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ABSTRACT
Schools in the developing world frequently do not have high band-
width or reliable connections, limiting their access to web content.
As a result, schools are increasingly turning to Offline Educational
Resources (OERs), employing purpose-built local hardware to serve
content. These approaches can be expensive and difficult to maintain
in resource-constrained settings. We present Siskin, an alternative
approach that leverages the ubiquity of web browsers to provide a
distributed content access cache between user devices on the local
network. We demonstrate that this system allows access to web pages
offline by identifying the browser as a ubiquitous platform. We build
and evaluate a prototype, showing that existing web protocols and
infrastructure can be leveraged to create a powerful content cache
over a local network.
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1 INTRODUCTION
The web has tremendous potential to enable education for users
in emerging markets. With an increasing amount of free or open-
use educational content becoming available online (Khan Academy,
Wikipedia for Schools, etc.), schools in developing regions can bring
vast quantities of human knowledge directly into the classroom.
However, the web is built with the assumption of fast, free, and
always-on connectivity. This presents a substantial challenge to
schools in developing regions, which often have slow or intermittent
Internet connectivity, such as a flaky dialup connection [1]. While
modern web standards make it possible to develop sites that can
be used offline (e.g., using ServiceWorkers to persist content in the
browser), this approach does not scale to the vast quantity of legacy
web content.

The conventional approach to working around this problem in-
volves caching static snapshots of web content, typically on dedi-
cated hardware [2, 12]. However, this approach poses substantial
logistical and cost challenges for schools in emerging markets. A
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typical edge cache box costs upwards of several hundred dollars,
which can be prohibitive, and still requires manual maintenance
and updates to software and content [8]. Schoolteachers, especially
in developing countries, are not system administrators and cannot
be expected to maintain esoteric hardware and software to support
classroom web use.

In spite of their cost and maintenance burden, static educational
content served on dedicated devices and accessed from desktop
and laptop computers—referred to as Offline Educational Resources
(OERs)—has become increasingly popular in the developing world [1].
These solutions have been criticized for their cost, difficulty to main-
tain, and for the opacity of their content, which is typically fixed or
requires significant technical expertise to update [8].

We set out to determine if it was technically feasible to provide
OERs without any dedicated hardware, using only existing infras-
tructure. Ideally such a system would run on commodity hardware,
require no additional infrastructure, need only minimal configura-
tion, and allow content to be easily curated. Our key observation is
that modern web browsers have the capability to support everything
needed to enable automatic, distributed caching of web content that
can be shared across multiple users on a LAN. While the basic idea
is not new—distributed caches have been explored since the founda-
tions of the web [7, 17, 22]—our work leverages three key insights
that represent a practical, deployable solution for real-world users
today.

First, conventional HTTP caching is inadequate for supporting
true offline access to Web content. Given that most web pages (and
many resources that they depend on) are uncacheable [11], and the
degree to which websites use dynamic and fetched content (e.g.,
using AJAX), standard HTTP caches cannot guarantee that a given
page will be fully cache-resident and hence usable by a user without
an Internet connection. Second, separating the functionality and
maintenance of the cache from the device and software used day-
to-day implies that functionality will erode quickly. The caching
solution should be integrated directly into the device and software
(e.g., the browser) that the user interacts with, to ensure it does not
introduce a single point of failure and does not suffer from neglect.
And third, modern protocols (such as Multicast DNS (mDNS) and
DNS Service Discovery (DNS-SD)) enable automatic discovery and
sharing of resources across a LAN segment, leveraged in products
such as the Chromecast media-streaming device and others. This
can enable seamless sharing across multiple users without overhead
for configuration and management.

In this paper we describe Siskin, an approach to distributed snap-
shot caching of web content fully integrated into the Chrome browser.
(A demo of the prototype has been presented at a networking work-
shop [21].) To use Siskin, the user simply needs to install a Chrome
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App and Extension. Siskin allows users to save snapshots of web
content that they browse locally, and it automatically shares those
snapshots with other users on the LAN. While browsing, Siskin
automatically discovers snapshots of pages hosted by other users on
the network, and it retrieves those snapshots over the local network.
Siskin is built using existing Chrome App and Extension APIs to
perform web content snapshotting, storage, network discovery, and
peer-to-peer content transfer.

