2 Maximization Step

In the Maximization step at iteration t + 1, the parameters are
updated to their maximum likelihood values given the click data
and the posterior probabilities from the Expectation step as shown
in Figure 2. Once again, we drop the superscript (¢ + 1) for clarity
in these formulas. Different from PBM model, we have additional
e]:r and €, parameters updated in this step.

Regression-based EM. For the M-step to work with query-
document pairs (g, d), a requirement is that (g, d) should repeat and
also be shown in different positions. Since the query-document
pairs (q, d) vary arbitrarily, using free parameters y, 4 makes the
objective very sparse and difficult to learn. Moreover, exposing
individual (g, d) identifiers can also pose a privacy or security risk.
Therefore, as in [33], we propose to estimate the y, 4 parameters
in each Maximization step via regression, i.e. fit a function (such
as a Gradient Boosted Decision Tree) from features of (g, d) to the
derived target value for P(R = 1]c, q,d, k) at iteration ¢ + 1.

More specifically, we assume that there is a feature vector x4 4
representing them and use a function to compute the relevance
Yq.d = f(Xg,a4)- The Maximization step is then to find a regression
function f(x) to maximize the likelihood given the estimation from
the Expectation step. Specifically, for each (g, d, k, ¢) € L, the expec-
tation step gives a probability P(R = 1|q, d, k, ¢). Intuitively, we can
regress the feature vector x4 4 to the probability P(R = 1|c, g, d, k).
Similar to [33], we convert such a regression problem to a classifi-
cation problem based on sampling: we sample a binary relevance
label r € {0, 1} according to P(R = 1|c, q,d, k). This conversion
allows us to use widely available classification tools to solve our
problem. After sampling, we have a training set {(x,r)} for f(x).



Addressing Trust Bias for Unbiased Learning-to-Rank

elJ(qu,d
Pr(E=1,R=1|q,d,k,c=1) = T — s
€ Vq.d + ek(l - Yq,d)
6];(1 _)/q,d)

Pr(E=1,R=0|q,d,k,c=1) =

bl

e;(r)/q,d + 6];(1 - Yq,d)
Ok (1= €)yq,d

Pr(E=1,R=1|q,d,k,c =0) =

O (1= )1 -vq,a)
Pr(E=1,R=0|q.d, k,c = 0) = k Eu

1= 0k (efvqa +eg(1=vqa))

C1-0(fyqa+ (1 —vqa)
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Pr(E=0,R=1|q,d,k,c=1)=0

Pr(E=0,R=0|q,d,k,c=1)=0

(1- ek))’q,d
1-0k(elvq.a + €. (1= vq.a)

1-0)1~-yga)
Pr(E = 0,R = 0|q.d, k,c = 0) = — 1" Vad
1- ek(ek Yq.d t Ek(l - Yq,d))

Pr(E=0,R=1|q,d,k,c=0) =

Figure 1: Formulas for computing probabilities of hidden variables in the E-step of the EM algorithm for TrustPBM.

Ok

_ Xgd k,cpeL HK =k} + (1 - )P(E = 1|q,d. k,C = 0))

X(q.d k,c)eL WK =k}

Yq.d

_ 2U¢,d.keyer Hg' = q.d" =d}(c-P(R=1]|q,d,k,C=1) + (1 - c)P(R = 1|q,d, k,C = 0))

2q.d keyer ' = q.d" = d}
Yqd k,cyer Uk =k} -c-P(E=1,R=1|,4,d,k,C = 1)

+ _
€k—

Sqdk.cer Uk =K} (c- P(E=1LR=1q.dk.C= 1)+ (1 - 0)P(E = LR = 1|q.d, k.C = 0))

S(g.di.cer k' =k} -c-P(E=1,R=0],q,d.k,C=1)

™
a0

Yg.dk,c)er 1k =k} (c-P(E=1,R=0|q,d,k,C=1)+ (1 - )P(E = 1,R = 0|g,d, k,C = 0))

Figure 2: Formulas for updating parameters in the M-step of the EM algorithm for TrustPBM, where 1 is the indicator function.

