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Abstract. This paper discusses diagnosis of industrial data processing
pipelines using action languages. Solving the problem requires reasoning
about actions, effects of the actions and mechanisms for accessing out-
side data sources. To satisfy these requirements, we introduce an action
language, Hybrid ALFE that combines elements of the action language
Hybrid AL [6] and the action language Crarp [8]. We discuss some of the
practical aspects of implementing Hybrid ALFE and describe an example
of its use.

Answer Set Programming (ASP) is a knowledge representation formalism
with the stable model semantics [11] that allows for a concise representation
of defaults and uncertainty. Action languages [12] allow to formalize reasoning
about effects of actions in dynamic domains. Descriptions in an action language
are usually compiled into ASP. ASP solvers can then be used to find answer sets
of the compiled descriptions, which specify possible trajectories of the modeled
dynamic domain. Action languages have been used in various applications, such
as planning [13], biological modeling [2], and diagnostic reasoning [1]. In this pa-
per we discuss our work towards automating diagnosis of certain data processing
pipelines at Google Inc. using action languages.

Industrial data processing pipelines can consists of hundreds of jobs, with
outputs of some jobs consumed as inputs by others within the pipeline. In addi-
tion, pipelines themselves can have input dependencies on other pipelines. When
working well, this architecture allows efficient and effective processing of large
amounts of data. When a malfunction occurs, it can bring related data process-
ing tasks to a halt, causing a set of cascading failures. The failures can cause an
alert being dispatched to on-call engineers.

For the engineers, an alert presents a diagnostic challenge, as it can point to
one of the later among the cascading failures, rather than an earlier one. The
earlier causes have to be found before the underlying problem can be resolved
thoroughly, and this can be tedious and time consuming. Moreover, multiple
possible causes of failure may have to be investigated. Automating the diagnosing
process can decrease the time required to fix failures. This can improve the fault
tolerance of the system as well as decrease the workload for the engineers.

Earlier action languages, such as AL [3] focus on formalizing possible state-
action-state transitions as well as applicability of actions. In diagnosing data



processing pipelines, we found that reasoning also about the necessity of actions
is conducive for creative adequate diagnostic software. Crarp [8] is the earliest
action language we found that provides all the needed language constructs.

In the context of our application, there remains, however a problem that
Crarp does not solve. In order to limit the number of possible diagnoses, it
may be necessary to query outside sources for information about the diagnosed
system (outside information). Such outside information may be, for instance the
completion status of a diagnosed job, or properties of temporary files created
while the diagnosed pipeline was running. In some cases precomputing all of the
outside information is impractical, because of the large amount of data required
to address the needs of all plausible trajectories. A more practical approach is
to query the outside environment during the inference, since as the inference
progresses the set of the plausible trajectories decreases in size.

Standard ASP does not provide the ability to interact with the outside en-
vironment during inference. Since action languages such as AL or Crarp are
translated into ASP, their ability to interact with the outside environment is
likewise limited. There are extensions of ASP, however that provide the needed
functionality. These include DLV P [14], VI programs [7], GRINGO grounder
[10], HEX [9] and Hybrid ASP (H-ASP) [4]. The only action language known to
us that translates into one of these extensions is Hybrid AL [6], which translates
into H-ASP. We introduce a new action language Hybrid ALE, which extends
Hybrid AL with the language constructs of Cra;p. We then discuss the use of
Hybrid ALFE for diagnostic reasoning in our application.

In this paper we refer to an example data processing pipeline and focus on
a single job process_datal that requires an input file input.data before it starts
processing and is suspended until the input file is produced. Upon successful
termination, the job produces a single output file, output_<timestamp>.data,
which can then be used as an input into a next job in the data processing
pipeline. The timestamp is the timestamp of the output file and is part of its
name. Upon a malfunction, the output file is not created.

To provide a meaningful diagnosis, in our example it is necessary to determine
whether the input file and the output files exist. This can be done outside of the
system description. In general, however such precomputing may not be feasible
because of the large number of the possible trajectories of the diagnosed system.
During inference, however, the space of the possible trajectories decreases as
some possible trajectories are found invalid. Thus, if the checks are performed
as needed during the inference, the computations can become more feasible.

