
Geolocation in the Browser
From Google Gears to Geolocation Sensors

Thomas Steiner
Google LLC

20354 Hamburg, Germany
tomac@google.com

Anssi Kostiainen
Intel Corporation

02160 Espoo, Finland
anssi.kostiainen@intel.com

Marijn Kruisselbrink
Google LLC

San Francisco, CA 94105, USA
mek@google.com

ABSTRACT

Geolocation is arguably one of the most powerful capabilities of
smartphones and a lot of attention has been paid to native applica-
tions that make use of it. The discontinued Google Gears plugin was
one of the �rst approaches to access exact location data on the Web
as well, apart from server-side coarse location lookups based on In-
ternet Protocol (ip) addresses; and the plugin led directly to the now
widely implemented Geolocation api. The World Wide Web Con-
sortium (w3c) Geolocation api speci�cation de�nes a standard for
accessing location services in the browser via JavaScript. For a long
time, developers have also demanded more advanced features like
background geolocation tracking and geofencing. The w3c Geolo-
cation and the Devices and Sensors Working Groups, as well as the
Web Incubator Community Group (wicg), have addressed these de-
mands with the no longer maintained Geofencing api speci�cation
for the former, and—with now (early 2019) resumed e�orts—the
in-�ight Geolocation Sensors speci�cation for the latter two groups.
This paper �rst provides an in-depth overview of the historical
development of geolocation in the browser and motivates privacy
decisions that were made at the time, and then gives an outlook
on current and future e�orts, challenges, and use cases from both
a technology as well as from a privacy angle.

CCS CONCEPTS

• Information systems → Web applications; • Security and

privacy→ Browser security.

KEYWORDS

Geolocation; Geofencing; Geotracking; Permissions; Privacy

ACM Reference Format:

Thomas Steiner, Anssi Kostiainen, and Marijn Kruisselbrink. 2019. Geoloca-
tion in the Browser: From Google Gears to Geolocation Sensors. In Com-

panion Proceedings of the 2019 World Wide Web Conference (WWW ’19

Companion), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3308560.3316538

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3316538

1 HISTORY OF BROWSER GEOLOCATION

Geolocation has been available to developers implicitly through
the mapping of Internet Protocol (ip) addresses or address blocks
to known locations. There are numerous paid subscription and
free geolocation databases with varying claims of accuracy that
range from country level to state or city level, sometimes including
zip/post code level. A popular free way to obtain ip-based location
data was through Google’s ajax api Loader library [2], which pro-
vided an approximate, region-level estimate of a user’s location
through its google.loader.ClientLocation property. This api
did not require users to install any client-side software. Implicit
geolocation access is not subject of the paper, however, we list it
for the sake of completeness and because it still plays an important
role today, for example, for ip-based regional content blocking.

1.1 Google Gears Geolocation api

More accurate location data is available through Wi-Fi access point
or cell tower data, as well as through Global Positioning Service
(gps) data. This data is accessible to native applications, however,
initially, not via Web apis. The Google Gears browser plugin [9]
for the �rst time exposed exact device-based geolocation data
to the browser. Its Geolocation api had two JavaScript methods:
getCurrentPosition()made a single, one-o� attempt to get a po-
sition �x, while watchPosition()watched the user’s position over
time, and provided an update whenever the position changed. Both
methods allowed the developer to con�gure which sources of lo-
cation information would be used. As a simple way to get an ap-
proximate position �x with low cost in terms of both network and
battery resources, Gears also kept track of the best position �x ob-
tained from these calls and made it available as the lastPosition
property. To a contemporary JavaScript developer who may have
never used the plugin, the code in Listing 1 still looks very familiar,
even more than ten years later.

var geo = google.gears.factory
.create('beta.geolocation ');

function updatePosition(position) {
alert('Current lat/lon is: ' + position.latitude + ','

+ position.longitude);
}

function handleError(positionError) {
alert('Attempt to get location failed: ' +

positionError.message);
}

geo.getCurrentPosition(updatePosition , handleError);

Listing 1: Google Gears api (2008)

From the start, user privacy was a major concern, and the plugin
authors wrote in the Wiki [10]:

“It must be clear to users when an application is using
the Geolocation api. We could implement one or both
of the following ui elements:
(1) A separate dialog from the Gears security dialog
to enable the Geolocation api. If the general-purpose
dialog gave access to position data, it would be easy
for users to forget they allowed access to Gears, or
to fail to realize enabling Gears also exposes their
position data.
(2) Some persistent ui that indicates the Geolocation
api is being used. For example, there could be a bar
across the bottom of the browser with an icon of
a globe or map. Perhaps this ui should be ‘active’
somehow, indicating that something is happening, so
that the user cannot forget it is being used.”

