Personalized Online Spell Correction for Personal Search

Jai Gupta®, Zhen Qin*, Michael Bendersky, Donald Metzler
Google Inc.
Mountain View, CA
{jaigupta,zhenqin,bemike, metzler}@google.com

ABSTRACT

Spell correction is a must-have feature for any modern search en-
gine in applications such as web or e-commerce search. Typical
spell correction solutions used in production systems consist of
large indexed lookup tables based on a global model trained across
many users over a large scale web corpus or a query log.

For search over personal corpora, such as email, this global so-
lution is not sufficient, as it ignores the user’s personal lexicon.
Without personalization, global spelling fails to correct tail queries
drawn from a user’s own, often idiosyncratic, lexicon. Personaliza-
tion using existing algorithms is difficult due to resource constraints
and unavailability of sufficient data to build per-user models.

In this work, we propose a simple and effective personalized
spell correction solution that augments existing global solutions
for search over private corpora. Our event driven spell correction
candidate generation method is specifically designed with person-
alization as the key construct. Our novel spell correction and query
completion algorithms do not require complex model training and
is highly efficient. The proposed solution has shown over 30% click-
through rate gain on affected queries when evaluated against a
range of strong commercial personal search baselines - Google’s
Gmail, Drive, and Calendar search production systems.

CCS CONCEPTS

« Information systems — Information retrieval;

KEYWORDS

Spell correction, personalization, personal search

ACM Reference Format:

Jai Gupta®, Zhen Qin*, Michael Bendersky, Donald Metzler. 2019. Personal-
ized Online Spell Correction for Personal Search. In Proceedings of the 2019
World Wide Web Conference (WWW’19), May 13-17, 2019, San Francisco, CA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3308558.
3313706

1 INTRODUCTION

Misspelling is common in real-world information retrieval systems.
More than 10% of search engine queries are misspelled [8]. This
rate is even higher for tail queries, for which there is more than

*Equal contribution.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313706

| g I Gmail Q' amao
amao Q. amazon
amazon Compose Q. youramazon
amazon prime

[30 = Youv Prime order of
amazon my account s
amazon prime video Starred g Your Prime order of

indi Snoozed
amazon india = Your Prime order ha
amazon smile Important .
1 g Your Amazon.com ¢

amazon music Sent =
amazon books Drafts m Your Amazon.com ¢

Categories

<]

Your Amazon.com ¢
Notes -

Figure 1: Online spell correction and query completion
while the user types on-the-fly (Left) provides suggestions
only, (Right) provides as suggestions as well as results.

a 20% misspelling rate [3]. Misspellings are not just limited to un-
intentional typing errors, but are often a result of the challenges
imposed by the spelling itself. For example, due to factors such as
ambiguous word breaks, phonetically similar words, introduction
of new words (e.g. project names), and inconsistent spelling rules
[1], remembering the correct spelling can be surprisingly difficult
even for native speakers.

For these reasons, spelling correction is essential in modern
information retrieval systems today. By providing high quality spell
correction capabilities, search engines can significantly reduce the
amount of effort required for users to find their desired results.

The traditional spell correction approach, referred to as offline
spell correction, is provided only after the entire query is typed and
passed to the search engine (e.g. after a user presses “Enter”). Such
a system assumes that any query sent to the search engine has been
completely typed by the user. The modern approach, referred to
as online spell correction [10], provides spell correction and query
completion as the user is typing. It is enabled for almost all popular
web search services nowadays. In this case, most of the queries
under consideration are incomplete. See Fig. 1 for an illustration.

The algorithm presented in this paper is particularly designed for
online spell correction systems, and specifically for personal search
scenarios. Providing online spell corrections for personal search
is remarkably complicated primarily due to the large and diverse
vocabulary of private corpora. Furthermore, the stringent latency
requirements for online spell correction systems adds to the com-
plexity and renders most of the alternative algorithms impractical
for large-scale use.