The objective function is the log likelihood:

D1 rlog(f(x) + (1 - r)log(1 - f(x)).
{xr)}

where we use the sigmoid in the objective function

0= —5
F(x) is the log odd of function f(x) and is learned by Gradient
Boosted Decision Tree (GBDT) method [13] in this paper.

5 UNBIASED LTR VIA BAYES-IPS
CORRECTION

Now we turn to the question of using the parameter estimates of
the TrustPBM to learn a new ranking function from the click data in
an unbiased way. Specifically, we need to adjust each click signal in
the logged data such that it reflects the actual underlying relevance
signal in expectation, unconfounded by the inherent examination
and trust biases captured by TrustPBM.

In existing work [21, 33] which deals with the standard PBM,
this is achieved via Inverse Propensity Scoring (IPS) which corrects
for the examination bias factor. Since TrustPBM does not factorize
into purely bias (from examination and trust) and relevance terms,
a direct IPS correction is not feasible. In the following, we first
review the existing unbiased LTR and then present our two-step
approach to deal with noise: correct for examination bias via IPS,
and then de-noise for trust bias via Bayes law.

5.1 LTR

We begin with a brief overview of the LTR setting. In the stan-
dard LTR, a set of labeled data for query and documents are given
Ly = {(g.d,r)} where r represents the relevance labels for the
(g, d) pair. We also use Q4 = {d|(g.d) € Ly} to represent all
documents that are associated with query gq. Collection Ly is un-
biased and a uniform sample from the space of queries, documents,
and relevance. In general, fully supervised LTR algorithms such as
LambdaMART and RankingSVM are used to directly or indirectly
optimize a performance metric which decomposes as a sum over
the (g, d) samples in the training set, as such

M= Y r-f(qdQ)

(g.d.r)e Ly

where f is usually a rank-related function. For instance, Average
Relevance Position (ARP) [21, 33, 34] and Discounted Cumulative
Gain (DCG) like metrics [17, 33] are shown as below,

ARP = rrank(q, d, Qq)
(g.d,r)eLy
1

DCG = _—
’ rank(q, d, Qq)

(g.d,r)eLy

Note that lower ACP and higher DCG indicate better ranking per-
formance with more relevant documents at higher ranks. We use
a simple DCG definition that uses a binary relevance and a linear
function for position discount to be consistent with the rest of paper.
But the methodology is applicable to any DCG definitions.
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In pairwise learning-to-rank algorithms, scores s are learned for
(g, d) pairs by expressing rank as a pairwise objective
ARP =
(g.d.r)eLu

= Z r( Z I[S(q,d)<s(q’d;) + l)

(g.d,r)eLly d'€Qy

= Z Z r]Is<q‘d><s(qu,) + const (1)
(g.d,r)eLy d'€Qy

rrank(q, d, Qq)

The loss above can then be upper-bounded by common classifica-
tion loss functions (e.g., the hinge loss or the logistic loss [16]) as
in the RankingSVM method. Moreover, rank-based metrics such
as ARP and DCG can also be optimized in the LambdaLoss frame-
work [34] where LambdaRank and LambdaMART [5] are special
cases in the framework.

5.2 Unbiased LTR

The challenge in learning from implicit feedback such as click data is
that only the click information c is observed, not the true relevance
r for each (g, d) pair. The relation between r and c is captured by
click models. The Inverse Propensity Scoring (IPS) technique is used
to tackle this issue by de-biasing click data because the examination
bias in PBM is equivalent to the propensity of observing relevance
labels in the counterfactual framework [21].

Recall that we have logged data £ consisting of tuples (¢, d, k, ¢),

E[Clg.d, k] = Pr(C = 1|q,d, k) = 6 Pr(R = 1|E = 1,q,d, k)

where the expectation is over the randomness in the user click
behavior. As in previous work, we can employ IPS to correct for
the examination bias in the following way,

(4
Mips = Z Q_f(q’ d,Qq)
(qdkoeL K

1
= D 5 4dQy
(q.d,k,c=1)e L

Mjps is an unbiased estimation of metric M because

E[C
E[Mps]= ). %f(q, d,Qq)
(g.d,k,c)eL k
= Z Pr(R=1|E = 1,q,d,k)f(q.d, Qq)
(g-dk,c)el

In the plain PBM which assumes that Pr(R = 1E = 1, q.d, k) =
Pr(R = 1|q,d), i.e. judgment upon examination reflects actual rele-
vance free from noise, interpreting r as Pr(R = 1|q, d) (the degree of
true relevance), Mps equals M in expectation and thus can be used
as a direct unbiased substitute in the learning-to-rank algorithm
since it is simply a linear weight modification.