In the end, they decided on approach (1), which is still how loca-
tion access is granted today, despite di�erent underlying mechanics.

The similarity of the code in Listing 1 with code one would write
today is no surprise. Gears implemented the at the time current
editor’s draft of the w3c Geolocation speci�cation, which some of
the authors have helped to de�ne in collaboration with Microsoft,
Mozilla, and others. The goal for Gears was to advance browser
capabilities and eventually make itself a relict of time, which is
what has happened.

1.2 Mozilla Geode

Mozilla Geode [1]was an experimental add-on that appeared slightly
after Gears to explore geolocation in Firefox 3 ahead of the im-
plementation of the �nal api in a future product release. Geode
provided an early realization of the w3c Geolocation speci�ca-
tion [14] so that developers could begin experimenting with en-
abling location-aware experiences. It included a single experimental
proprietary geolocation service provider called Skyhook to map
Wi-Fi signals to locations, so that any computer with Wi-Fi could
get accurate positioning data. An interesting historical fact is that
the ultimate plan for Firefox was that service providers and geoloca-
tion methods would be pluggable [1] to provide users with as many
choices and privacy options as possible, which has not happened.

1.3 w3c Geolocation api

The w3c Geolocation api speci�cation [14] de�nes a high-level
interface to location information associated only with the device
hosting the implementation, such as latitude and longitude. The api
itself is agnostic of the underlying location information sources, and
no guarantee is given that it returns the device’s actual location. The
design enables both “one-shot” position requests as well as repeated
position updates, and also includes the ability to explicitly query
the cached positions. As outlined above, the work is based on prior
art in the industry in the form of Gears and Geode, including the
work of Turner, Popescu, Sarver, Raskin, and others in the context
of locationaware.org and geolocation in the Firefox browser [15].

Similar to its predecessors Google Gears and Mozilla Geode, the
speci�cation de�nes three methods: the getCurrentPosition()
method asynchronously attempts to obtain the current location

of the device. If the attempt is successful, the successCallback
must be invoked with a new Position object, re�ecting the current
location of the device. If the attempt fails, the errorCallbackmust
be invoked with a new PositionError object, re�ecting the reason
for the failure. The watchPosition() method returns an identi�er
that uniquely identi�es a watch operation and then asynchronously
starts that watch operation. This operation must �rst attempt to
obtain the current location of the device. Similar to the “one-shot”
request, if the attempt is successful, the successCallback must
be invoked with a new Position object, re�ecting the current
location of the device, else, it must fail as described before. The
watch operation then must continue to monitor the position of
the device and invoke the appropriate callback every time this
position changes. The watch operation must continue until the
clearWatch() method is called with the corresponding identi�er,
which immediately stops the watch operation identi�ed by the
identi�er. Listing 2 shows all methods in operation (see Listing 1 for
comparison). This api is almost universally supported in browsers,
Figure 1 shows the support situation at the time of writing.

function showMap(pos) {
// Show a map centered at
// (pos.coords.latitude , pos.coords.longitude)

}

function scrollMap(pos) {
// Scrolls the map so that it is centered at
// (pos.coords.latitude , pos.coords.longitude)

}

function handleError(error) {
// Handles the error gracefully.