The rest of the paper is structured as follows. In Section 1 we review H-ASP.
In Section 2 we define Hybrid ALFE. In Section 3 we discuss the compilation
of Hybrid ALFE descriptions into H-ASP programs. A theorem demonstrating
the correctness of the translation is discussed in the same section. In section 4
we discuss an example of the use of Hybrid ALFE for diagnostic reasoning. A
discussion of some of the practical aspects of implementing Hybrid ALFE is in
Section 5 followed by the conclusion.



1 Hybrid ASP

We now give a brief overview of H-ASP restricted to rules used in this work. A
H-ASP program P has an underlying parameter space S and a set of atoms At.
Elements of S, called generalized positions, are of the form p = (¢t,2z1,...,2Tm)
where ¢ is time and z; are parameter values. We let ¢(p) denote ¢ and p; denote
x; for i =1,...,m. For convenience we name certain parameters, and use their
names instead of their indexes so that for instance if a parameter i is named n
we may use n (p) to mean p;.

A literal is an atom a or its negation —a. For a literal b we define b = —a if
b = a for some atom a, and b = a if b = —a for some atom a.

The universe of P is At x S. A pair (Z,p) where Z C At and p € S is
referred to as a hybrid state. For M C At x S we write GP(M) = {p € S :
(Ja € At)((a,p) € M)}, Wy (p) = {a € At : (a,p) € M}, and (Z,p) € M
if p e GP(M) and Wy (p) = Z. A block B is an object of the form B = ay,

.., Gy, not by, ..., not b, where ay, ..., an, b1, ..., by € At. We let B~ = not
b1, ..., not by, and B* = ay, ...,a,. We write M = (B, p), if (a;, p) € M for
i=1,...,nand (bj, p) ¢ Mforj=1, ..., m.

Advancing rules are of the form: a < B : A,O. Here B is a block, O C S,
for all p € O A(p) C S, and for all q € A(p), t(q) > t(p). The idea is that if
p € O and B is satisfied at p, then A can be applied to p to produce a set of
generalized positions O’ such that if q € O’, then t(q) > t(p) and (a, q) holds.
A is called an advancing algorithm.

Stationary-i rules (for i = 1 or ¢ = 2) are of the form: a < B;; By : H,O
(where for i = 1 we mean a < B; : H,O). Here B; are blocks and H is a Boolean
algorithm defined on O. The idea is that if (p;,p1) € O (where for i = 1 we
mean p; € O), By is satisfied at py for k = 1,7, and H(p;,p1) is true (where
for i = 1 we mean H(p1)), then (a, p;) holds. H is called a predicate algorithm.

The stable model semantics for H-ASP [4] defines a set of answer sets for an
H-ASP program in terms of a reduct in a way similar to ASP, but it is omitted
here due to space constraints.

We now introduce additional definitions which are used later in this paper.
An advancing algorithm A lets a parameter y be free if the domain of y is Y and
for all generalized positions p and q and all ' € Y, whenever q € A(p), then
there exist q' € A(p) such that y(q') =y’ and that q and q’ are identical in all
parameter values except possibly y. An advancing algorithm A fizes a parameter
y if A does not let y be free. Intuitively, A fixes y if A is intended to specify
values for y, and A lets y be free otherwise.

We use T to indicate a predicate algorithm or a set constraint that always
returns true. As a short hand notation, if we omit a predicate algorithm or a set
constraint from a rule, then by that we mean that T is used.

A pair of generalized positions (q,p) is a step (with respect to a H-ASP
program P) if there exists an advancing rule a < B : A, O in P such that p € O
and g € A(p). Then we say that p is a source and q is a destination. We assume
that the underlying parameter space of P contains a parameter Prev defined so
that, for a step (q,p), we have Prev(q) = (z1(p), ..., Zn(p)). We also define a



Boolean algorithm IsStep(p, q) that is true iff
Prev(q) = (z1(p), ---, n(p)) and [t(q) = t(p) + stepSize].

