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ABSTRACT
With the aim of building machine learning systems that incorpo-
rate standards of fairness and accountability, we explore explicit
subgroup sample complexity bounds. The work is motivated by the
observation that classifier predictions for real world datasets often
demonstrate drastically different metrics, such as accuracy, when
subdivided by specific sensitive variable subgroups. The reasons
for these discrepancies are varied and not limited to the influence
of mitigating variables, institutional bias, underlying population
distributions as well as sampling bias. Among the numerous defini-
tions of fairness that exist, we argue that at a minimum, principled
ML practices should ensure that classification predictions are able
to mirror the underlying sub-population distributions. However, as
the number of sensitive variables increase, populations meeting at
the intersectionality of these variables may simply not exist or may
not be large enough to provide accurate samples for classification.
In these increasingly likely scenarios, we make the case for human
intervention and applying situational and individual definitions of
fairness. In this paper we present lower bounds of subgroup sample
complexity for metric-fair learning based on the theory of Probably
Approximately Metric Fair Learning. We demonstrate that for a
classifier to approach a definition of fairness in terms of specific
sensitive variables, adequate subgroup population samples need to
exist and the model dimensionality has to be aligned with subgroup
population distributions. In cases where this is not feasible, we pro-
pose an approach using individual fairness definitions for achieving
alignment. We look at two commonly explored UCI datasets under
this lens and suggest human interventions for data collection for
specific subgroups to achieve approximate individual fairness for
linear hypotheses.
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1 INTRODUCTION
In recent discussions of ethical ML algorithms, evaluating fair-
ness has been frequently predicated on defining constraints based
on specific sensitive variables, such as race or gender. These vari-
ables should not demonstrate conditionally discriminative behavior
while learning classification targets. If care is not taken in the con-
struction of a ML model, works such as [1] and [2] have shown
that inequalities in underlying data distributions can be amplified
in the predicted output, leading to runaway feedback loops.

Recent works [3] have argued that examining the intersectional-
ity of multiple sensitive variables is crucial for establishing coherent
standards of fairness. However, real world data sub-populations
often display varying underlying sampling distributions, bias and
noise. We argue that principles towards fair ML should encourage
subgroups to perform individually optimally in a classification task
and at a minimum be able to reflect their true underlying population
distributions.

As the number of sensitive variables increase, the intersectional
subgroup populations tend to decrease in size. In fact, it is not
unlikely to have a dataset with a subgroup population of one or zero.
In these scenarios, it is evident that any classifier which achieves
non-trivial accuracy can never be fair. In order to overcome this
tradeoff, we look to the rich literature of “individual fairness” which
defines fairness with respect to a similarity metric between two
individuals and enforces that individuals who are similar are treated
similarly, within an error bound [3–5]. We find this definition to be
useful in measuring the complexity of a class of machine learning
models that attempt to achieve approximate individual fairness on
a dataset.

Using such a model complexity measure, we can compute the
minimum number of samples required in each sub-group to learn
approximately “individually fair” models with high probability [6].
Sample complexity provides us a lower bound on the number of
samples required from sub-group populations before we can make
any claims of learning a fair model. This methodology provides
us a principled way of thinking about the guarantees provided
by any algorithm which claims to learn a fair model, similar to
how confidence intervals are used for regression coefficients. If the
guarantees aren’t feasible, principled human interventions need to
be undertaken to better estimate the confidence of the underlying
fair machine learning system.

We have been motivated by the insight that many fairness prob-
lems in existing classification tasks for specific subpopulations
can been remedied by increased data collection, subject to ethi-
cal considerations [7, 8]. As such, we suggest that in the spirit of
achieving approximately metric-fair learning, sub-population sam-
ple size lower bounds need to be aligned with the actual subgroup
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sample sizes in the dataset. In this paper, we highlight the discrep-
ancies in model and sample complexities for sub-populations and
the disalignment of the actual sizes with these complexities in two
popular UCI datasets. Given that sampling bias leads to unintended
consequences in ML classifiers, we show the need to gather new
data of specific subgroups in prevalent fairness datasets to avoid
perpetrating such conditions induced from biased or insufficient
sampling.