}

// One -shot position request
navigator.geolocation.getCurrentPosition(showMap ,

handleError);

// Request repeated updates
var watchId = navigator.geolocation.watchPosition(

scrollMap , handleError);

function clearPositionWatch () {
// Cancel the updates when the user clicks a button
navigator.geolocation.clearWatch(watchId);

}

Listing 2: Geolocation api

1.4 w3c Geofencing api

The w3c Geofencing api [12] speci�cation de�ned an api that
should let Web applications set up geographic boundaries around
speci�c locations and then receive noti�cations when the hosting
device entered or left those areas, also referred to as geofences. The
Geolocation Working Group was chartered to de�ne a secure and
privacy-sensitive interface for using client-side location informa-
tion in location-aware Web applications and published an update
to the Geolocation api [14] speci�cation as a Recommendation
excluding the geofencing feature, which was being worked on in
the context of the separate Geofencing api speci�cation, however,
the work on it did not complete. While it would be possible to im-
plement something similar to geofencing using the Geolocation api

Usage % of

Global 93.31%

all users

IE Edge Firefox Chrome Safari Opera iOS Safari Opera Mini
Android

Browser

Blackberry

Browser

Opera

Mobile

Chrome for

Android

Firefox for

Android
IE Mobile

UC Browser

for Android

Samsung

Internet

QQ

Browser

Baidu

Browser

6 - 8

9 - 10

11

12 - 17

18

2 - 3

3.5 - 54

55 - 63
1

64
1

65 - 66
1

4

5 - 49

50 - 70
1

71
1

72 - 74
1

3.1 - 4

5 - 9.1

10
1

10.1 - 11.1

12

TP

10.1

11.5 - 12.1

15

16 - 38

39 - 56
1

57
1

3.2 - 9.3

10 - 11.4
1

12.1
1

all

2.1 - 4.4.4

67
1

7

10

12 - 12.1

46 70
1

63
1

10

11 11.8

4

5 - 6.2
1

7.2
1

1.2
1

7.12
1

Geolocation - REC

Method of informing a website of the user's geographical location

Figure 1: Browser support data for the Geolocation api (green means supported, red means not supported), data via https:

//caniuse.com/#feat=geolocation

(as long as the application is in the foreground), there were a few
di�erences that made the proposed api look like a better choice,
quoting directly from the speci�cation [12]:

“(1) Because of the limited api surface of the Geofenc-
ing api, user agents can implement the api in a more
(power) e�cient way than could be achieved by regu-
larly checking the current geographic position with
the Geolocation api.
(2) The Geofencing api is built around Service Work-
ers. This makes it possible for a webapp to receive
noti�cations from the Geofencing api even after the
user has closed the webapp.”

It was not generally agreed on that Service Workers were the
right technology choice,1 as they may be killed by the user agent at
nearly any time, which means one cannot expect watchPosition()
to keep watching for extended periods, and likewise the method
getCurrentPosition() could only work if the position was al-
ready available, but if it has to wait for a gps update, the Service
Worker is likely to be gone by the time an answer comes back.

2 CURRENT GEOLOCATION EFFORTS

After having covered the signi�cant milestones in the history of
geolocation in the browser, the second part of the paper introduces
some of the current e�orts, challenges, and use cases in the �eld.

2.1 Background Geolocation with Wake Locks

When a device that has either of the two Geolocation api methods
watchPosition() or getCurrentPosition() running goes into
stand-by mode (colloquially “goes to sleep”), or when the browser
window is backgrounded, location reporting stops soon thereafter.
This renders certain use cases like �tness run trackers or maps

1https://www.w3.org/2014/10/27-28-geolocation-minutes.html#day21

navigation that both require background geolocation entirely im-
possible. Wake Locks, initially introduced with the since discon-
tinued Firefox os [8], provided a way2 to prevent the system from
sleeping and to keep certain services running when the developer
wanted to keep an invisible application continuing to use gps. This
could be done by requesting a MozWakeLock of the type "gps" and

2https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/API/Wake_Lock_API/
Keeping_the_geolocation_on_when_the_application_is_invisible

// On main page
navigator.serviceWorker

.register('serviceworker.js')

.then((swRegistration) => {
let region = new CircularGeofenceRegion ({

name: 'myfence ',
latitude: 37.421999 ,
longitude: -122.084015 ,
radius: 1000

});
let options = {

includePosition: true
};
swRegistration.geofencing.add(region , options)

.then(
// If more than just a name needs to be stored
// with a geofence , now would be the time to
// store this in some storage
(geofence) => console.log(geofence.id),
(error) => console.log(error)

);
});

// In serviceworker.js
self.ongeofenceenter = (event) => {

console.log(event.geofence.id);
console.log(event.geofence.region.name);