Given one-place Boolean algorithms A, B, we write AV B, AA B, and A for
Boolean algorithms that map generalized positions q to A(q)VB(q), A(Q)AB(q),
and not A(q) respectively. The same holds for two-place Boolean algorithms.

For a set of literals M, we denote by rules(M) and de faults (M) the sets of
stationary-1 rules {m «: T |m € M} and {m < not m| m € M} respectively.

A notation of the form < ai,...,a,, : P stands for a constraint, i.e., a
stationary-1 rule _fail < ay, ..., am, not _fail : P, where _fail is a new auxiliary
atom. An analogous notation holds for a stationary-2 rule.

If we omit an advancing algorithm from an advancing rule, by that we mean
an advancing rule where an algorithm A is used such that if q € A(p) then
(q,p) is a step, and A lets all the parameters except time and Prev be free.

An algorithm Dest [P] is defined to hold for p,q iff P (p).

2 Action Language Hybrid ALFE

A key concept related to action languages is that of a transition diagram, which is
a labeled directed graph, where vertices are states of a dynamic domain, and edge
labels are subsets of actions. An edge indicates that simultaneous execution of
the actions in the label of an edge can transform a source state into a destination
state. The transformation is not necessarily deterministic, and for a given source
state there can be multiple edges having different destination states, labeled with
the same set of actions. In Hybrid ALFE, just as in Hybrid AL, one considers
hybrid transition diagrams, which are directed graphs with two types of vertices:
action states and domain states. A domain state is a pair (A, p) where A is a set
of propositional atoms and p is a vector of sequences of Os and 1s. We can think
of A as a set of Boolean properties of a system, and p as a description of the
parameters used by external computations. An action state is a tuple (4, p,a)
where A and p are as in the domain state, and a is a set of actions. An out edge
from a domain state must have an action state as its destination. An out edge
from an action state must have a domain state as its destination. Moreover, if
(A,p) is a domain state that has an out-edge to an action state (B,r,a), then
A = B and p = r. We note that there is a simple bijection between the set of
transition diagrams and the set of hybrid transition diagrams.

We now define Hybrid ALFE syntax. In Hybrid ALFE, there are two types of
atoms: fluents and actions. There are two types of parameters: domain param-
eters and time. The fluents are partitioned into inertial and default. A domain
literal [ is a fluent atom p or its negation —p. For a generalized position q, we
let Q| ,,main denote a vector of domain parameters. The domain parameters are
partitioned into inertial and default.

A domain algorithm is a Boolean algorithm P such that for all generalized
positions q and r, if q|domain = T|domain, then P(q) = P(r). An action algorithm
is an advancing algorithm A such that for all q and for all r € A(q), time(r) =



time(q) + 1. For an action algorithm A, the signature of A, sig(A), is the vector
of parameter indices i1, ..., 7 of domain parameters fixed by A.
Hybrid ALE allows the following types of statements.
. Default declaration for fluents: default fluent [
. Default declaration for parameters: default parameter i with value w
Causal laws: a causes (I, L) with A if pg,...,pm : P,
State constraints: (I, L) if pg,...,pm : P,
Noconcurrency condition: impossible ag, ..., ax if po,...,pm : P,
. Allow condition: allow a if pg,...,pm : P,
. Trigger condition: trigger a if pg,...,pm : P,
. Inhibition condition: inhibit a if py, ..., pm : P
where [ is a domain literal, 7 is a parameter index, w is a parameter value, a
is an action, A is an action algorithm, ig, ..., 4; are parameter indices, L and P
are domain algorithms, pg, ..., p.,, are domain literals, and aq, ..., ax are actions
k>0and m > —1.If L or P are omitted then the algorithm 7' is substituted.
A default declaration for fluents declares a default fluent and specifies its
default value. If [ is a positive literal, then the default value is true, and if [
is a negative fluent then the default value is false. A default declaration for
parameters declares that i is a default parameter and that w is its default value.
A causal law specifies that if pg, ..., p;, hold and P is true when a occurs, then [
holds and L is true after the occurrence of a. In addition, after a occurs, the values
of the parameters sig(A) are specified by the output of the action algorithm A. A
state constraint specifies that whenever py, ..., p,, hold and P is true, [ also holds
and L is true. A noconcurrency condition specifies that whenever pg, ..., p,, hold
and P is true, ao, ..., ax cannot occur concurrently pairwise. An allow condition
specifies that whenever pg, ..., p,, hold and P is true, an action a can occur
(although not necessarily so). A trigger condition specifies that whenever py,
..e; Pm hold and P is true, an action a necessarily occurs (unless inhibited). An
inhibition condition specifies that whenever pyq, ..., p,, hold and P is true, action
a cannot occur. A system description SD is a set of Hybrid ALFE statements.
The H-ASP programs discussed below assume the parameter space consisting
of parameters ¢ (time), domain parameters and the parameter Prev. Such a
parameter space is called the parameter space of SD.