Personal search, including email search [2, 5, 24], desktop search
[11], and most recently on-device search [18], has recently attracted
a considerable amount of attention from the information retrieval
community. The key difference between personal and public search
(e.g. web search) is that users, in the personal search scenario, have
access only to their own private document corpora (e.g. emails,

https://doi.org/10.1145/3308558.3313706
https://doi.org/10.1145/3308558.3313706
https://doi.org/10.1145/3308558.3313706

files, or mobile application data). This poses several new challenges
for existing spell correction approaches: (1) A global lexicon may
not work well or even hurt performance as each user may have a
very unique private corpus. (2) Traditional machine learning-based
models are difficult to train for personalization due to relatively
small-sized personal corpus, sparse user interactions, and resource
constraints. In many real-world cases, training a model directly
from private data may not even be allowed due to privacy restric-
tions. (3) Tail-queries, which are difficult to handle using traditional
spell correction systems, become even more problematic, since for
personal search many frequently used private terms for a particular
user are tail-queries from a global perspective. (4) Due to the lack
of quality control, there could be more misspellings in private data
itself (e.g. a typo in an email title). This is contrary to the rationale
behind existing spell correction systems which build models over
correctly spelled words.

This paper introduces an effective and efficient training-free
spell correction solution for personal search. It can either be used
independently or to complement existing global spell correction
systems. We describe the spell correction candidate generation al-
gorithm that provides a personalized lexicon created from a user’s
recent activities. We provide some details on how to realize such a
system under real-world constraints (e.g. privacy and computing
resources). We then describe a novel and simple algorithm aug-
menting the Levenshtein distance based approach for unified spell
correction and query completion that allows serving millions of
users in a real-time online spell correction system. We build and
test our system using real-world online experiments conducted
on millions of users for three of the world’s largest commercial
private corpora (Google’s GMail, Drive, and Calendar), and show
unanimously positive performance for each corpus across several
languages, compared against strong production baselines with spell
corrections learned using public web search data.

The remainder of the paper is organized as follows. We start with
related works in Section 2. An overview of our system is presented
in Section 3. Section 4 outlines candidate generation setup followed
by detailed discussion on the spell correction and query completion
algorithms in Section 5. Finally, evaluations from our experiments
are presented in Section 6.

2 RELATED WORK

Most recent work on spell correction generally focuses on public
search queries. Related methods usually produce a global model for
all users. Also, a large amount of historical user interactions are
normally needed for learning-based approaches. Such approaches
typically cannot be applied to personal search settings, as the pri-
vate data (e.g. search queries, corpora) available is often many
orders of magnitude smaller.

For traditional offline spell correction (e.g. "did you mean"),
Cucerzan and Brill [8] proposed an iterative approach that trans-
forms unlikely queries into more likely variants based on web query
logs. Chen et al.[7] explored web search results (queries and their
top-ranked candidates) to improve existing spell correction models.
Some methods [15] depend on user feedback using an existing spell
correction system, which can have cold-start problems and bias
concerns (e.g. position bias by the existing system). Sun et al.[23]

learned phrase-based spell correction models from clickthrough
data. Hasan et al.[16] collected similar user queries using user ses-
sion and time information in which users "correct themselves,' and
uses Levenshtein distance [19] as the similarity criterion. Recently,
approaches based on deep learning have become popular, such as
those using sequence-to-sequence learning [13]. All of these ap-
proaches, especially deep models, typically require large amounts
of user interactions or labeled data which does not scale to fully
personalized spell correction and personal search scenarios.

A special less data intensive case is word embedding [21] based
methods where pre-trained embeddings can be used. However,
existing methods primarily use embeddings trained on a large public
corpus in a user agnostic manner (e.g. Word2Vec [20] is trained over
news articles). Some methods are designed in an ad hoc manner for
specific language pairs [13, 14]. Our simple approach works well
across several languages.

Online spell correction has drawn more interest in the research
community [6, 9, 10] and real-world applications (e.g. Google and
Bing web search engines). These systems may provide search re-
sults, but the incoming queries are often incomplete. Hence, spell
correction and query completion are essential components. Chaud-
huri and Kaushik [6] made use of edit distance for spell correction
followed by a fuzzy search over database records to find comple-
tions. Our work unifies spell correction and query completion in an
efficient augmented edit distance method. Huizhong and Bo-June
[10] trained a Markov n-gram transformation model and adapted
A* search with pruning for efficiency. However, their method is
specific to data-intense public corpora since it can only be applied
to previously observed queries and requires a large amount of train-
ing data. Our approach does not require historical queries (which
could be sparse) and complex model training.

