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Abstract
Model selection is an essential task for many ap-
plications in scientific discovery. The most com-
mon approaches rely on univariate linear mea-
sures of association between each feature and
the outcome. Such classical selection procedures
fail to take into account nonlinear effects and in-
teractions between features. Kernel-based selec-
tion procedures have been proposed as a solution.
However, current strategies for kernel selection
fail to measure the significance of a joint model
constructed through the combination of the basis
kernels. In the present work, we exploit recent
advances in post-selection inference to propose a
valid statistical test for the association of a joint
model of the selected kernels with the outcome.
The kernels are selected via a step-wise proce-
dure which we model as a succession of quadratic
constraints in the outcome variable.

1. Introduction
Variable selection is an important preliminary step in many
data analysis tasks, both to reduce the computational com-
plexity of dealing with high-dimensional data and to discard
nuisance variables that may hurt the performance of subse-
quent regression or classification tasks. Statistical inference
about the selected variables, such as testing their associa-
tion with an outcome of interest, is also relevant for many
applications, such as identifying genes associated with a
phenotype in genome-wide association studies. If the vari-
ables are initially selected using the outcome, then standard
statistical tests must be adapted to correct for the fact that
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the variables tested after selection are likely to exhibit strong
association with the outcome, because they were selected
for that purpose.

This problem of post-selection inference (PSI) can be solved
by standard data splitting strategies, where we use different
samples for variable selection and statistical inference (Cox,
1975). Splitting data is however not optimal when the total
number of samples is limited, and alternative approaches
have recently been proposed to perform proper statistical in-
ference after variable selection (Taylor & Tibshirani, 2015).
In particular, in the conditional coverage setting of Berk
et al. (2013), statistical inference is performed condition-
ally to the selection of the model. For linear models with
Gaussian additive noise, Lee et al. (2016); Tibshirani et al.
(2016) show that proper statistical inference is possible and
computationally efficient in this setting for features selected
by lasso, forward stepwise or least angle regression. In these
cases it is indeed possible to characterize the distribution of
the outcome under a standard null hypothesis model con-
ditionally to the selection of a given set of features. This
distribution is a Gaussian distribution truncated to a partic-
ular polyhedron. Similar PSI schemes were derived when
features are selected not individually but in groups (Loftus
& Taylor, 2015; Yang et al., 2016; Reid et al., 2017).

Most PSI approaches have been limited to linear models so
far. In many applications, it is however necessary to account
for nonlinear effects or interactions, which requires nonlin-
ear feature selection. This requires generalizing PSI tech-
niques beyond linear procedures. Recently, Yamada et al.
(2018) took a first step in that direction by proposing a PSI
procedure to follow kernel selection, where kernels are used
to generalize linear models to the nonlinear setting. How-
ever, their approach is limited to a single way of selecting
kernels, namely, marginal estimation of the Hilbert-Schmidt
Independent Criterion (HSIC) independence measure (Song
et al., 2007). In addition, it only allows to derive post-
selection statistical guarantees for one specific question,
that of the association of a selected kernel with the outcome.

In this work we go one step further and propose a general
framework for kernel selection, that leads to valid PSI pro-
cedures for a variety of statistical inference questions. Our
main contribution is to propose a large family of statistics
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that estimate the association between a given kernel and an
outcome of interest, that can be formulated as a quadratic
function of the outcome. This family includes in particular
the HSIC criterion used by Yamada et al. (2018), as well as
a generalization to the nonlinear setting (a “kernelization”)
of the criterion used by Loftus & Taylor (2015); Yang et al.
(2016) to select a group of features in the linear setting.
When these statistics are used to select a set of kernels, by
marginal filtering or by forward or backward stepwise selec-
tion, we can characterize the set of outcomes that lead to the
selection of a particular subset as a conjunction of quadratic
inequalities. This paves the way to various PSI questions by
sampling-based procedures.

2. Settings and Notations
Given a data set of n pairs {(x1, y1), . . . , (xn, yn)}, where
for each i ∈ [1, n] the data xi ∈ X for some set X
and the outcome yi ∈ R, our goal is to understand the
relationship between the data and the outcome. We de-
note by Y ∈ Rn the vector of outcomes (Yi = yi for
i ∈ [1, n]). We further consider a set of S positive defi-
nite kernels K = {k1, . . . , kS} defined over X , and denote
K1, . . . ,KS the corresponding n× n Gram matrices (i.e.,
for any t ∈ [1, S], i, j ∈ [1, n], [Kt]ij = kt(xi, xj)). We
refer to the kernels k ∈ K as local or basis kernels. Our goal
is to select a subset of S′ local kernels {ki1 , · · · , kiS′} ⊂ K
that are most associated with the outcome Y , and then to
measure the significance of their association with Y .

The choice of basis kernels K allows us to model a wide
range of settings for the underlying data. For example, if
X = Rd, then a basis kernel can only depend on a single
coordinate, or on a group of coordinates, in which case se-
lecting kernels leads to variable selection (individually or
by groups). Another useful scenario is to consider nonlinear
kernels with different hyperparameters, such as a Gaussian
kernel with different bandwidth, in which case kernel selec-
tion leads to hyperparameter selection.

3. Kernel Association Score
Our kernel selection procedure is based on the following
general family of association scores between a kernel and
the outcome:
Definition 1. A quadratic kernel association score is a
function s : Rn×n × Rn → R of the form

s(K,Y ) = Y >Q(K)Y , (1)

for some function Q : Rn×n → Rn×n.