// If this is not a geofence of interest anymore ,
// remove it now
if (event.geofence.region.name !== "myfence") {

event.waitUntil(event.geofence.remove ());
}

};

Listing 3: Geofencing api (conceived example)

try {
wakeLockObj = await navigator.getWakeLock('system ');
wakeLockObj.addEventListener('activechange ', () => {

wakelock.textContent =
`The ${wakeLockObj.type} wake lock is ${
wakeLockObj.active ? 'active ' : 'not active '}.`;

});
} catch (err) {

console.error('Could not obtain wake lock', err);
}

const toggleWakeLock = () => {
if (wakeLockRequest) {

wakeLockRequest.cancel ();
wakeLockRequest = null;
return;

}
wakeLockRequest = wakeLockObj.createRequest ();

};

const startTracking = () => {
id = navigator.geolocation.watchPosition(success ,

error , opt);
};

trackButton.addEventListener('click ', () => {
toggleWakeLock ();
if (id) stopTracking ();
else startTracking ();

});

Listing 4: Using the Wake Lock api for background

geolocation tracking

using it together with watchPosition(). App developers needed
to be responsible and think carefully about whether they needed
to keep the geolocation service on or not. The risk of claiming
the lock was (and still is) that users may forget to close the app
when they were done using it, which inevitably results in signi�-
cantly increased battery use, apart from the privacy implications of
potentially inadvertently continuing to share one’s location.

Work on the concept of Wake Locks has been resumed in the
form of the w3c Wake Lock speci�cation [3]. With the at the time
of writing implemented version of the speci�cation, Wake Locks
of the type "system" (currently there is no type "gps") can be
used together with watchPosition(). Listing 4 shows the relevant
code excerpts of a Web application called “Where Am I”, depicted
in Figure 2, that implements this, simulating a simple run tracker
that works with the device screen o� while the user runs. The
accompanying app “There Am I”3 can be used to visualize users.

2.2 Geolocation Sensor

The w3c Geolocation Sensor speci�cation [11] extends the Sensor
interface de�ned in the w3c Generic Sensor api [20] to in turn
de�ne the new GeolocationSensor interface for obtaining the ge-
olocation of the hosting device. The Generic Sensor api is a set
of interfaces that expose sensor devices to the Web platform. It
consists of the base Sensor interface and a set of concrete sensor
classes (for example GeolocationSensor, AmbientLightSensor,
Accelerometer, etc.) built on top. Having a base interface sim-
pli�es the implementation and speci�cation process for the con-
crete sensor classes. The core functionality is speci�ed by the

3https://whereami.glitch.me/ and https://thereami.glitch.me/

Figure 2: Web app “Where Am I” with Wake Lock for back-

ground location tracking (https://whereami.glitch.me/)

base interface, and GeolocationSensor merely extends it with
a tiny set of additional attributes and methods. The feature set of
GeolocationSensor is similar to that of the Geolocation api [15],
but it is surfaced through a modern api that is consistent across
contemporary Sensor apis, improves security and privacy, and is
extensible. The api aims to be poly�llable4 on top of the exist-
ing Geolocation api. As all recent apis, instead of callbacks, Ge-
olocation Sensor uses promises for “one-shot” or “one-and-done”
operations [6].

Unlikewith the previous Geolocation api, the Geolocation Sensor
api does not have dedicated callbacks for “one-shot” versus continu-
ous location requests,5 but instead �res an event according to a fre-
quency (in Hertz) that is used to calculate the requested sampling
frequency for the associated platform sensor and to de�ne the up-
per bound of the reporting frequency for the GeolocationSensor
object. Listing 5 shows the api in practice, however, running it
requires a poly�ll, as currently there is no native implementation.

3 GEOLOCATION PRIVACY

Security and privacy issues for location-based services and geolocation-
capable applications often revolve around designing a user interface
such that users are informed about what an application is doing and
have the ability to accept or decline [7]. Use cases like background
geolocation or geofencing demand for a thorough re-evaluation
of privacy-related questions. Similarly, some of the requirements
that today we take for granted just did not exist when the Geoloca-
tion api was designed, like the strict requirement to be on a secure
connection for using modern apis.6

4https://github.com/w3c/sensors/blob/master/poly�lls/geolocation.js
5GeolocationSensor does have a dedicate static operation read() for “one-shot”
6Internet Explorer up to version 11 even warned its users “You are about to view pages
over a secure connection” when they navigated to a site that used the https protocol.