More broadly, personalized search, including personalized query
completion, has also been extensively explored [4, 22] on public
corpora. Existing approaches are typically segment-based (e.g. using
gender as a feature) while our work is specifically focusing on
individual-level private corpora search. Some works utilize user’s
past search activities (e.g. queries) as signals, which could be sparse
for many users. We are not aware of any prior work that focuses on
individual-level spell correction in personal search, where personal
lexicon is ubiquitous and user search activities are sparse, both of
which pose challenges to existing personalized search methods.

3 OVERVIEW

A high level overview of our online spell correction system is
present in Fig. 2, depicting the candidate generation and the spell
correction and query completion components. Each user has their
own personal lexicon constructed only from their set of private
corpora. The lexicon can be updated periodically or in real-time
(e.g. when a new document is created). The private user lexicon
is small and highly relevant, and does not need any sophisticated
data structure, language model or error model trained for that user.

4 CANDIDATE GENERATION

The candidate generation component is responsible for creating
a personalized lexicon for every user represented as a set of con-
textually relevant n-grams. Generating these n-grams consists of

\
Spell Correction
- and Query
Completion

l User B
Corrected /
Query

User A Lexicon

... more users

Candidate

Figure 2: System Overview: Candidates from the personal-
ized lexicon generator passed to spell correction and query
completion component.

the following steps: 1) data ingestion, 2) candidate extraction, and
3) candidate update under constraints. Below, we discuss each of
these steps in more detail providing general guidelines that can be
useful for other applications.

4.1 Data Ingestion

We limit the input data for users to their private corpus. There are
a couple of reasons for this design choice: 1) Users will only have
access to their private data in personal search, so information from
other users decreases the signal-to-noise ratio. 2) Privacy is critical
in real-world systems, and non-aggregated data from other users
can leak information. 3) By limiting candidates to the user’s own
set of corpora, the candidate space of n-grams for evaluation is
trimmed to a significantly smaller (but highly relevant) set. Note
that the user does not need to be the owner of a document, shared
documents are taken into account as well.

4.2 Candidate Extraction

The lexicon of a user is composed of n-grams. We use three sources
of data that are combined to form a single lexicon per user: 1)
Email subjects and the email addresses of senders and recipients,
2) Drive document titles and the email addresses of the owners,
and 3) Calendar event titles and the email addresses of the event
participants. We found that titles (ignoring bodies) are simpler
to manage and have high signal-to-noise ratio for spelling. Note
that users can still search document bodies. Also, we keep email
addresses as they are frequent query terms.

The snippets collected in the previous step are decomposed into
candidate n-grams by standard techniques including tokenization
and stopword removal. Additionally, we apply normalization tech-
niques including lowercasing and lemmatization. Note that if doc-
uments are retrieved for a spell corrected query (see Fig. 1 right),
these normalizations must be consistent with the normalization
used when indexing the documents.

4.3 Candidate Update Under Constraints

Maintaining a personal lexicon for every user has many real-world
constraints. For example, due to data retention policies, the sys-
tem may be required to delete any candidate derived from deleted
documents. Also, the system is bounded by space constraints as it
stores a personal lexicon for every user. This is especially critical

for real-world search engines that serve many millions of users.
Additionally, a small but high-quality lexicon allows fast online
spell correction by iterating over candidates without designing so-
phisticated index-based data structures for each user. We propose
to use an event driven model that addresses these constraints in a
unified manner.

The high-level idea of candidates update is to construct a small
lexicon that is contextually relevant to the user when they issue a
query. For this work, the model ranks snippets generated from the
user’s recent events based on the recency. The set of events used in
our experiments are:

e GMail: Search interactions with emails.

e Drive: Interactions with documents including creation, view,
edit, and comment events that are relevant to the user.

e Calendar: Ongoing and upcoming calendar events.