Siskin is targeted at educational settings in the developing world
that are interested in using OERs. Some research has shown promise
for the positive impact of these devices on education by enabling
access to things like Khan Academy [1]. We make no claim on the
pedagogical benefits of OERs and are not investigating their value to
education. Instead we observe that OERs are growing increasingly
popular despite their cost and limitations, and we believe cheaper,
more robust solutions are desirable. We are interested in the technical
question of whether such a system can be built using only existing
infrastructure.

We demonstrate a complete working prototype of Siskin and eval-
uate its performance. We show that Siskin is effective at caching
snapshots of content and enabling other devices to discover and
retrieve snapshots while browsing. This unlocks the potential for
offline web content to be made available in classrooms with a mini-
mum of software configuration overhead.

2 RELATED WORK
Early work on web access in resource-constrained settings inves-
tigated Delay Tolerant Networking (DTN), which focused on de-
signing network protocols to support intermittently environments
that can occur in the developing world [14]. DTN approaches fre-
quently went hand-in-hand with kiosk systems, which were custom
built workstations developed to be deployed and shared in such set-
tings [10]. Together, DTN and kiosks can be criticized as stovepipe
solutions—hardware and operating systems must be custom built,
and existing Internet infrastructure must be modified to accommo-
date new protocols.

A more conventional practice on challenged networks is to install
an HTTP cache. Efforts at increasing the efficiency of caching solu-
tions have included making multiple caches cooperate [7, 17]. The
C-LINK system performs cooperative caching by using a coordinat-
ing proxy to store resources using clients’ local storage [13]. Wolman
et al. found that collaborative caching has promise for small popula-
tions, but concluded that “the crucial problem that must be solved
to improve Web performance is how to increase page cacheability”
[22]. This stems from the fact that modern web pages are composed
of dozens of HTTP resources (e.g. CSS stylesheets, images, and
JavaScript files), and the majority of this content is uncacheable
[11]. Even if those uncacheable resources are not article text, broken
images or failed styling can make content hard to consume and can
lower the value of content. More recent approaches acknowledge
the challenges of caching dynamic content and attempt to under-
stand resources themselves that might be dynamic, introducing a
cloud-directed profiler that increases traditional cache hit rates on
challenged networks [19].

If caching conventions are ignored and stale resources are served,
as in [13] and [3], resource-level HTTP caching remains inadequate

as it assumes that devices on a network are at least partially con-
nected, even if over a challenged backhaul. By design a cache first
checks locally, and in the event of a miss it goes to the network.
Since caching occurs at the network level, there is no way to inform
the user of a miss. If a request misses the cache, the user might like
to know that the request to the origin server will fail or will take
more time than they are willing to wait. Conventional cache models
do not allow this.

A number of commercial solutions have created content access
hubs that enable local network sharing and host OERs. These can
generally be thought of as web servers that respond to requests on a
LAN. The Intel CAP, C3 Critical Links, and eGranary projects are
examples [2, 6, 12]. Rachel Offline and Khan Academy Lite are soft-
ware solutions built on this type of platform [15, 18]. These devices
can cost on the order of hundreds of dollars, and maintenance has
been shown to be a significant burden in resource-constrained set-
tings [8]. Our work exists as a complement to these efforts, demon-
strating that similar functionality can be provided without stand-
alone hardware and without introducing a single point of failure.

Our work is most similar to [3], which implements aggressive
HTTP caching as a Firefox extension. That project does not coor-
dinate between machines, preventing users from benefitting from
peer caches on the network. It is also aimed at accelerating browsing
behavior, e.g. through aggressively prefetching links on a page from
the Internet, rather than on distributing content. For these reasons
their system is not well-suited as a platform for OERs.

3 SYSTEM DESIGN
Siskin provides a seamless distributed cache of web page snapshots
available to any device on the same LAN segment; this will typically
be a single classroom or a goup of classrooms. Every peer in the
Siskin network hosts web page snapshots, which can be discovered
and fetched by other peers on the network, avoiding the need for
fetching content from a slow or intermittent Internet connection.
Siskin achieves this using a combination of local page snapshotting
and caching; peer discovery using mDNS; peer-to-peer snapshot
fetching using Web Real-Time Communication (WebRTC); and a
Chrome App to provide the UI. In this section we provide details on
Siskin’s architecture and implementation.