2 RELATEDWORK
Defining required sample complexity for ML algorithms to achieve
low generalization error has been studied extensively in ML theory
literature [9, 10]. Probably Approximately Correct (PAC) Learning
defines upper bounds on generalization error related to a sample’s
empirical error and complexity of the hypotheses and datasets
[11]. More recently, [12, 13] focused on deriving tighter bounds
on deep neural networks in the regime of overparameterization
based on compression. Related to this paper’s focus on overcoming
dimensionality constraints for multiple subgroups, [14] explores
the problem of learning a single objective using multiple actors
simultaneously, which provides an exponential improvement in
sample complexity as opposed to no collaboration. Recent works by
[15] also highlight that simple hypotheses cause inequity by design.
Our work extends on this, providing a methodology for quantifying
sampling bounds for smaller informational datasets and highlights
the pitfalls of basing a decision making system on a simple linear
hypotheses in some circumstances.

3 LIMITS OF FAIR SENSITIVE VARIABLE
SUBGROUP SAMPLING

The use of explicit sensitive variables in real-world scenarios is
sometimes a hard constraint. One example is legislation enforcing
fairness around disparate impact [16, 17].

In simplified examples, exploring the intersectionality of sen-
sitive variables may be appropriate. For example, in this paper
we explore two gender and two race subgroups in the evaluation
of the UCI Adult dataset. In our simplified example of subgroups
this translates into four separate populations. It is conceivable that
in a real-world application, the intersection of gender and race
subgroups could extend into many different populations. As the
intersectionality of subgroups grow, it is likely that a subgroup’s
sample population will be insufficient. In the case of the UCI Ger-
man dataset used in this paper, marriage status, with five possible
values, is treated as a sensitive variable along with gender. However,
in the dataset there were no samples containing both the attributes
of Female and Single.

It is obvious that there is no model of any complexity that can
achieve full fairness with respect to the sensitive variables in this
case. Increased data collection is obviously a first step in these
situation. However, what if the true subgroup population simply
does not exist? In these scenarios, the case for alternate definitions
of individual fairness should be explored.

Similarly, in order to satisfy fairness constraints on these in-
creasing intersectionalities of populations, it is necessary that we
revisit the framework we use to measure the efficacy of the model-
ing choices. Despite the impossibility results of achieving fairness

in the extreme case of subgroup sized one, there is still a need to
highlight cases where simple (linear) models are inadequately ap-
plied in datasets with complex underlying subgroup distributions
[18, 19]. The ability to objectively quantify the required model and
sample complexity to satisfy these fairness constraints will guide
the choices made by practitioners and ML researchers.

4 APPROXIMATE FAIRNESS SAMPLE
COMPLEXITY BOUNDS

In order to overcome the impossibility results surrounding individ-
ual fairness, the definition of Probably Approximately Metric-Fair
learning was first introduced in [6], which formalized the guaran-
tees of fairness expected.

Definition 4.1. Given a data distribution D, hypothesis h trained
on a sample S of sizem drawn in an i.i.d manner, the hypothesis
h is said to be (α ,γ ) approximately metric-fair with respect to a
similarity metric d between two inputs x and x ′ which discards any
variations in sensitive attributes, if

Prx,x ′∼D [|h(x) − h(x ′)| > d(x ,x ′) + γ ] ≤ α

This definition is closely linked with Rademacher model com-
plexity measure [20], which measures the capacity of a class of
models (hypotheses) to fit the given dataset with any random error
vector for the dataset. We present a relevant result from [6] below
which gives us the fairness generalization guarantee for a class of
models for a given dataset.

Theorem 4.1. If the Rademacher complexity for a hypothesis class
H , Rm (H ) = r√

m
then, for all δ , ϵα , ϵγ ∈ (0, 1), there exists a sample

complexity

m = O(
r2· ln( 1δ )
ϵ2α · ϵ2γ

)

such that with probability (1 - δ ) over the sample S , h ∈ H , if h is
(α ,γ ) approximately metric-fair on sample S, thenh is (α+ϵα ,γ +ϵγ )
approximately metric-fair on the underlying distribution D.

This means that if we found a hypothesis h which is probably
approximately fair over m samples, then that hypothesis would
also be probably approximately fair over the true (unsampled) data
distribution, albeit with different parameters.