Let I1.(SD) denote the logic program: for every state constraint of the form
(4), II.(SD) contains the rules I < pg, ..., pm : P and < pg, ..., ppm : P A L.

Definition 1. Let (o,q) be a hybrid state, and let ' C o and o’ Co. Ifo is a
complete and consistent set of domain literals, then (o,q) is a Hybrid ALE state
relative to o', o if (0,q) is an answer set of the program I1.(SD) U rules(c’) U
defaults (o) with the initial condition q.

Next, we introduce a number of definitions needed to specify a transition.
A causal law or a state constraint is applicable in (o, q) if {pg,..., Pm} C o
and P (q) holds. The logical effects of an action a in a state (o,q) are
LE((o,q),a) = {l : (a causes (I, L) with A if po,..., pm : P) is applicable in
(0,q)}. For a set of actions B we define LE ((0,q),B) = U LE ((0,q),a).
a€EB



For a generalized position q and action algorithm A with signature (i1, ..., ix)
we define the binary effects of A in q as BE(q,A) = {((¢1,71), .-, (ig,7%)) :
(rla () Tk) € A(q)}

A tuple u = ((i1,71), ..., (ix,7%)) where i;s are parameter indexes and r;s
are the values of the corresponding parameters is called an assignment tuple. We
define sig(u) = (i1, ..., ix) and values(u) = (rq, ..., Tk).

The binary effects of a set of actions D, in a state (o, q) are
BE((0,q),D) = {BE(q,A) : (a causes (I, L) with A if pg,..., pm : P) is appli-
cable in (0, q) and a € D}.

For the binary effects of the actions B let A, (B) = ((j1,71); -, (Jn,7n))
where (j1,..., jn) are the parameters not present among those that are in B,
and for a parameter jp,, 7 = qj,, if jm is an inertial parameter, and 7, = w
if j, is a default parameter with the default w. A binary effects completion of
Bis B=BU{ A,(B) }. That is a binary effects completion of B contains B
and the assignment tuple for the parameters not found in B.

If w is an assignment tuple ((j1,¢1),---, (J&,¢n)) and sig(u)Nsig (w) = @ then
the product of uw and w is an assignment tuple ((I1,p1), ., (lk+n,Prt+n)) Where
l1, ..., lg4n is the arrangement of the indexes iy, ..., ik, j1, ---, jn i1 increasing order
and pq, ..., Pk+n 1S the corresponding arrangement of the values.

For a set S of assignment tuples let sig (S) = { sig(u) : v € S}. We say
that S is wvalid if whenever sq, sy € sig (S) are such that s; N sy = () where the
intersection of the two tuples is a tuple of the elements in the intersection of s1,
so with s1 and s, treated as sets.

For a valid set S of assignment tuples and a signature s € sig(S) we define
AT (s,S) = {x : © € S and sig(x) = s }. A partition of S by signatures is
Part(S) = {AT(s,S) : s € sig (S) }.

The set of the candidate successor generalized positions at (o,q) with respect
to a set of actions D is

CSGP((o,q), D) =0 if BE((0,q), D) is not valid, and otherwise

CSGP((0,q), D) =

values(HPart(ﬁ((o, q),D) U{(0,t(a)+2)} U {(Prev, dl omain) }))-

This specifies that given the binary effects of the action algorithms of the
applicable causal laws, the candidate successor generalized positions can be con-
structed by taking the ”cross products” of the binary effects of the corresponding
action algorithms and by substituting any missing parameters i with q; if ¢ is
an inertial parameter, or the default value of ¢ if it is a default parameter.