1
ARPpps = — rank(q, d, Qq)
(¢-d.K,o=1)eL K
1 1
DCGpps =

(g Keener Ok rank(g.d. Qq)

For instance, the upper-bounding technique shown in Eq 1 still
applies with ARPpps and an IPS-based RankingSVM was derived
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in [21] and the LambdaMART algorithm can be used to optimize
DCGyps.

5.3 Bayes-IPS Correction

Now;, for the TrustPBM, we do not have the equivalence between
perceived relevance R and R. The standard IPS approach gives
an unbiased estimation of R. Note that we only care about the
clicked documents in Mps. To get the estimate of R, we only need
to estimate it for C = 1, ie, Pr(R = 1|C = 1,q,d, k). Such an
estimation can involve many parameters due to the dependency
on (g, d) pairs. To make it tractable, we thus approximate it by the
average relevance at position k: Pr(R = 1|C = 1,k), i.e,, Pr(R =
1|R = 1,E = 1, k). By Bayes law, we have

Pr(R=1R=1,E = 1,k)
Pr(R=1R=1,E = 1,k)Pr(R = 1|[E = 1,k)
- Pr(R = 1)E = 1,K)
e]: Pr(R=1|E = 1,k)
6; Pr(R=1|E=1,k) + € Pr(R=0|E = 1,k)

e Pr(R=1)
- €/ Pr(R=1) + ¢, Pr(R=0)
_ %
= —5—
e e

The first step is based on Bayes law. The second is the definition
of e; and €, . The third step is because R is independent of E and
k. The last step is based on a weak uninformative prior on actual
relevance that Pr(R = 1) = Pr(R = 0) = 0.5. Putting it all together,

we have

1
MBayesflPS = —Pr(R=1|C =1,k)f(q.4d, Qq)
(q.d.k,c=1)eL K
1€
= D o flg.d.9y).
T q
(¢.d,Fre=1)e L O g + e

Informally, the Bayes-IPS estimate corrects for the examination bias
and the likelihood that the result was actually relevant given that
it was judged so upon examination. As a sanity check, note that in
the noise-free case of the plain PBM, i.e. when el:“ =1and elz =0,
MBqyes—1ps reduces to Mps. Moreover, since the proposed correction
is simply a change of weights, a learning-to-rank framework with
IPS can be easily adapted to use Bayes-IPS weights to replace IPS
weights.

6 EMPIRICAL EVALUATION

In this section, we evaluate our proposed TrustPBM click model
and the Bayes-IPS correction for unbiased LTR. We first describe
our experiment setup and then present our experimental results.

6.1 Experiment Setup

Our experiments are based on both offline evaluation and online
experiments. For offline evaluation, we use the standard framework
for supervised LTR evaluation [24] by splitting the data into training
and test sets. For online experiments, we evaluate our proposed
methods through online A/B testing. In this section, we describe
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Table 1: Statistics of the three data sets used in offline eval-
uation.

Email | File Storage | Email Expert
#Queries per user >3 >3 <4
#Docs in total 59.69M 50.77M 13.80M
#Docs per query 5.99 5.00 6.00

the data sets and metrics used in offline evaluation as well as the
metrics used in online experiments.

6.1.1 Data Sets. For offline evaluation, we use search logs col-
lected from three search services: Gmail for general users (denoted
as Email), Google Drive for general users (denoted as File Stor-
age), and Gmail for expert users (denoted as Email Expert). The
Email and Email Expert services have the same type of contents, but
the users in the Email Expert dataset are more active, as measured
by their search activity. The File Storage service has a different type
of content compared with the other two. In all services, each query
can result in at most a single click of a document because an overlay
showing results is displayed as a query is typed and it disappears
as a result is clicked. The clicked document is then shown on the
screen.