Lemma 4.2. Rademacher complexity bounds for linear hypotheses
H = {x → w · x}, is given by Rm (H ) ≤ R ·ϕ√

m
where R = max | |x | |2

and ϕ =max | |w | |2 [9]
Combining Lemma 4.2 with Theorem 4.1 , we get that the sample

complexity for approximately metric-fairness guarantees for linear
hypotheses

m = O(
R2·ϕ2· ln( 1δ )

ϵ2α · ϵ2γ
) (1)

This complexity applies to all h ∈ H . However, if an exponential-
time probably approximate metric-fair learning algorithm, that
evaluates empirical error for all hypotheses and selects the h that
minimizes it, is applied, it results in a smaller sample complexity

m = O(
R2 · ϕ2 · ln( 1δ )
min(ϵα , ϵγ )2

) (2)
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This is equivalent to the information theoretical sample complexity
in [6]. Since, the set of linear hypotheses is the one applicable to the
widely used linear and logistic regression models applied to the UCI
datasets and other crucial interpretable ML problems, this forms
the basis of our critical analysis. More complex models like the deep
neural networks, are currently out of scope for this analysis, though
non-linear models may be more appropriate for the designated task.

5 SUBGROUP SAMPLE COMPLEXITY
In constructing subgroup sample bounds, the above sample com-
plexity measure is applied on various subgroups P(G) of a dataset.
The decision to measure sample complexities per subgroup instead
of the overall dataset is motivated by the necessity to highlight
the discrepancies in the underlying distributions. Achieving ap-
proximate fair learning on the entire dataset is only possible when
the sample complexities of the sub-groups are met. If not possible,
human interventions in the data collection process by either cor-
recting sampling bias or even collecting new data for subgroups
not well represented is advised.

We define membership of an instance to an intersectionality of
groups G =< д1,д2...дn >, for different values of n (< |X|) sensitive
variables. Calculating the sample complexity for each of the sub-
groups provides a quantitative measure of the differences between
subgroups for a given hypotheses class H . Significant discrepancies
indicate differences in the underlying distributions, subgroup sam-
pling methodologies or true labeling functions for these subgroups.
In some instances, the sample complexity bound on the overall
population may suggest if further sampling should be performed
before attempting to learn a single model applied on all subgroups
indiscriminately. These complexity metrics provide a clear directive
of the order of new samples that needs to be collected before we
can make any claims of probably approximately metric-fairness
on the hypothesis class. The guarantees associated with it need
to match the desired operating surface of δ , ϵα , ϵγ before we can
utilize H for safe decision making. Also, since these measures are
distribution and hypothesis specific, it provides us a much tighter
bound than purely combinatorial measures which work for any
distribution and learning algorithms.

5.1 Efficiency bounds
While approximate fair learning ensures that similar data points are
classified approximately similarly, there may also be requirements
on the minimum accuracy achieved by each of the sub-groups.
While this might be at odds with the fairness requirement, it still
forms the basis of recent bias mitigating ML literature that rely
on constrained optimization [21]. We can obtain a lower bound
on the sample complexity to learn a (ϵ,δ ) PAC objective function
in a collaborative manner [14] among k subgroups. Specifically,
there exists a hypothesis h chosen from a class H of VC dimension
d, such that it has generalization error less than ϵ on all the k
subgroups’ distributions {D1,D2, ..Dk } with high probability 1− δ .
Current literature also provides algorithms for both a centralized
and personalized setting, where either a single function is learned
for all k subgroups, or each subgroup can have its own function [14].
In the centralized setting, the sample complexity to learn a PAC
algorithm which achieves error of less than ϵ in all k subgroups is

lower bounded by

m = O( ln
2(k)
ϵ

((d + k)ln(1
ϵ
) + kln( 1

δ
)) (3)

For the personalized setting, the sample complexity is O(ln(k))
factor smaller than the centralized sample complexity. For uniform
convergence lower bounds where ϵ,δ ∈ (0, 0.1), there exists a PAC
learnable hypothesis class of VC dimension d form ≥ dk(1−δ )/(4ϵ).
This provides a minimum bound for achieving a threshold of error
rates across all subgroups, which is compatible with the minimum
efficiency fairness intent.

6 EVALUATION
We evaluated the empirical Radamacher and associated sample
complexities for two datasets, the UCI Adult Census dataset and
the UCI German Credit dataset [22] over a linear hypothesis class.

In the UCI Adult Census dataset, income bracket prediction is
based on a set of individual categorical and numerical attributes like
age, education, occupation, etc. In this paper, we specify race and
gender, as sensitive variables that should not inform our model in ac-
curately predicting the income bracket. The computed Rademacher
complexities, broken down for the intersection of all subgroup com-
binations for this dataset shown in Table 2, demonstrate that some
subgroups are harder to learn than others for a linear hypothesis.