For a state (0p,q) and a set of actions B we define the set of consequent
states as:

CS((00,q), B) ={ (o,r) : r € CSGP((09,q), B) and L(r) holds for all
L s.t. (a causes (l,L) with A if po,..., pm : P) is applicable at (0p,q) and
a € B and LE((0g,q), B) C o and (o,r) is a Hybrid ALE state relative to
LE((00,4), B), {l: 1l € 0g and [ is inertial} U {l : [ is a default fluent} }.

That is the set of consequent states are constructed by combining the set
of the candidate successor generalized positions with the Hybrid ALFE states
relative to the set of the logical effects of the applicable actions.



Finally, we specify the sets of possible and necessary actions similarly to [8].
An inhibition condition, an allow condition, a trigger condition and a nocon-
currency condition is active in (o,q) if {po,...,pm} C o and P (q) holds. Let
Ap (0,q) = {a : there exists an active inhibition condition in SD containing a}.
Let At (0,q) = {a : there exists an active trigger condition in SD containing a
and a ¢ Ay (0,q)}. Let A4 (0,q) = {a : there exists an active allow condition in
SD containing a and a ¢ Aj (0,q)}. Let Ay (0,q) = {(a1, ..., an) : there exists
an active noconcurrency condition with ag, ..., a,}.

Definition 2. (Transition) Hybrid ACE states (00,q), (01,r) and a nonempty
set of actions B form a transition of SD if (o1,r) € CS((00,q) , B) and At (00,q)
C BC Ar(00,9)UA4 (00,q) and for all B' € Ay (09,q) we have |[BNB’| < 1.

In a transition there is always a reason for an action occurring. The definition
ensures that no inhibited action is included in B, that all the triggered actions
that are not inhibited are in B, that the remaining actions in B are allowed
and that actions prohibited from executing concurrently by a noconcurrency
condition are not all in B.

3 Compilation

A system description SD in Hybrid ALE is compiled into H-ASP. In the defini-
tion below we assume that the Hybrid ALFE statements are of the form (1)-(8)
specified in the syntax definition. The encoding II(SD) of the system description
SD consists of the following:

1. For every action algorithm A, we have an atom alg (A). If A has a signature
(40, ..., i) then we add the following rules for j € {0, ..., k} that specify all
the parameters fixed by A and execute the algorithm A when appropriate:
a stationary-1 rule, will_fiz (i;) < action_state, exec(alg (A)),

a stationary-2 rule, fix (i;) <; action_state, exec(alg(A)),

an advancing rule, domain_state < action_state, exec(alg (A)) : A.

For every pair of algorithms A; and A, with a nonempty signature intersec-
tion, we add the following stationary-1 rule,

« action_state, exec(alg (A1)), exec(alg (Az)), to prevent situations where
two different algorithms are setting the values of the same parameter in the
same state.

2. Inertia axioms for parameters. For every inertial domain parameter i, we
have an advancing rule
fiz (i) + action_state, not will_fix (i) : Default ]
where Default [i] (p) = {q: p; = q; }. The inertia axioms for parameters
cause the values of the inertial parameters not fixed by one of the action
algorithms to be copied to the successor states.

3. Default axioms for parameters. For every default parameter ¢ with the value
w, we have an advancing rule
fix (i) < action_state, not will_fiz (i) : Default [i, w]



10.

where Default[i,w] (p) = {q: p, = w}. The default axioms for parameters
cause the values of the default parameters not fixed by one of the action
algorithms to be set to the default value.

. State restriction constraints for the parameters. We restrict the possible do-

main states to only those where every parameter is marked as fixed. For
every domain parameter ¢, we have a stationary-1 rule

« not fix (i), domain_state

For every causal law ¢ € SD of the form (3):

(a) a stationary-2 rule specifying that the law is applicable if the prerequi-
sites are satisfied
causal (¢) « action_state, occurs (a), h(po),....h (pm): P
where causal (¢) is an atom uniquely identifying the causal law.