In our data sets, we discard all the queries that did not result in
any clicks. No further pre-processing is done. In all these services,
ranking features are routinely computed and logged. We collected
a sample from the search logs of each service in a two-week period
in May 2018. Data from the first week are used for training, and
those from the second week are used for testing. Basic statistics for
the data sets are shown in Table 1. Each data set contains millions
of queries, and between 5 and 6 documents per query. The logs also
contain existing ranking features for each query-document pair,
which we use in our regression-based EM algorithms and unbiased
LTR algorithms.

6.1.2  Offline evaluation metrics. Our offline evaluation consists
of two parts. The first part is to compare the PBM and TrustPBM
models based on their fitness to the data. For this part, we use the
standard log-likelihood on how the models predict clicks in our test
data.

LogLikelihood = 1 Z clog(p) + (1 =c)log(1-p) (2)
121 2,

where p = 0ryg g for PBM and p = Qk(e]:ryq’d +€.(1-yq4q)
for TrustPBM. Log-likelihood is commonly used to evaluate click
models [9]. It is a negative number and the larger the better.

For the second part, we compared different methods on the
effectiveness of learned ranking functions for unbiased LTR. Fol-
lowing [32, 33], we use the weighted version of Mean Reciprocal
Rank (MRR) as the evaluation metric for offline experiment. It is an
unbiased version of MRR and more suitable than standard MRR for
offline evaluation given click bias. Specifically, given a test data set
with n queries, the standard MRR is defined as:

n

1 1

MRR = — 3
n IZ:; rank; ®)

where rank; denotes the rank of the first clicked document of the
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Table 2: Comparison of PBM and TrustPBM click models
based on log-likelihood. The best number per row is in bold
face and + means statistically significance based on the stu-
dent t-test.

PBM | TrustPBM | Improvement
Email -0.364 | -0.351 3.57%"
File Storage | -0.343 | -0.332 3.21%*
Email Expert | -0.356 | -0.339 4.78%"

i-th query in our data sets. Note that since each query can have at
most one clicked document, we do not consider more complicated
metrics like normalized discounted cumulative gain. We denote
weighted MRR [33] by MRR,,, which is defined as:

1 & 1
wi 4
Wi ; ! rank; “)

where w; is the IPS correction weight estimated from our algorithm.
Given different propensity estimation methods, the weights are
used for both training and offline evaluation.

MRR,, =

6.1.3  Online experiment metrics. For online experiments, we
run A/B testing using ranking functions learned based on different
IPS weights. This is the ultimate test of effectiveness of ranking
functions. A better ranking function can attract more clicks from
users and push the user clicks to higher positions. We thus use the
click-through rate (CTR) that is defined as the ratio of queries with
clicks and the total number of queries. We also use the standard
MRR in Eq 3 for online evaluation to take into account the effect of
positions. For any queries without clicks, their MRR values are set
to 0 for online experiments.

6.2 Experimental Results

In this section, we report both offline and online experimental
results. Our comparisons are conducted for both click modeling
and unbiased LTR.

6.2.1 Does the extended model fit the data better? Both PBM
and TrustPBM are click models. Our first result is to compare them
on how well they can fit our click data. We run our EM algorithms
for both PBM and TrustPBM respectively and compare them in
terms of log-likelihood in Eq 2. The results on our test data sets are
shown in Table 2. From this table, we can see that the TrustPBM
model has higher log-likelihood values than the PBM model on all
the three data sets. We also report the relative improvement of the
log-likelihood in this table. All these improvements are statistically
significant based on the student t-test. This means that our proposed
method of incorporating click noise in TrustPBM is reasonable since
TrustPBM can indeed fit the data significantly better than PBM.
In addition, we also study the convergence of the EM algorithms
for PBM and TrustPBM in Figure 3, where we plot log-likelihood
along with the EM iterations. It can be observed that TrustPBM
not only converges to a higher log-likelihood, but also converges
faster than PBM at early stages. This confirms that our proposed
EM algorithm can estimate parameters for TrustPBM effectively.
Overall, this result shows that TrustPBM is better that PBM.
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Figure 4: The normalized examination bias estimated from
PBM and TrustPBM using EM.