In order to calculate the discrepancy in sub-group sample com-
plexity for the UCI Adult dataset, approximate metric fairness lower
bounds for the underlying distributions were ordered by sub-groups
for a given δ , ϵα , ϵγ . A condensed table is shown in Table 5. We used
one-hot encoding for categorical features and hence the number
of dimensions for a linear separating hyperplane d, is 108. With k
= 4 subgroups, the lower bound for PAC learning is 432(1−δ )

ϵ . To
calculate the associated complexity, we trained logistic regression
models for each subgroup with 10 fold cross validation to choose
regularization weights in [23]. We calculated the maximum norms
of the normalized inputs (R) and the coefficients (ϕ). Note that since
the lower bound sample complexity for PAC-fair learning is de-
noted in the big O notation (Equation 1), we can only estimate the
ordering or ranking of the sample complexities for the subgroups
in Table 5 (higher numbered rank has higher complexity values).
The ordering of the actual subgroup sample sizes (4 > 2 > 3 > 1)
reveals that new samples are needed to match the desired sample
complexity ordering (3 > 2 > 4 > 1). Specifically, more samples for
subgroup 3 need to be gathered than for from subgroups 2 or 4 to
ensure the ordering of actual sample sizes align with that of the
sample complexities.

In the UCI German Credit dataset, personal financial attributes
are present with a target objective of predicting good/bad credit.
We treat ’personal status’ and ’sex’ as sensitive attributes. Since
there was no data available for all possible sub-combinations of
the 5 personal status options, we treat ’personal status and sex’ as
a compound feature and examine the 4 subgroups existing with
membership in the dataset. The lower bound on the PAC learning
sample complexity where d=61, k=4 is 244(1−δ )

ϵ . Table 3 and Table
6 show disparity in the order of the actual sample sizes (3 > 2 > 4 >
1) as compared to desired sample complexity (2 > 1 > 3 > 4). This
implies that in the UCI German Credit dataset, more new samples
from group 2 than from group 3 should be drawn as prescribed by
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Table 1: Discrepancy in Rademacher complexity bounds of
linear hypotheses for sensitive subgroups

.5
Table 2: UCI Adult dataset

Subgroup (per gender/race) Rm (H )
1 (Female/Black) 0.113
2 (Female/White) 1.002
3 (Male/Black) 2.998
4 (Male/White) 0.649
Overall 0.561

.5
Table 3: UCI German Credit dataset

Subgroup (per status/sex) Rm (H )
1 (Male/Separated) 1.776
2 (Female/Separated-Married) 1.051
3 (Male/Single) 0.349
4 (Male/Married) 0.001
Overall 0.301

Table 4: Comparison of sample complexity ranking for Prob-
ably Approximately Metric Fairness with actual subgroup
sizes of subgroups

1
Table 5: UCI Adult dataset

Subgroup Sample Complexity Rank Actual Sample Size (Rank)
1 1 2,129 (1)
2 3 8,642 (3)
3 4 2,616 (2)
4 2 19,174 (4)

1
Table 6: UCI German Credit dataset

Subgroup Sample Complexity Rank Actual Sample Size (Rank)
1 3 50 (1)
2 4 310 (3)
3 2 548 (4)
4 1 92 (2)

the sample complexity. Similarly, more samples from subgroup 1
need to be collected than from subgroup 4 in order to remove any
inversion in ranking of complexities and actual subgroup sizes to
ensure guarantees of probably approximate metric-fair learning
using linear hypotheses.

7 CONCLUSION
We have suggested an empirical methodology to quantify the dis-
crepancy between distributions of sensitive subgroups based on the
theory of sample complexity for probably approximately metric-fair
learning. The evaluation on two extensively used datasets in the
fairness ML literature, highlight the shortcomings of claims that
a linear hypotheses can be probably approximately fair for these
two populations. We demonstrate the need for further sampling
from particular subgroups before such a conclusion can be made.
Future work to extend this analysis to more complex ML models

may provide a principled standard for ensuring subpopulation fair-
ness. We argue in the development of an ethical AI framework for
policy and decision makers, sufficient subgroup sampling and the
corresponding model complexity should be of prime focus. When
adequate subpopulation samples are not feasible, human interven-
tion is advisable.
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