Our prototype is implemented as a Chrome App and Extension
combination that communicate via the App and Extension APIs.
Both components are needed due to the security model of Apps
and Extensions in Chrome. Extensions are able to interact with the
user’s web browsing experience, e.g. to save a page as MHTML or
to inspect navigation requests. Apps are able to access the system
directly, e.g. to write files to disk and access system sockets.

3.1 Snapshotting Content
The fundamental unit in Siskin is the rendered page. This creates a
one to one mapping between a top-level URL and a resource resident
in the cache. This approach effectively snapshots the rendered web
page that results from a visit to a URL. Unfortunately there is not
yet a standard for distributing web pages that perfectly recreates a
connected experience. The most widespread support is for MHTML,
which takes a snapshot of the DOM, inlining external resources like
images. This has the benefit of being a single hermetic file, making
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distribution simple, and of being well-supported by browsers. When
a saved page is viewed, it is fetched from the peer, saved to disk, and
displayed in a browser tab.

In our prototype, MHTML snapshots are saved manually by users.
When visiting a page, clicking the Siskin Extension icon in the
Chrome toolbar adds the page to the cache. The Extension obtains
the MHTML of the page and passes it as a blob to the App, which
writes it to disk. For security reasons, we elected to keep snapshotting
a manual process. We discuss security implications in greater detail
below.

Alternative content ingestion methods are possible. A set of pages
could be crawled and saved as MHTML, snapshotting them, and then
moved into the Siskin directory on a host machine. This versatility
allows existing content from OERs, including Rachel Offline or
eGranary, to be shared using Siskin.

Although widely supported, a notable shortcoming of MHTML
is the fact that it is completely static. As such it does not support
JavaScript execution and by does not natively allow video or media
playback. For this reason responsive sites and web apps are not
well-suited to MHTML. This is discussed in more detail in the
Discussion Section. An alternative approach could ignore cache-
control headers and simply cache all resources, as in [3] and [13].
We find the single file, hermetic nature of MHTML to be a preferable
distribution mechanism. Resource-level caches are best suited to
configurations where a cache sits between a machine and the origin
server, allowing individual requests to be handled in flight. Saving
pages as an MHTML resource simplifies distribution by allowing
alternative configurations, including look-aside caching behavior
where a user is informed before navigation that a local load will
succeed. Employing MHTML also simplifies distribution in creating
a mapping from a URL to a single file. It is explicit that MHTML is
only a snapshot, not a stale page served from a cache.

Siskin does not try to support web app behavior that requires
complex interactions with a server. Email applications, for example,
are not handled. Siskin aims only at operations where a page can be
displayed without needing to interact with a server after the time the
page is saved.

3.2 Peer Discovery
A discovery component is necessary to find peers running Siskin
on the local network. We accomplish this by employing mDNS and
DNS-SD. These zero-configuration protocols are a standard solution
to the problem of network service discovery; they are employed
by many services, including Chromecast media streaming devices
[4, 5]. mDNS uses multicast UDP to issue DNS queries to the lo-
cal network, while DNS-SD specifies how to use DNS records as
a hierarchical database for service discovery. Using both together,
clients can discover peers running a service and resolve an IP ad-
dress and port combination to connect to the service. Chrome Apps
provide an API to issue and respond to UDP requests, making an
implementation of mDNS and DNS-SD straight-forward.

Alternatives to mDNS and DNS-SD exist. Simple Service Dis-
covery Protocol (SSDP) is another solution that relies on multicast
addressing to query and advertise via the local network. In some use
cases, seamless discovery is not required and the peer to peer process
can be bootstrapped by directly sharing connection information. A

teacher might write the IP address of their host machine on the board,
for example, or a WebRTC offer could be shared directly between
users. Distributed systems such as [20] communicate with peers
without keeping IP and port information for each individual device.
These have desirable properties for large systems, namely that con-
tact information is only needed for O

(︀
log N

)︀
peers to communicate

with content that could be stored on any of the N peers. This is not an
ideal solution for Siskin, which seeks to provide full enumeration of
peers as a desirable property. For example, peer enumeration allows
students to identify the teacher’s machine and to browse only the
content hosted on that machine.