For example, when a user edits a document, n-grams from the
document title are prioritized high in the lexicon. When space
constraints are reached, the lowest ranked candidates are removed
from the lexicon to accommodate new candidates. Prioritization of
n-grams may not be necessary in some applications. For instance, in
mobile apps search, it might be feasible to retain all of the currently
installed app names.

4.4 Properties

There are several interesting properties of our event driven candi-
date generation method.

e Previous search activity and clicks are helpful but not re-
quired, unlike in most prior work. For example, n-grams
from Drive documents can be from an edit event, or even
initiated by another user (e.g. comment events where this
user is tagged, share events, etc).

e Prioritization of n-grams based on recency provides a simple
approach to address privacy and resource constraints.

e n-grams from multiple corpora (GMail, Drive, Calendar) are
merged into a single lexicon and are used in search for each
corpus. This is intuitively useful for our scenario. If some-
one has been working on a TheWebConference paper, it’s
possible that she gets emails and calendar invites discussing
TheWebConference and has related documents about the
TheWebConference paper. We advocate that applications
should take into account such a unified representation when-
ever sensible, since (1) shared knowledge across corpora mit-
igates the data sparsity problem and (2) a single lexicon for
each user is much easier to manage in practice.

5 EFFICIENT SPELL CORRECTION AND
QUERY COMPLETION

We describe an efficient spell correction and query completion algo-
rithm using a modified Levenshtein distance based approach. Given
each candidate from a user’s lexicon and an input query (which
may be incomplete and have spelling mistakes), the algorithm cal-
culates a modified edit distance between them, which will be used
for spelling correction candidate selection or ranking. We also de-
scribe several improvements to further speed up the calculation in
practice.

5.1 Levenshtein Distance

Edit distance is defined in terms of the minimum number of oper-
ations (insertions, deletions, or substitutions) required to convert
the user input string to a candidate spell correction. Levenshtein
Distance is a special case of edit distance with three allowed opera-
tion: insertion, deletion, and substitution with unit cost for each of
them. See an example in Fig. 3. The algorithm is O(m * n) where m
is the length of the input string and n is the length of the candidate
string.

O~ b W N~ o
"-.IO\Ln-hwl\J‘l—‘l—tb—ﬂ
[y I (R Y O T R S S I
N|d W M| M RN W W
nlelwnnwwls|s
Ve wlwlw & &|u]|wv
n|s(lw| v oo

(WAl O ||~ |~
W k(|| ~ |~ |00|00

Figure 3: Levenshtein Distance algorithm example between
user input string RELEVANT and candidate string ELEPHANT.

5.2 Extending Levenshtein Distance For Query
Completion

The main novelty of our algorithm lies in extending the Levenshtein
distance algorithm for low-cost query completions that makes it
feasible for use in online spell correction scenarios. Fig. 4 shows the
edit distance matrix M for the evaluation of Levenshtein distance.

The entry M[i][j] denotes the minimum cost to transform i char-
acters of the input string to j characters of output string. For ex-
ample, M[3][5] in Fig. 4 denotes the cost of transforming ELE to
ELIZA.

The most important row for extending the algorithm for query
completion is the last row. If input_length denotes the length of the
input string, the jth column of this row, denoted by M[input_length][J],
represents the cost of transforming the complete input string into
the first j characters of the output string. In other words, this row
represents the cost of transforming the input string to each prefix
of the output string. Hence, in Fig. 4, each column in the last row
represents the cost of transforming ELEZA into the corresponding
prefix of ELIZABETH.

In order to support query completions, we define a new param-
eter prefix_completion_cost. In the edit distance algorithm above,
each of the substitution, insertion, and deletion operations have
unit cost. This new parameter allows insertion of characters at a
different cost, which should be much lower than the unit cost. We
take the entries in the last row and count the number of additional
characters required to convert the corresponding prefix string to the
complete candidate string. For the prefix corresponding to column j,
we need to insert output_length— j characters, where output_length
is the length of the output string. Let R’ be a new row denoting the
overall cost after allowing prefix completion. Hence, R’[j] denotes
the cost after transforming the input string to a prefix of length j

of the output string, followed by using low cost prefix completion
operations to complete it to the output string.