6.2.2  What are the biases estimated from data? We have exami-
nation bias for both PBM and TrustPBM. For TrustPBM, we also
have the trust bias e]: and €. We compare these estimated biases
from data and show some interesting findings.

The examination biases for PBM and TrustPBM are plotted in
Figure 4, where we normalize the bias values by the one at position
1. This figure shows that PBM and TrustPBM give quite different
estimation of examination bias, especially for lower ranked doc-
uments. TrustPBM shows that there are higher probabilities that
users examine lower ranked documents than PBM. This aligns
better with the user study in [19] as the user study showed that
users examine the surrounding documents before issuing clicks,
especially the ones immediately below their clicked ones.

The trust bias estimated by TrustPBM is shown in Figure 5 where
we normalize all of them by the 6]-: for k = 1. There are a few inter-
esting observations. (1) All e;g are higher than €, . This means that
the probability of clicks given relevant documents is higher than
the probability given non-relevant documents after examination.

1.2
0.8 1
N
" \
o \
o .
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2
=
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- - File Storage
Email Expert - ST
0.0 . . .
1 2 3 4 5
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Figure 5: The normalized trust bias estimated for TrustPBM

using EM. The upper lines are e]: and the lower lines are ¢, .

Thus clicks represent reasonable relevance judgments even though
they are noisy. (2) EZ are very close to 1 over all positions k, and
the difference over positions is very small, showing that relevant
documents are not missed often once examined. (3) In contrast, €
varies a lot over positions k. It is much higher at the higher positions
(lower values of k) than lower positions, meaning that users are
more inclined to click non-relevant documents shown at high posi-
tions. This is congruent with the trust bias user study [19], which
found that users may place more trust in highly-ranked results. (4)
Across different data sets, the trust bias is different. For example,
the File Storage data set has a steeper curve for ¢, , meaning that
there is higher trust bias for this service. Overall, this result shows
that TrustPBM is better that PBM qualitatively.

6.2.3 Is the Bayes-IPS correction different? We now turn to the
unbiased LTR evaluation. The inverse propensity weights estimated
by different methods in the Email data set are shown in Figure 7.
For result randomization, we use the FairPair approach in [33], that
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Figure 6: The examination bias and the confidence interval
(CI) based on randomization data.
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Figure 7: The IPS or Bayes-IPS weights based on Randomiza-
tion (IPS), PBM (IPS) and TrustPBM (Bayes-IPS).

is, two adjacent documents are randomly swapped before present-
ing results to users. This method has been shown to be aligned
well with other randomization methods for the PBM model. We
use Randomization to denote the IPS weights estimated from this
method. We use PBM to denote the IPS weights estimated by EM in
PBM, and we TrustPBM to denote the Bayes-IPS weights estimated
by EM in TrustPBM. Compared with TrustPBM, the EM-based PBM
is much closer to Randomization. This result is expected since Ran-
domization is also based on PBM. However, TrustPBM gives much
smaller estimation of weights for lower positions. This is because
TrustPBM uses a different model that disentangles examination
and trust bias, leading to rather different estimation of inverse
propensity weights.
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Figure 8: The Bayes-IPS weights estimated for different data
sets.

Table 3: Cross offline evaluation to compare IPS weights for
training and evaluation.

Training Evaluation: Weighted MRR in Eq 4
NoIPS | Randomization | PBM | TrustPBM
NolPS 0.00% -0.50% -0.36% -0.20%
Randomization || -1.11% 0.00% 0.00% -0.11%
PBM -0.89% -0.02% 0.00% -0.06%
TrustPBM -0.48% -0.11% -0.05% 0.00%

The lower IPS weights at lower positions in TrustPBM is more
desired. As commonly known, IPS-based approaches usually suffer
from the problem of the unbounded variance since the variance
for a smaller propensity (corresponding to the lower positions in
unbiased LTR) can lead to a large difference in IPS weights. Several
techniques such as capping methods are developed to address this
problem [4, 11, 14, 26, 31]. For Randomization, we compute the
variance of our estimated propensity 6 as follows. We split our
randomized data set into 10 folds and use them to estimate the
confidence interval (CI). The results are show in Figure 6. From
this figure, we see that there is a rather negligible variance based
on CI This means that we have sufficient randomized data for IPS
weights estimation. As we will show later that TrustPBM leads to
better online experiment results, the result here indicates that PBM
is a less accurate model than TrustPBM for extracting relevance
from user click behaviors.