3.3 Content Discovery
Local content discovery takes one of two forms. In the first, a list of
peers on the network is presented via the App UI. Upon selecting
a peer, the list of pages saved by that peer is presented to the user
much like listing the contents of a directory. In the second, regular
browsing behavior is augmented to inform users of locally available
content. This process is referred to as “cache coalescence”. To ac-
complish this, peers disseminate Bloom filters, as in [7], representing
the URLs they have cached locally. The App component of Siskin
maintains this information, allowing instances to locally determine
if a given link is available from a peer. Links on a page are annotated
to show that they are available.

By providing both modes of content discovery, Siskin is able
to support sparse cache occupancy, where a user might save only
a single page, as well as dense cache occupancy, where a whole
domain may have been snapshotted. If a particular user has saved
part of Wikipedia, for instance, users can first discover an entry point
into that content via the summary listing. After navigating to the
page, link annotation allows the user to browse only local content
by augmenting regular browsing behavior.

Siskin annotates locally available URLs by communicating be-
tween the Extension and App modules. The Extension includes a
ContentScript—a standard Extension component—that runs on on
every page the user browses. This ContentScript queries the page
for anchor tags that include the href property. These URLs are
passed to the App, which holds the cache state of peers in memory
as an array of Bloom filters. Each URL is checked in memory to
determine if it is likely available on the network (the use of Bloom
filters make this a probabilistic operation). Matches are passed back
to the ContentScript, where the anchor tags are annotated with a
small cloud icon to indicate their availability on the local network.
More efficient alternatives, including distributed indexing as in [20],
could be layered on top of Siskin. However, as discussed Section 4,
that is not necessary for the contexts we are considering.

3.4 Data Transfer Between Peers
Data must be transferred between peers to perform content discovery
and to view the snapshots. Our prototype employs WebRTC as the
transport mechanism. WebRTC is a protocol suite designed to enable
peer to peer communication between browsers. We chose WebRTC
because it is built into the browser, and because all communication
over WebRTC connections is encrypted.

Negotiating a WebRTC connections requires a signaling step,
which is an exchange of text blobs referred to as “offers”. In our
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prototype implementation, WebRTC offers are exchanged via an
HTTP endpoint using an open source HTTP server [9] we bundle
in the App. The initiating peer issues an HTTP PUT request, the
body of which contains the offer. The peer receiving the request
extracts the offer, generates a return offer, and includes this offer in
the HTTP response. With offers exchanged, a WebRTC connection
can be established. We layer a messaging protocol on top of the
connection’s data channels, and Siskin instances use these messages
to communicate.

3.5 Security and Privacy
We identify three main areas relevant to security and privacy in
Siskin: 1) confidentiality of shared content; 2) secure communication
between peers; and 3) integrity of cached content.

The first area relates to the confidentiality of content. Our ap-
proach of snapshotting pages makes this problem non-trivial. If a
user elects to snapshot their email client or social media wall, for
instance, they run the risk of leaking potentially private information
to others on the network. To minimize the chances of this occurring
accidentally, we elected to make snapshotting pages require a man-
ual action from the user. In our prototype, content is guaranteed not
to be shared until hitting the extension icon and electing to save con-
tent, allowing users explicit control over what content is available.
Additional defenses could include blacklisting social media sites and
implementing access control, allowing users to snapshot content for
only their own use or to only share it with particular users.

The second area relates to secure communication. Siskin should
support both encrypted and authenticated communication. The WebRTC
transport mechanism ensures that communication is encrypted, but it
is not authenticated. In connected contexts, WebRTC authentication
occurs during the signaling step by communicating through an iden-
tity provider or via an HTTPS connection. HTTPS cannot be relied
on in the offline settings Siskin targets. However, we could perform
authentication by exploring a protocol akin to Secure Simple Pair-
ing (SSP), which is used to pair Bluetooth devices. SSP provides
a way to both exchange an encryption key and authenticate that
the exchange was not subject to a man in the middle attack. SSP
includes a numeric comparison mode by which two users compare
several numeric digits, checking for equality. This exploits physical
proximity of two devices and is appropriate for Siskin, where users
are expected to be on the same LAN. SSP has been shown to be
secure [16]. After SSP is complete, private keys can be shared and
future secure communication can occur using RSA, provided that
keys remain confidential.