(b) a stationary-1 rule specifying that the advancing algorithm A is to be
evaluated if the prerequisites are satisfied,
exec (alg (A)) « causal (¢)

(c¢) a stationary-2 rule to derive h (1) in the successor state,
h (1) « ; causal (c) : I1sStep

(d) a stationary-2 rule specifying that L must be true in the successor state,
< ; causal (c) : IsStep A Dest[L].

For every state constraint s € SD of the form (4):

(a) a stationary-1 rule indicating that the state constraint is applicable
constraint (s) < domain_state, h(pg),..., b (pm) : P
where constraint (s) is an atom identifying s.

(b) a stationary-1 rule to derive h (1),
h (1) + constraint (s), domain_state

(¢) and a stationary-1 rule to verify that L holds if the rule is applicable
< constraint (s), domain_state : L

For every noconcurrency condition n € SD of the form (5):

(a) a stationary-1 rule indicating that the condition is applicable
noconcurrency (n) < action_state, h (pg),..., h(pm): P

(b) a stationary-1 rule for every pair a;, a; € {ao, ..., ax} to make the con-
current occurrence of a; and a; impossible
— occurs (a;) , occurs (a;), noconcurrency (n)

For every trigger condition of the form (7), a stationary-1 rule to trigger the
occurrence of a

occurs (a) « action_state, not ab(occurs (a)), h(po),..., h (pm): P

For every inhibition condition of the form (8), a stationary-1 rule to inhibit
the occurrence of a

ab (occurs (a)) < action_state, h(pg),..., h (pm) : P

For every allow condition of the form (6) to make the occurrence of the
action a possible:

allow (a) < action_state, h(po), ..., h (pm), not ab(occurs (a)) : P

occurs (a) + allow (a), not —occurs (a)

—occurs (a) < allow (a) , not occurs (a)



11. Axioms for interleaving domain states and action states. A stationary-2 rule
domain_state < ; action_state : IsStep
and an advancing rule
action_state < domain_state : Create ActionState
where for a generalized position p
CreateActionState (p) = {q: where Dl ,0in = iomain and time(q) =
time (p) + 1, Prev(Q) = Plyomain }
12. Stationary-1 rules for making an action state with no actions invalid:
a constraint, <— action_state, not valid_action_state,
and for every action a the rule, valid_action_state < action_state, occurs (a).
13. Rules for copying fluents from a domain state to an action state. For every
fluent [, stationary-2 rules
h(l) < ; domain_state, h(l) : IsStep
14. For every inertial literal [, a stationary-2 rule encoding inertia axioms
h(l) < not h(l); action_state, h (1) : IsStep
15. For every default literal [, a stationary-1 rule encoding the default
h (1) < domain_state, not h (1)
16. IT (SD) contains closed world assumptions (CWA, for short) for actions. For
every action a, a stationary-1 rule
—occurs (a) < action_state, not occurs (a)

The encoding H (o) of the initial state is a set of stationary-1 rules:
H(o9) ={h() +:1sTimel0] :1 € oo} U{ domain_state «+ : IsTime [0]},
where IsTime [0] (p) holds iff ¢ (p) = 0.

Theorem 1. (correctness of the translation) Hybrid ALE states (00,q), (01,r)
where t (q) = 0 and a set of actions B is a transition of SD iff there ezists a
stable model M of IT (SD)U H (og) with respect to q such that {q,r} C GP (M)

and {1 :h(l) e Wa(q) } =00

and {1 :h(l) e Wy (r) } =01

and there exists s € GP (M) with 1sStep (s,q) and IsStep (r,s) holding (i.e.
S is a successor generalized position of q and r is a successor generalized position
of s) and { a : occurs(a) € Wy (s)} = B.

The proof of the forward direction is by constructing M and then applying
induction on the reduct of IT (SD) U H (0¢) with respect to M and q to show
that M is a stable model of IT (SD)U H (o) with respect to q. The proof of the
reverse direction uses induction on the reducts to show that a stable model of
IT (SD) U H (0p) is a transition. The proof is omitted due to space constraints.