R'[j] = M[input_length][;]
1

+ prefix_completion_cost * (output_length — j). W
In Fig. 4, the input string is ELEZA and the candidate string is
ELIZABETH. The edit distance produced by Levenshtein distance is
5. But since prefix_completion_cost is 0.2, one possible sequence of
operations is to replace the second "E" in the input string with an
"I", which has unit cost, following by completing the obtained prefix
by adding BETH at the end. This will incur a cost of 0.2 * 4 = 0.8

resulting in a total cost of 1.8 as the minimum cost.

5.3 Further Speed-up techniques

Take the case of an input string ELEPHANT and the candidate string
RELEVANT. The Levenshtein Distance between the two strings is 3
but we had to calculate all the entries in the matrix.

Suppose that the max distance for candidates that we are in-
terested in is max_allowed_distance (i.e., any candidate with a
higher edit distance from the query will be filtered out). For Lev-
enshtein Distance, it can be proved that if we calculate a strip
of 2 * max_allowed_distance + 1 along the diagonal, any element
outside this strip must be greater than max_allowed_distance. For
example, for max_allowed_distance = 3, Fig. 3 highlights the strip
of interest along the diagonal.

This reduces the complexity of the algorithm from O(m * n) to
O(m * max_allowed_distance), which is linear in the length of the
input string. In practice, we found a max_allowed_distance of 2 is
sufficient for our use cases.

Another speed-up technique we use is to reject a candidate if its
first or second characters do not match the first character of the
input string. The first character of an input query is rarely found to
contain any error [12]. But it was observed that due to lag in web
browsers, the first character is often missing in the input query.
Therefore, we relaxed our check to also allow candidates with the
second character same as the first character of the input string.

6 EXPERIMENTS

Due to privacy concerns and counterfactual effects (e.g. enabling
our algorithm will generate very different search results that are
not available in search logs), it is difficult to perform thorough
offline analysis except for limited qualitative check (e.g. Fig. 5). We
thus directly conduct real-world online experiments against three
of the world’s largest private corpora search systems: Google’s
GMail, Drive, and Calendar. These systems use the sophisticated
spell correction and query completion mechanisms of Google’s web
search, thereby providing strong baselines [17].

We demonstrate consistent and significant improvements in
effectiveness over these strong production baselines. Since these
are online experiments within live systems used by millions of
users, we were required to meet the rigorous latency requirements
of these systems. The algorithm proposed here easily achieves these
requirements. More details about the performance of the proposed
algorithm are described in section 6.4.

E L 1 Z A B E T H

0 1 2 3 4 5 6 7 8 9

E 1 0 1 2 3 4 5 6 7 8

L 2 1 0 1 2 3 4 5 6 7

E 3 2 1 1 2 3 4 4 5 6

Z 4 3 2 2 1 2 3 4 5 6

A 5 4 3 3 2 1 2 3 4 5

perfix completion cost =
(0.2*(9 - column_index)) 1.8 16 14 1.2 1 08 06 04 0.2 0

R'=
original cost + prefix completion cost

6.8 56 44 42 3

1.8 26 34 42 5

Figure 4: Illustration of our augmented Levenshtein Distance algorithm that unifies spell correction and query completion.
Column j for row R’ represents the cost of prefix completion after converting input string (ELEZA) to a prefix of length j of

candidate string (ELIZABETH).

query_length 1] 2| 3|4+
Prefix Completion X|vV|v |V
Spell Correction(dist=1) | X | X | V' | V
Spell Correction(dist=2) | X | X | X | V

Table 1: Desirable behavior of prefix completion
correction for different length of queries.

and spell

6.1 Setup

Our application scenario is “instant” search, which performs "search
as you type" (e.g. see Fig. 1 right). This type of search has stringent
latency requirements to ensure a high quality user experience. The
spell corrected and prefix completed query is used to retrieve the
final list of relevance ranked search results.