The final area, integrity of content, is not provided by our proto-
type. Snapshotting and sharing are performed by untrusted peers,
meaning that integrity guarantees stemming from the use of HTTPS
are lost. Snapshots could be tampered with, or sophisticated peers
could falsely claim that a fabricated snapshot originated from a spe-
cific domain. Integrity guarantees could be maintained by adding a
level of trust to peers and cryptographically signing snapshots. An
alternative could be to use a third party service to generate and sign
snapshots. These approaches would require additional infrastructure
and are not things we currently support.

4 EVALUATION
In this section we perform a technical evaluation of our Siskin proto-
type. We evaluate the capabilities of the technology in a laboratory
setting as well as analytically. Another evaluation scheme could in-
clude deploying Siskin in an educational setting and collecting usage
metrics. We instead approached evaluation as determining whether
or not our approach is technically feasible given likely infrastructure
at rural schools that employ OERs. Future work would be required
to study Siskin under real world usage.

Our evaluation shows that Siskin’s architecture meets our design
requirements and could be employed as an OER solution. All our ex-
periments were conducted on Acer 14 Chromebooks on the network
in the University’s Computer Science department. The Acer 14 is a
mid-level Chromebook available for approximately $300 USD. The
models used in our evaluations had a 1.6 GHz Intel Celeron N3160
Quad-Core Processor, 4 GB of RAM, and were running Chrome OS
58.

Metrics that depend on the number of pages in a cache are cal-
culated for 1,000 pages. This number was chosen because many of
the most highly rated Rachel Offline modules, which serve as OERs,
contain on the order of 1,000 pages [18]. Additionally, 1,000 is a
reasonable upper limit on the number of pages a user might add man-
ually to Siskin without an automated content ingestion mechanism.

4.1 Data Transfer Speeds
Data is exchanged between Siskin peers both to communicate op-
erational data (e.g., cache state) as well as the saved pages them-
selves. Siskin relies on browser JavaScript APIs for storage and
network communication. The key question is whether browser-based
peer-to-peer data transfer—i.e., WebRTC—is fast enough to serve
cached pages between peers. To measure transfer speeds, we in-
stalled Siskin on two Chromebooks, connected them to the depart-
ment’s 802.11a/g/n WiFi network, and measured the time required
to transfer files via WebRTC.

We generated files of 1 kB, 10 kB, 100 kB, 1 MB, and 10 MB, and
measured the time to transfer each file 100 times between two peers.
According to [11], 55% of all page loads transfer a total of 0-2 MB,
and 95% transfer less than 10 MB. Siskin deals with snapshots of
rendered DOM rather than raw resources, but we expect the size of
raw resources to be similar to the size of the rendered DOM.

File transfer was conducted using two scenarios: WebRTC and
WebRTC including connection establishment. In WebRTC, connec-
tion establishment is referred to as signaling, and is required for
first time or infrequent requests to a peer. Mean transfer times over
100 runs are shown in Figure 1. The results are within the time a
user might expect to load a URL on the network. For each file size,
the WebRTC with Signaling step is slower by 300-500 milliseconds.
This is expected, because the peer must first establish a connection,
interfacing with browser APIs and performing an additional round
trip with the peer hosting the file.

Transfer time does not increase perfectly linearly with file size.
For example, both the 1 kB and 10 kB files transfer in approxi-
mately 85 ms when reusing an existing connection. The 1 MB file,
meanwhile takes approximately 450 ms while the 10 MB file takes
approximately 3 seconds, not the 4.5 seconds that might be expected
to transfer 10 times as many bytes. This can be attributed to two
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main sources of overhead. First, in our implementation each transfer
creates its own data channel on the existing peer connection, which
is shared overhead independent of file size. Second, WebRTC data
channels are buffered, and the browser can inform client code to
pause sending if the buffer becomes full before it has been sent to
a peer. This allows WebRTC to respond to network conditions with
minimal intervention from the client.

Figure 1: Mean transfer times for various file sizes between two
peers.

4.2 Overhead for Cache Coalescence
Next, we evaluate the overhead of distributing cache directory infor-
mation between peers in the network. This information allows peers
to remain aware of what content is available on the local network
and where it resides. As the number of peers and the size of the
cache grows, the question is how much local network bandwidth is
required to distribute this information. Our prototype of Siskin uses
a fairly simplistic cache coalescence strategy—each peer exchanges
a Bloom filter of locally-cached URLs with every other peer on a
periodic basis (with a default of every 60 seconds). We perform this
via unicast, where each peer sends a Bloom filter to every other peer.
However, more efficient schemes, e.g., leveraging multicast, are also
possible.