// Get a new geolocation reading every second
const geo = new GeolocationSensor ({ frequency: 1});
geo.start();

geo.onreading = () => console.log(
`lat: ${geo.latitude}, long: ${geo.longitude}`);

geo.onerror = event => console.error(
event.error.name , event.error.message);

// Get a one -shot geolocation reading
GeolocationSensor.read()

.then(geo => console.log(
`lat: ${geo.latitude}, long: ${geo.longitude}`))

.catch(error => console.error(error.name));

Listing 5: Geolocation Sensor api

3.1 Insecure Origin Usage of Geolocation

As the Web platform is extended to enable more useful and power-
ful applications, it becomes increasingly important to ensure that
the features which enable those applications are enabled only in
contexts which meet a minimum security level. The Secure Con-
texts speci�cation [21] describes threat models for feature abuse
on the Web as follows:

“Granting permissions to unauthenticated origins is,
in the presence of a network attacker, equivalent to
granting the permissions to any origin. The state of
the Internet is such that we must indeed assume that
a network attacker is present. Generally, network at-
tackers fall into two classes: passive and active.
1. Passive Network Attacker: A ‘Passive Network
Attacker’ is a party who is able to observe tra�c �ows
but who lacks the ability or chooses not to modify traf-
�c at the layers which this speci�cation is concerned
with. [. . .]
2. Active Network Attacker: An ‘Active Network
Attacker’ has all the capabilities of a ‘Passive Network
Attacker’ and is additionally able to modify, block or
replay any data transiting the network. These capabil-
ities are available to potential adversaries at many lev-
els of capability, from compromised devices o�ering
or simply participating in public wireless networks,
to Internet Service Providers indirectly introducing
security and privacy vulnerabilities [. . .], to parties
with direct intent to compromise security or privacy
who are able to target individual users, organizations
or even entire populations.”

In a rare case of breaking backwards compatibility and after
a careful risk analysis, the concepts in [21] were applied to fea-
tures that had already shipped in browsers and which did not meet
the—new, not present at the time—requirements. Speci�cally, geolo-
cation support was removed on insecure origins, motivated by the
large privacy risk for end users of even passive attackers sni�ng
geolocation obtained from this api.

3.2 Feature Policy Integration

Feature Policy [4] de�nes a mechanism that allows developers to se-
lectively enable and disable use of various browser features and apis.

The Feature Policy integration in the Generic Sensor api is used to
control access to sensors data for a frame. By default the Sensor
objects (and therefore the GeolocationSensor) can be created only
within a main frame or same-origin subframes, thus preventing
cross-origin iframes from unsanctioned reading of sensor data. This
default behavior can be modi�ed by explicitly enabling or disabling
of the corresponding policy-controlled features. Listing 6 illustrates
granting geolocation data access to a cross-origin iframe, meaning
that now GeolocationSensor objects can be created there.

<iframe src="https ://3rd-party.com" allow="geolocation">

Listing 6: Allowing an iframe to use GeolocationSensor

3.3 Focused Area and Visibility State

Sensor readings are only available for active documents whose
origin is same origin-domain with the currently focused area docu-
ment and whose visibility state is "visible". This is done in order
to mitigate the risk of a skimming attack against the browsing con-
text containing an element which has gained focus, for example
when the user carries out an in-game purchase using a third party
payment service from within an iframe. Similar to Subsection 2.1,
these to be re-evaluated constraints currently limit use cases like
�tness run trackers or maps navigation that require sensor readings
in potentially non-active, non-visible documents, for example while
the user chooses a music track to accompany their run or drive.