4 Example

In this section, we will discuss the example described in the beginning of the
paper. Note that in the example the output file has a timestamp dependent
name, which therefore cannot be hard coded. We use an advancing algorithm to



find the name and to store it under a parameter. The parameter value can then
be used in subsequent diagnosis stages to check the existence of the file.

We have two actions do(1) and fail(1). The action do(1) indicates the at-
tempted execution of a job. The action fail(1) indicates a malfunction. We use
a default parameter input_filenamel to contain the name of the input file, and
we use a default parameter output_filenamel to contain the name of the output
file. We use the default fluent ready(1) with the default value false, to indicate
that the input file exists and that the processing can start. All other fluents
are inertial. finished(1) indicates a completed processing, whether successful or
not. failed(1) indicates that the processing has failed, and succeeded(1) indicates
that the processing has succeeded. Because ready(1) is a default fluent with
the default value false, we know that the fluent holds only at a specific time
in the trajectory. Thus, we do not need to check the negative conditions when
checking the existence of the fluent. The predicate algorithm FEzists/file_name]
returns true if the value of the parameter file_name is not empty, which indicates
the existence of the corresponding file. We use an advancing algorithm GetOut-
putFileNamel to determine the output file name if it exists, and to associate
the file name (or empty value, if the file does not exist) with the parameter
output_filenamel.

We then use a state constraint to determine whether the processing can start:

(1) ready(1) if -finished(1) : Exists[input_filenamel]

ready(1) triggers the processing with an optional failure:

(2) trigger do(1) if ready(1)
(3) allow fail(1) if ready(1)

Indicate the completion of the processing and determine the output file name,
if the file exists.

(4) do(1) causes finished(1) with GetOutputFileNamel

(5) fail(1) causes failed(1)

Define success as an absence of failure.

(6) succeeded(1) if finished(1), -failed(1)

Make it invalid to fail if an output file exists, and to succeed if it does not.

(7) <failed(1), -Exists[output_filenamel]> if failed(1)

(8) <succeeded(1), Exists[output_filenamel]> if succeeded(1)

We now consider the two trajectories described by the above system descrip-
tion. We assume that the input file exists, the parameter input_filenamel at the
generalized position q contains the input file name, and -finished(1) is derived
at a generalized position q. We consider the case where the output file exists.

(1) derives (ready(1), q). Consequently (2) and the absence of active inhi-
bition conditions for the action do(1) cause an action do(1) to occur at state
corresponding to q. (3) is active and creates two transitions: one containing



action fail(1) and one not containing the action. In both transitions, (4) de-
rives (finished(1), r). Since the output file exists, (4) makes the parameter out-
put_filenamel at the generalized position r contain the name of the file. (5) is
not active in the first transition, but in the second transition it derives (failed(1),
r). (6) derives (succeeded(1), r) in the first transition, and (6) is not active in
the second transition. (7) is not active in the first transition, but it invalidates
the second transition, since -FEzists/output_filenamel] returns false. (8) is active
in the first transition, but it simply rederives (succeeded(1), r).

Then the following transition is derived (we omit negative atoms from the
description for brevity):

({ ready(1) }, a ), { do(1) }, ({finished(1), succeeded(1)}, )
where input_filenamel(q), output_filenamel(r) contain the name of the input
file and the name of the output file respectively.

Since only one transition is valid, and it contains (succeeded(1), r), the diag-
nosing engineer can conclude that process_datal has not failed.

If the output file did not exist, then the following transition would be derived:

({ ready(1) }, a ), { do(1), fail(1) }, ({finished(1), failed(1)}, v)
where input_filenamel(q) contains the name of the input file,
and output_filenamel (v) is empty.

Since only one transition is valid, and it contains (failed(1), ), the diagnosing
engineer can conclude that process_datal has failed.