We calculate the theoretical load on a network with between
2 and 50 peers, each of which is caching 1,000 pages locally. Each
peer encodes the list of cached URLs into a Bloom filter with a
target false positive rate of 0.001, which requires 1,798 bytes. We
consider an 802.11b network, as might be expected at a rural school,
with an aggregate TCP throughput of 5.9 mbps. Maximum broadcast
throughput is considered to be 0.5 mbps—one half of the lowest
supported 802.11b rate of 1 mbps.

Under the fairly simplistic unicast system implemented in our
prototype, fully distributing cache state requires each peer to com-
municate their state to every other peer. With 50 peers, this results
in 4.4 MB (50 peers sending their 1.798 kB Bloom filter to 49 other
peers) that must move across the network to fully distribute cache
state. On the 802.11b network described above, this would require
6.0 seconds if all 50 peers joined the network at the same time. Fig-
ure 2 shows the theoretical bandwidth requirement of updating cache

state via our unicast strategy under different refresh rates. This as-
sumes that an initial distribution has been completed and the Siskin
peers are periodically informing peers of their content by completely
redistributing their Bloom filters.

With a 60 second refresh rate, the bandwidth impact is minimal.
However, the unicast strategy is naive in that it requires an O

(︀
N2)︀

operation in the number of peers, as each peer sends their directory
information to every other peer. This can be improved by employing
a broadcast mechanism to transmit the Bloom filters. Under this
scenario each transmits a Bloom filter a single time, for a total of
0.09 MB. Given a broadcast throughput of 0.5 mbps, full distribution
would take 1.4 seconds per distribution cycle if 50 peers joined at the
same time. Figure 3 shows the theoretical bandwidth requirement
of a broadcast coalescence strategy for different refresh rates. As
with the previous calculation, this assumes that an initial distribution
has been completed and the Siskin peers are periodically informing
peers of their content. With a 60 second refresh rate, the bandwidth
impact is minimal even with 50 peers.

Figure 2: Bandwidth consumed by fully redistributing cache di-
rectory information via a unicast mechanism. Bandwidth is es-
timated at different refresh rates as additional peers join the
network, each hosting 1,000 pages. The dashed line shows a the-
oretical maximum throughput of 5.9 mbps.

4.3 Query Latency
Finally, we measure the latency of querying the distributed cache
state for a set of URLs and informing the user of the result. One of the
key advantages of Siskin over conventional HTTP caching is greater
transparency of available content. URLs entered into the address
bar and URLs from anchor tags on loaded pages are queried against
the body of locally available content. Siskin maintains in memory a
representation of what content is available in the distributed cache.
We use the term query latency to refer to the time it takes to query a
set of URLs against this in-memory representation and update the
UI to inform the user. (This representation is kept up to date with
periodic updates, as described above.)

When a page is rendered, Siskin scans the HTML for all URLs
contained in anchor tags in the page. It then queries its representation
of the distributed cache state for the existence of each URL by
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Figure 3: Bandwidth consumed by fully redistributing cache di-
rectory information via a broadcast mechanism. Bandwidth is
estimated at different refresh rates as additional peers join the
network, each hosting 1,000 pages. The dashed line shows a the-
oretical maximum broadcast throughput of 0.5 mbps.

checking them against the Bloom filter it has received from each
peer. When a page is found, Siskin annotates the URL on the page
to indicate the cache residency status of each link. A lightning bolt
indicates that it is available on the user’s own machine, while a
cloud indicates that it is available on a peer (Figure 4a). Clicking
an annotated link creates a dialog that informs the user a cached
version of the page available. The user can choose to try and load
the original link from the Internet, view their own local copy, or get
the cached page from a peer on the network (Figure 4b).

To measure query latency, we constructed four synthetic HTML
pages with 1, 10, 100, and 1,000 outbound links. We also generated
a synthetic cache directory containing 10 peers, each of which con-
tained 1,000 pages. In this way the establishment of cache state was
synthetic, but the querying on a local machine was measured. Each
of the HTML pages was loaded 100 times. The cache directory was
present in memory, as if peer state had already been communicated.
The query latency is the time to look up all of the outbound links on
the page in the cache directory.