We conduct three A/B live experiments, one on each of the above
mentioned corpora (GMail, Google Drive, Google Calendar) that
augments their existing approaches to spell correction that use
global models trained on web data. These experiments are run
on millions of users for a month, resulting in many millions of
queries being included in the experiment (the exact number being
proprietary).

6.2 Hyperparameters

Real-world experiments that affect millions of users forbids try-
ing many hyperparameter combinations. Thus we first define the
"desirable behavior" in Tbl. 1 and tune the hyperparameters offline.

We proposed this setting because it has clear and intuitive se-
mantics. For very short queries, neither spell correction nor prefix
completion is enabled. But as the query length increases, prefix com-
pletion gets enabled followed by both spell correction and prefix
completion getting enabled.

In order to achieve the above behavior, we introduce a new pa-
rameter max_cost which can be used to control max_allowed_distance
based on the query_length as follows:

a

@)

max_allowed_distance = max_cost — S —
query_length
Since Levenshtein distance has unit cost for every operation,
the number of spelling errors allowed are decided by the integer
part of max_allowed_distance. We set max_cost to 2.7, a to 7, and

query_length 1 2 3 4+
max_altlowed_diztance 43 | 095 | 1.02 | 2.26
(max_cost - queryJengch)

|max_allowed_distance | -5 0 1 2
Prefix Completion
(max_allowed_distance > 0)
Spell correction(dist = 1)
(Lmax_allowed_distance] > 1)
Spell correction(dist = 2)
(Lmax_allowed_distance| > 2)
Table 2: Behavior of the algorithm after setting max_cost to

2.7 , a to 7 and prefix_completion_cost to 0.08.

X X X v

prefix_completion_cost to 0.08. These parameters allow us to realize
the desirable behavior (compare Tbl. 1 and Tbl. 2).

6.3 Metrics

Through the above mentioned algorithms, we measure the impact
on the following search quality metrics:

o Click-Through Rate (CTR): represents the fraction of queries
for which a result was clicked.

e Mean Reciprocal Rank (MRR): The reciprocal rank is the
multiplicative inverse of the rank of the clicked result: 1 for
first place, 1 for second place and so on, and 0 for queries
without click. MRR is the mean of reciprocal ranks of all
query responses.

e Has Result Rate: represents the fraction of queries for
which we have at least one result.

e Number of Results: represents the mean of the number of
results that were shown to the user for a given query. GMail,
Drive, and Calendar search engines show a maximum of 6,
5, and 4 results respectively.

For all metrics, larger numbers are better. CTR and MRR are
traditional search quality metrics. Has result rate and Number of
Results are particularly interesting for spell correction, because
misspelled queries tend to produce either a low number of results,
or no result at all. These metrics signify improved recall while CTR
and MRR signify precision improvements.

6.4 Runtime

Our per-user lexicon has at most 50 n-grams and 25 email addresses.
We consider up to 7-grams. The average number of characters in
the input query and candidate unigrams (from lexicon n-grams)
was observed to be 5 and 8 respectively. The average number of
characters in email addresses was observed to be 23.

Under this configuration, the algorithm takes 0.2ms on single-
thread modern hardware to produce corrections. Hence, the time
taken by the spell correction component is insignificant and is
well-suited for our latency-sensitive system.

6.5 Illustrative Example

We show an illustrative example in Fig. 5 to demonstrate the quality
improvements. As shown, our personalized online spell correction
solution is able to successfully correct the query and provide rele-
vant search results, while the baseline system without personalized
spell correction produces bad quality results.

(a) Performance without our algorithm.

Q_ inest

Your Stock's Performance & Tesla Buyout: Conflicting Reports Abou
vestopedia W

Vatchlist, me
Start investing with only $1,000
My Investopedia, me

Best Time(s) of Day, Week & Month to Trade Stocks
My Investopedia, r

! Top 5 Mutual Fund Holders of Amazon

(b) Performance with our algorithm enabled.

Figure 5: A qualitative illustration of our solution in GMail.
"investopedia", with its prefix misspelled as "inest", is a word
only relevant to certain users. (a) The production system
with web spelling is unable to find any relevant email. (b)
Since the user interacts frequently with documents contain-
ing the word "investopedia’, it is used to spell correct "inest"
and show relevant emails.