3.4 Permissions and Privacy Policy

Access to sensor readings are controlled by the w3c Permissions
api [13]. User agents use a number of criteria to grant access to the
readings. Note that while access to some sensors can be granted
without prompting the user, GeolocationSensor always requires
a prompt. Listing 7 shows the permissions �ow that is required be-
fore any readings. In contrast, with the legacy Geolocation api, the
user agent prompts the user automatically upon the �rst time they
try to use either of watchPosition() or getCurrentPosition().

navigator.permissions.query({name: "geolocation"})
.then (({ state}) => {

switch (state) {
case "granted":

showLocalNewsWithGeolocation ();
break;

case "prompt":
showButtonToEnableLocalNews ();
break;

default:
break; // Don't do anything if permission denied

}
});

Listing 7: Asking for permission to use GeolocationSensor

The current permission prompt has the options to allow or to
block the location access request (or, for what it is worth, to ig-
nore it by closing the dialog). Interestingly, Raskin envisioned [15]
a far more detailed permissions dialog, depicted in Figure 3, which
had granular levels of permitted access, for example, to limit the

Figure 3: Aza Raskin’s security prompt mock-up [15]

granularity to city or state level. However, this was never imple-
mented, as despite being fully investigated, it was found to be nearly
impossible to implement “fuzzing” of location data [19].

With use cases like run trackers, it would additionally be of
interest to limit access to background geolocation data to a given
time period, for example, the duration of a one hour run. This is
currently not possible, and the Permissions speci�cation [13] is
intentionally vague regarding the storage of permissions, leading
to some user agents (e.g., Chrome) to persist decisions, others (e.g.,
mobile Safari) to ask every time, and yet others (e.g., desktop Safari
or Firefox) to optionally remember them (time-limited for Safari).

A notable privacy discussion was happening between the ietf
geopriv and the w3c Geolocation Working Groups around the
question of whether or not a privacy policy should be included in
the Geolocation api itself, or rather be addressed as a set of recom-
mendations and requirements in the speci�cation. The Geolocation
Working Group concluded7 that privacy protection was better han-
dled as part of a more generic privacy and security framework for
device access. Privacy and security threats now take a signi�cant
amount of space in the Generic Sensor speci�cation [20].

4 FUTUREWORK AND CONCLUSION

Future work will happen in several areas and touch upon both tech-
nological as well as user privacy related aspects. In the following
paragraphs, we present some of them, but note that especially the
permission aspects reach a lot further than geolocation.

We will continue our experiments with Wake Locks [18] and
how they can interact with Geolocation Sensor, with a special
focus on sensor readings in non-focused and non-visible states
(Subsection 3.3). Further, after having explored use cases around
background geolocation and geofencing [11] in more detail, we will
resume our work on Geofencing [12] and investigate integration of
this feature with Geolocation Sensor [11], possibly via the extensi-
bility mechanism de�ned in Service Workers [17] that makes them
extensible from other speci�cations through a functional event by
extending the ExtendableEvent interface.

User privacy is central to all sensor readings, and particularly
to geolocation. As outlined in Subsection 1.1, from the start it was
a major concern and especially with new background geolocation
and geofencing use cases, it remains an issue of high importance.
In [16], Russell and Nattestad have explored permission dialog
abuse, annoyance, and fatigue of users; and according to their opin-
ion (which we support), “today’s permissions model and api surface
area should be heavily revised [. . .] to enable more �exible permis-
sion policies” in a more uniform Permissions api [13]. Some ideas
include supporting both time-limited as well as one-o� requests
and permission grants, but also extending Web Application Man-
ifest [5] to allow sites to identify to the runtime a maximum set
of permissions, and turn down permission requests not explicitly
7https://www.ietf.org/lib/dt/documents/LIAISON/�le727.txt

included in the Web Application Manifest, with installability [5] of
Web apps potentially considered an additional trust factor.

Concluding, in this paper we have �rst provided an overview of
the historical development of geolocation in the browser, and given
an outlook on current and future e�orts, challenges, and use cases in
the �eld. The importance of user privacy is ever-increasing, and in
our work on geolocation, background geolocation, and geofencing,
we keep privacy as a top priority. While many privacy concerns
such as unsanctioned third-party access and �ngerprinting can now
be mitigated by technical measures, we continue to work with the
privacy research community to ensure the Web remains a both
capable and safe platform today and in the future by carefully
assessing every new proposed feature for possible privacy threats.

ACKNOWLEDGEMENTS

We are thankful to Doug Turner for his invaluable help with getting
the historical facts right and to Alex Russell for reviewing the paper.