The mean results over 100 runs are shown in Figure 5. Querying
up to 100 links takes on the order of 100 ms, while querying for
1,000 links takes on the order of 600 ms. As shown in the Figure,
the time it takes to find the links and query the data structures
grows with the number of links, as can be expected. Communication
between Chrome Apps and Extensions occurs via a messaging and
callback system. Waiting for these messages to be delivered and
callbacks to be invoked by the Chrome machinery constitutes the
largest component of the query latency.

5 DISCUSSION
Siskin shows OERs do not require expensive, purpose-built hard-
ware. It demonstrates that the web browser has become a sufficiently
ubiquitous and capable platform that it can serve as a powerful
offline content caching and distribution system. In educational con-
texts Siskin can complement existing efforts technologies that de-
liver OERs. We set out to investigate if OERs can be built using

(a) Outgoing links on cached pages, as well as on pages loaded from the
Internet, are annotated to indicate if they are available on the local network.
A cloud indicates that a peer has the linked page. A lightning bolt indicates
that the linked page is available on the user’s own machine.

(b) Clicking an annotated link creates a dialog that allows
the user to choose how they wish to obtain the page. This can
occur by going to the external network (if available), open-
ing their own cached version, or getting a cached version
from a peer.

Figure 4: The body of cached content is queried and exposed to
the user during browsing.

Figure 5: Mean times to query for URLs available on the net-
work of 30 peers, each with 1,000 pages.

solely existing infrastructure. We are confident answering this in
the affirmative without a deployment. Our approach demonstrates to
creators of OERs that more flexible, affordable systems are possible.
However, Siskin is not a perfect solution. In this section we outline
limitations of the system, how those limitations could be mitigated,
and what remains as future work.

The most immediate limitation is the capabilities of of MHTML
as a distribution format. MHTML does not run scripts, meaning sites
that depend on JavaScript after an initial render will not work as
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expected. This does not impact all sites, and MHTML continues to
be used in industry settings, but it is nevertheless a limitation of the
format.

A more pressing problem is the fact that MHTML does not sup-
port video. Sites like Khan Academy are popular as offline edu-
cational resources [1]. Khan Academy lessons, as well as video
services like YouTube, are not well served by MHTML. The DOM
is saved but the media player is replaced by an empty HTML el-
ement. This could be mitigated by storing video files separately
from MHTML and alerting the user to the associated files. This still
would not be perfect, however, as the experience would differ from
standard web browsing. A long term solution would be to develop a
file format that better handles modern web content.

The current usage model of Siskin is based on URLs. Snapshotted
URLs that are available can be listed, and links can be redirected
to local copies. A useful feature would be the ability to perform
keyword searches. Wikipedia becomes much more useful, for exam-
ple, with the ability to search. Without search, users would have to
rely on the directory listing feature of Siskin to find an entry point
into cached content. Alternatively, a manual index page, like a site
map, could be employed to explore content. Searching in an offline
settings is complicated by the fact that content can join or leave the
network with hosting machines. This suggests that machines should
host their own search indices. Creating these indices in a way that
serves real-world workloads while respecting the performance and
storage capabilities of local hardware is left for future work.

The primary motivation behind Siskin is the idea that the ubiquity
of web browsing technology can create distributed content distribu-
tion mechanisms. Our prototype, however, depends on Chrome App
and Extension APIs. This means that it does not work on mobile
devices, which do not support these APIs. An ideal Siskin imple-
mentation would run on any browser, not just laptops and desktops.
Siskin is an example of how the browser can be used to replace
stand-alone solutions. Our prototype demonstrates that this is fea-
sible. We do not claim that our prototype is a complete solution.
Instead we claim this demonstrates how the browser as a ubiquitous
technology can expand the reach of web content even to those that
are only intermittently connected.

6 CONCLUSION
We have presented Siskin, a system that supports OERs at schools
in the developing world without requiring additional hardware or
purpose-built devices. It achieves this by facilitating the distribu-
tion of web content on intermittently connected networks. Siskin
leverages the ubiquity and capabilities of the web browser to dis-
tribute content between peers and integrate with the web browsing
experience. Siskin represents the ability to replace or complement
stand-alone solutions with existing, ubiquitous infrastructure—the
browser—to give disconnected users access to the more than four
billion pages that exist on the web.
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