In addition, Figure 8 shows the Bayes-IPS weights estimated for
different data sets. The weights being different for different data
sets means that our method can indeed take click noise into account
that varies across data sets.

6.2.4 Can the learning algorithms leverage different IPS weights?
We have shown that different methods give different IPS weights.
These IPS weights can be used for both evaluation and learning
for unbiased LTR. In this sense, we do not have ground-truth IPS
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Table 4: Online experiment results based on LambdaMART
models learned using different weights. Relative improve-
ment over Randomization is reported, together with the con-
fidence interval (CI). The best number per column is bold
and + means the improvement is significant based on stu-
dent t-test.

MRR | MRR CI CTR | CTRCI
Randomization 0.00% - 0.00% -
PBM 0.25% | +0.39% || 0.26% | +0.40%
TrustPBM 0.33%% | +£0.29% || 0.33%% | +£0.28%

weights to compare different methods. We rely on the online ex-
periments to do the comparison. Before doing so, we need to make
sure that our learning algorithms can effectively leverage the IPS
weights during training.

We use an in-house implementation of LambdaMART as our
learning algorithm. Table 3 shows the cross comparison using differ-
ent IPS weights for both training and evaluation. This comparison
serves as a sanity check as to whether our training methods can
take into account different settings of weights. All the values in
Table 3 are relative numbers comparing to the diagonal lines per
column. The diagonal values are expected to be the largest num-
bers per column since both training and evaluation use the same
weights. The results in this table confirm that. For example, using
the Bayes-IPS weights in TrustPBM, all models trained with differ-
ent weights show negative relative evaluation numbers. Thus our
learning algorithms are able to differentiate different weights to
optimize their intended metrics.

6.2.5 Results of online experiments. We compare Randomiza-
tion, PBM and TrustPBM using the live traffic of the Email service,
conducting an online experiment for each method on a portion of
the search traffic. These experiments were run for several weeks
in August 2018 and our comparisons are based on approximately
100M user queries per experiment. For clarity, we normalize the
online evaluation metrics using the Randomization method as the
baseline.

We compute online metrics MRR and CTR; the results are shown
in Table 4. In this table, we can see that TrustPBM improves over
the Randomization method significantly, with MRR and CTR both
increased by +0.33%, and these results are statistically significant.
In contrast, PBM achieves neutral results compared with the Ran-
domization baseline. Moreover, TrustPBM is more robust than PBM
because it has a much smaller confidence interval (CI). This is prob-
ably due to the fact that having higher weights on lower positions
can lead to higher variance when learning a ranking function for
the PBM model. By addressing click noise, TrustPBM is more robust.

7 CONCLUSION

In this paper, we proposed to handle click noise for unbiased LTR.
We have introduced an enhanced position bias model called TrustPBM
which explicitly models position-dependent click noise, conceptu-
alized as a result of the trust users have in the quality of the search
ranking. The parameters of the TrustPBM are estimated from offline
click logs via regression-based Expectation Maximization, and the
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novel Bayes-IPS correction provides a simple weighting scheme for
unbiased, de-noised LTR using the estimated parameters. Experi-
ments on three widely used commercial search services revealed
new insights about the asymmetry in positive and negative trust
bias. Furthermore, the Bayes-IPS correction yielded superior per-
formance metrics over the IPS correction based on the vanilla PBM
estimated via EM or randomization.

Future work can include alternate methods for TrustPBM esti-
mation, such as via intervention harvesting [2] which requires click
logs from multiple rankers but avoids relevance modeling, and alter-
nate schemes for unbiased LTR that weaken the prior assumption
in our Bayes-IPS correction.
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