In our example we consider a data processing job typical of those found in
the data pipelines we have worked with. Such data pipelines may contain many
jobs, with outputs of some being the inputs of others. Each such jobs requires its
own Hybrid ALFE description. To create a diagnostic description for the entire
pipeline, individual job descriptions need to be assembled into a single pipeline
description. In many cases doing so is simplified because the interactions of the
jobs is limited to the following scenario: an output of a job X is an input to a
job Y. We can thus ”chain” the descriptions together by using finished(X) as a
condition for ready(Y). If Y starts only upon a successful termination of X then
-failed(X) has to be added to the condition for ready(Y) as well.

5 Computation

While a detailed discussion of all the relevant computational aspects is outside
of the scope of this paper, we would like to note a few here. To compute with
the Hybrid ASP programs compiled from Hybrid ALE descriptions, supporting
only advancing rules of arity 1, and stationary rules of arity 1 and arity 2 is
required. Moreover, computations can be made more efficient by assuming that
any stationary-2 rule are applicable only in the generalized positions that form
a step. In [5] it was shown that with the above and some additional adaptations
all of the maximal trajectories can be computed using the Local Algorithm.
Informally, the algorithm does the following. For a given hybrid state (A, p) it
first computes a set S = { (B, q) } of candidate successor states via the use
of the advancing rules applicable at (A, p). Then for each (B,q) € S it uses



stationary-2 rules applicable at (B, q), (A,p) and stationary-1 rules applicable
at (B,q) to compute a set of the successor states at the generalized position
q. This is an iterative process that produces a tree, with hybrid states (A, p)
as nodes having their successor states as children. The trajectories can then be
recovered by following tree paths from leaf nodes to the root.

Another adaptation is a deferred evaluation of domain algorithms. Evalua-
tion of the domain algorithms can be computationally expensive, and for sta-
tionary rules, it is thus desirable to evaluate domain algorithms only once the
satisfaction of boolean atoms is verified. We illustrate the deferred domain al-
gorithm evaluation using the example of a stationary-1 rule: constraint (s) «+
domain_state, h(pg),..., h(pm) : P. For stationary-2 rules the implementation
is similar. We introduce two atoms pos(domain(P)) and neg(domain(P)) that
encode the possible values of evaluating P. We also add an atom exec(domain(P))
to indicate domain algorithms P that need to be evaluated. We then substitute
the above stationary-1 rule with the following rules.

constraint (s) «+ domain_state, h(po) ..., h (pm), pos(domain(P))
to indicate that constraint (s) can be derived only if all the predicate require-
ments are satisfied and P evaluates to true. We add a rule to indicate that
P needs to be evaluated if all the propositional constraints of the original
stationary-1 rule are satisfied:

exec(domain(P)) < domain_state, h(pg),..., h(pm)

We then add rules that guess the value of P:

pos(domain(P)) <+ exec(domain(P)), not neg(domain(P)), and

neg(domain(P)) + exec(domain(P)), not pos(domain(P)).

The guess is then verified by the Hybrid ASP solver in the following way. In
every state where exec(domain(P)) atom is present, P is evaluated. If the state
contains atom pos(domain(P)) and the value of P is false, or if the state contains
atom neg(domain(P)) and the value of P is positive then the state is rejected.

6 Conclusion

In this paper we introduced an action language Hybrid ALE in order to facili-
tate the development of diagnostic programs for the industrial data processing
pipelines. The nature of the application is such as to require the diagnostic pro-
gram to access outside sources. As precomputing all of the facts derivable from
the outside sources can be impractical, access to those sources has to be done
during inference. This poses a challenge to action languages that compile to
ASP, since ASP does not provide mechanisms for accessing outside sources. We
have thus chosen as a starting point action language Hybrid AL, which com-
piles into Hybrid ASP—one of the extensions of ASP that provides access to
outside sources. While Hybrid AL provides the syntactic structure for reasoning
about the consequences of actions, it lacks structure such as found in Cr4;p for
reasoning about the actions themselves. We thus extended Hybrid AL with the
structure for reasoning about actions, as found in Cr4;p. The resulting action
language Hybrid ALE can be viewed as a more expressive version of Crarp



that compiles to Hybrid ASP instead of ASP. A system implementing Hybrid
ALE was developed and is now being used at Google Inc. to help engineers with
diagnosing malfunctions of certain data processing pipelines.
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