REFERENCES

[1] Chris Beard. 2018. Introducing Geode. Blog Post. Mozilla Labs, https://blog.mozilla.
org/labs/2008/10/introducing-geode/.

[2] Steve Block. 2008. Two new ways to location-enable your web apps. Blog Post.
Google Developers, https://developers.googleblog.com/2008/08/two-new-ways-
to-location-enable-your.html.

[3] Ilya Bogdanovich, Andrey Logvinov, and Marcos Cáceres. 2017. Wake Lock api.
Candidate Recommendation. w3c, https://www.w3.org/TR/wake-lock/.

[4] Ian Clelland. 2019. Feature Policy. Editor’s Draft. w3c, https://w3c.github.io/
webappsec-feature-policy/.

[5] Marcos Cáceres, Kenneth Rohde Christiansen, Mounir Lamouri, Anssi Kostiainen,
Rob Dolin, and Matt Giuca. 2018. Web App Manifest, Living Document. Working
Draft. w3c, https://www.w3.org/TR/appmanifest/.

[6] Domenic Denicola. 2018. Writing Promise-Using Speci�cations, Finding of the w3c

tag, 9 November 2018. Technical Report. w3c, https://www.w3.org/2001/tag/doc/
promises-guide/.

[7] Nick Doty and Erik Wilde. 2010. Geolocation Privacy and Application Platforms.
In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security

and Privacy in GIS and LBS (SPRINGL ’10). ACM, New York, NY, USA, 65–69.
https://doi.org/10.1145/1868470.1868485

[8] Ben Francis. 2017. The Story of Firefox os. Blog Post. Medium.com, https://
medium.com/@bfrancis/the-story-of-�refox-os-cb5bf796e8fb.

[9] Google Gears. 2008. Geolocation api. Documentation. Google,
https://web.archive.org/web/20080902073745/http://code.google.com:
80/apis/gears/api_geolocation.html.

[10] Google Gears. 2008. Geolocationapi. Wiki. Google, https://web.archive.org/web/
20080901235406/http://code.google.com:80/p/gears/wiki/GeolocationAPI.

[11] Anssi Kostiainen, Thomas Steiner, and Marijn Kruisselbrink. 2018. Geolocation
Sensor. Working Draft. w3c, https://www.w3.org/TR/geolocation-sensor/.

[12] Marijn Kruisselbrink. 2017. Geofencing api. Working Group Note. w3c, https:
//www.w3.org/TR/geofencing/.

[13] Mounir Lamouri, Marcos Cáceres, and Je�rey Yasskin. 2017. Permissions. Working
Draft. w3c, https://www.w3.org/TR/permissions/.

[14] Andrei Popescu. 2016. Geolocation api Speci�cation 2nd Edition. Recommendation.
w3c, https://www.w3.org/TR/geolocation-API/.

[15] Aza Raskin. 2010. Geolocation in Firefox and Beyond. Blog Post. Aza on Design,
http://www.azarask.in/blog/post/geolocation-in-�refox-and-beyond/.

[16] Alex Russell and Thomas Nattestad. 2018. Permissions Workshop. Position
Paper. w3c, https://www.w3.org/Privacy/permissions-ws-2018/papers/thomas-
nattestad.pdf.

[17] Alex Russell, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink. 2017. Ser-
vice Workers 1. Working Draft. w3c, https://www.w3.org/TR/service-workers/.

[18] Thomas Steiner. 2018. Experimenting with the Wake Lock api. Blog Post.
Medium.com, https://medium.com/dev-channel/experimenting-with-the-wake-
lock-api-b6f42e0a089f.

[19] Martin Thomson. 2011. Obscuring Location. Internet Draft, geopriv. ietf, https:
//tools.ietf.org/id/draft-thomson-geopriv-location-obscuring-03.html.

[20] Rick Waldron, Mikhail Pozdnyakov, and Alexander Shalamov. 2018. Generic

Sensor api. Candidate Recommendation. w3c, https://www.w3.org/TR/generic-
sensor/.

[21] Mike West. 2016. Secure Contexts. Candidate Recommendation. w3c, https:
//www.w3.org/TR/secure-contexts/.