6.6 Online Experiment Results

We report search quality metrics for affected queries for each of
the three corpora under consideration. Affected queries in the ex-
periment group are those rewritten by our component (i.e. a spell
correction and query completion is applied, and the corrected word
is used for search). Affected queries in the control group are those
that would be affected if our component were deployed (i.e. we
only detect that a spell correction is possible). Our current setup re-
sults in 3% of affected queries across all corpora, which (in absolute
terms) is a non-trivial amount of search queries. We summarize the
results to show relative improvements in Tbl. 3.

We observe consistently positive improvements in search qual-
ity metrics across each of the three corpora. These improvements
are significant and highly meaningful in the production setting.

Metrics Email Drive | Calendar

CTR +31.55% | +16.04% | +38.27%

MRR +26.00% | +10.17% | +30.41%

Has Result Rate +15.55% | +8.51% | +43.34%
Number of Results | +31.13% | +14.53% | +76.61%

Table 3: Search quality improvements on affected queries in
our online experiment. All numbers in the table are statisti-
cally significant at the p < 0.05 level.

Language Email CTR | Drive CTR | Calendar CTR
English +28.78% +14.04% +38.57%
Spanish +44.58% +11.24% +21.51%
French +21.02% +9.60% +220.93%
Japanese +12.48% +1.72% +32.33%
Portuguese +25.44% +65.88% +50.29%
Italian +27.19% +33.04% +68.05%
Chinese +41.86% +28.94% NA

Table 4: CTR improvements on affected queries in different
languages across corpora.

Furthermore, these metrics are quite intuitive. In personal search, a
misspelled query without good spell correction is unlikely to locate
any meaningful result due to the small personal corpora, leading to
low CTR and result count based metrics such as Has Result Rate.

6.7 Cross-Language Performance

We further show that our simple approach works well across dif-
ferent languages in Tbl. 4 in terms of CTR (we omit other metrics
with similar trends due to space constraints). These languages are
the top languages in terms of query count and cover more than 90%
of all queries in our experiments.

Overall we get positive CTR (and other metrics) on a diverse
set of languages including languages without natural delimiters
like Chinese, Japanese, and Korean. There is variance in terms
of quality improvements and further adapting our approach for
different languages (e.g. through simple parameter tuning) could
yield additional improvements as part of future work.

7 CONCLUSION

In this paper, we introduced a practical solution for personalized
spell correction in personal search. We discussed our approach to
generate a personal lexicon for users that ensures high quality by ex-
tracting them from the user’s context derived from recent activities.
We then used it in our novel spell correction and query completion
algorithm that performs well under the resource constraints and
latency requirements.

We further evaluated it on some of the world’s largest private
corpora (GMail, Google Drive, and Calendar) on hundreds of mil-
lions of users and saw highly significant improvements in search
quality metrics for each corpus. Even though more sophisticated
approaches are needed for global models, restricting our corrections
to a small highly relevant lexicon helped us achieve great results
with a simple and elegant approach. While many spell correction
algorithms need sophisticated mechanisms to support different
languages, our improvements are agnostic of the language.

REFERENCES

(1]

[2

—

(3]

[10

[11]

[12]

=
&

[14

[15]

[16

[17]

[18

[19]

[20

[21]

[22

[23]

[24

2018. I before E except after C. Retrieved 2018-10-30 from https://en.wikipedia.
org/wiki/I_before_E_except_after C

Qingyao Ai, Susan T. Dumais, Nick Craswell, and Dan Liebling. 2017. Character-
izing Email Search Using Large-scale Behavioral Logs and Surveys. In WWW.
1511-1520.

Andrei Broder, Peter Ciccolo, Evgeniy Gabrilovich, Vanja Josifovski, Donald
Metzler, Lance Riedel, and Jeffrey Yuan. 2009. Online Expansion of Rare Queries
for Sponsored Search. In WWW. 511-520.

Fei Cai, Shangsong Liang, and Maarten de Rijke. 2014. Time-sensitive Personal-
ized Query Auto-Completion. In CIKM. 1599-1608.

David Carmel, Guy Halawi, Liane Lewin-Eytan, Yoelle Maarek, and Ariel Raviv.
2015. Rank by Time or by Relevance?: Revisiting Email Search. In CIKM. 283-292.
Surajit Chaudhuri and Raghav Kaushik. 2009. Extending Autocompletion to
Tolerate Errors. In ACM SIGMOD. 707-718.

Qing Chen, Mu Li, and Ming Zhou. 2007. Improving Query Spelling Correction
Using Web Search Results. In EMNLP-CoNLL. 181-189.

Silviu Cucerzan and Eric Brill. 2004. Spelling Correction as an Iterative Process
that Exploits the Collective Knowledge of Web Users.. In EMNLP. 293-300.
Dong Deng, Guoliang Li, He Wen, H. V. Jagadish, and Jianhua Feng. 2016. META:
An Efficient Matching-based Method for Error-tolerant Autocompletion. In VLDB.
828-839.

Huizhong Duan and Bo-June Hsu. 2011. Online Spelling Correction for Query
Completion. In WWW. 117-126.

Susan Dumais, Edward Cutrell, JJ Cadiz, Gavin Jancke, Raman Sarin, and Daniel C.
Robbins. 2003. Stuff I'Ve Seen: A System for Personal Information Retrieval and
Re-use. In SIGIR. 72-79.

Mohammad Ali Elmi and Martha Evens. 1998. Spelling correction using context.
In ACL. 360-364.

Pravallika Etoori, Manoj Chinnakotla, and Radhika Mamidi. 2018. Automatic
Spelling Correction for Resource-Scarce Languages using Deep Learning. In ACL,
Student Research Workshop. 146—-152.

Pieter Fivez, Simon Suster, and Walter Daelemans. 2017. Unsupervised Context-
Sensitive Spelling Correction of English and Dutch Clinical Free-Text with Word
and Character N-Gram Embeddings. arXiv preprint arXiv:1710.07045 (2017).
Jianfeng Gao, Xiaolong Li, Daniel Micol, Chris Quirk, and Xu Sun. 2010. A Large
Scale Ranker-based System for Search Query Spelling Correction. In COLING.
358-366.

Sasa Hasan, Carmen Heger, and Saab Mansour. 2015. Spelling Correction of User
Search Queries through Statistical Machine Translation. In EMNLP. 451-460.
Michael Herscovici, Dan Guez, and Hyung-Jin Kim. 2017 granted. Autocomple-
tion using previously submitted query data. In US9740780B1.

Maryam Kamvar, Melanie Kellar, Rajan Patel, and Ya Xu. 2009. Computers and
Iphones and Mobile Phones, Oh My!: A Logs-based Comparison of Search Users
on Different Devices. In WWW. 801-810.

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady. 707-710.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111-3119.

Harshit Pande. 2017. Effective search space reduction for spell correction using
character neural embeddings. In EAACL. 170-174.

Milad Shokouhi. 2013. Learning to Personalize Query Auto-completion. In SIGIR.
103-112.

Xu Sun, Jianfeng Gao, Daniel Micol, and Chris Quirk. 2010. Learning Phrase-based
Spelling Error Models from Clickthrough Data. In ACL. 266-274.

Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to Rank with Selection Bias in Personal Search. In SIGIR. 115-124.

https://en.wikipedia.org/wiki/I_before_E_except_after_C
https://en.wikipedia.org/wiki/I_before_E_except_after_C

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Candidate Generation
	4.1 Data Ingestion
	4.2 Candidate Extraction
	4.3 Candidate Update Under Constraints
	4.4 Properties

	5 Efficient Spell Correction And Query Completion
	5.1 Levenshtein Distance
	5.2 Extending Levenshtein Distance For Query Completion
	5.3 Further Speed-up techniques

	6 Experiments
	6.1 Setup
	6.2 Hyperparameters
	6.3 Metrics
	6.4 Runtime
	6.5 Illustrative Example
	6.6 Online Experiment Results
	6.7 Cross-Language Performance

	7 Conclusion
	References