If s(K,Y ) is a positive definite quadratic form in Y (i.e., if
Q(K) is positive semi-definite), we can rewrite it as:

s(K,Y ) = ‖ŶK‖2 , (2)

where ŶK = H(K)Y is called a prototype for a ”hat” func-
tion H : Rn×n → Rn×n (take for example H = Q1/2).
We borrow the term “prototype” from Reid et al. (2017),
who use it to design statistical tests of linear association
between the outcome and a group of features.

One reason to consider quadratic kernel association scores
is that they cover and generalize several measures used
for kernel or feature selection. Consider for example
Hproj(K) = KK+, where K+ is the Moore-Penrose in-
verse of K. The score proposed by Loftus & Taylor (2015)
for a group of d features encoded as Xg ∈ Rn×d is a special
case of Hproj with K = XgX

>
g . In this case, the prototype

Ŷ is the projection of Y onto the space spanned by the
features.

If K =
∑r
i=1 λiuiu

>
i is the singular value decomposition

of K, with λ1 ≥ . . . ≥ λr > 0, Hproj can be rewritten as

Hproj(K) =

r∑
i=1

uiu
>
i . (3)

For a general kernel K, which may have large rank r, we
propose to consider two regularized versions of Eq. (3) to
reduce the impact of small eigenvalues. The first one is the
kernel principal component regression (KPCR) prototype,
where Ŷ is the projection of Y onto the first k ≤ r principal
components of the kernel:

HKPCR(K) =

k∑
i=1

uiu
>
i .

The second one is the kernel ridge regression (KRR) proto-
type, where Ŷ is an estimate of Y by kernel ridge regression
with parameter λ ≥ 0:

HKRR(K) = K (K + λI)
−1

=

k∑
i=1

λi
λi + λ

uiu
>
i .

The ridge regression prototype was proposed by Reid et al.
(2017) in the linear setting to capture the association be-
tween a group of features and an outcome; here we general-
ize it to the more general kernel setting.

In addition to these prototypes inspired by those used in
the linear setting to analyze groups of features, we now
show that empirical estimates of the HSIC criterion (Gretton
et al., 2005), widely used to assess the association between
a kernel and an outcome (Yamada et al., 2018), is also a
quadratic kernel association score. More precisely, given
two n × n kernel matrices K and L, Gretton et al. (2005)
propose the following measure:

ĤSICbiased(K,L) =
1

(n− 1)2
trace(K Πn LΠn) , (4)
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where Πn = In×n − 1
n1n1n

>. ĤSICbiased is a biased es-
timator which converges to the population HSIC measure
when n increases.

A second, unbiased empirical estimator, which exhibits a
convergence speed in 1√

n
, better than that of ĤSICbiased,

was developed by Song et al. (2007):

ĤSICunbiased(X,Y ) =
1

n(n− 3)

[
trace(K L)

+
1TnK1n 1TnL1n
(n− 1)(n− 2)

− 2

n− 2
1TnK L1n

]
,

(5)

where K = K − diag(K) and L = L− diag(L).

Both empirical HSIC estimators fit in our general family of
association scores:

Lemma 1. The function

s(K,Y ) = ĤSIC(K,Y Y >) ,

where ĤSIC is either the biased estimator (4) or the unbi-
ased one (5), is a quadratic kernel association score. In
addition, the biased estimator is a positive definite quadratic
form on Y for any kernel K.

Proof. For the biased estimator (4), we simply rewrite it as

ĤSICbiased(K,Y Y >) =
1

(n− 1)2
Y >ΠnKΠnY ,

which is a positive quadratic form in Y , corresponding to the
hat matrix K1/2Πn/(n− 1). For the unbiased estimate, the
derivation is also simple but a bit tedious, and is postponed
to Appendix A.

We highlight that this result is fundamentally different from
the results of Yamada et al. (2018), who show that, asymp-
totically, the empirical block estimator of HSIC (Zhang
et al., 2018) has a Gaussian distribution. Here we do not
focus on the value of the empirical HSIC estimator itself,
but on its dependence on Y , which will be helpful later to
derive PSI schemes. We also note that Lemma 1 explicitly
requires that the kernel L used to model outcomes be the
linear kernel, while the approach of Yamada et al. (2018)
that leads to a more specific PSI schemes is applicable to
any kernel L.

4. Kernel Selection
Given any quadratic kernel association score, we now detail
different strategies to select a subset of S′ ≤ S of kernels
among the initial set K. We consider three standards strate-
gies, assuming S′ is given:

• Filtering: we compute the scores s(K,Y ) for all can-
didate kernels K ∈ K, and select among them the top
S′ with the highest scores.

• Forward stepwise selection: we start from an empty
list of kernels, and iteratively add new kernels one
by one in the list by picking the one that leads to the
largest increase in association score when combined
with the kernels already in the list. This is formalized
in Algorithm 1.

• Backward stepwise selection: we start from the full list
of kernels, and iteratively remove the one that leads to
the smallest decrease in association score, as formal-
ized in Algorithm 2.

In addition, we consider adaptive variants of these selection
methods, where the number S′ of selected kernels is not
fixed beforehand but automatically selected in a data-driven
way. In adaptive estimation of S′, we maximize over S′

the association score computed at each step, potentially
regularized by a penalty function that does not depend on
Y . For example, for group selection in the linear regression
case, Loftus & Taylor (2015) maximize the association score
penalized by an AIC penalty.

Algorithm 1 Forward stepwise kernel selection

1: Input: set of kernels K = {K1, . . . ,KS}; outcome
Y ∈ Rn; quadratic kernel association score s(., .); num-
ber of kernels to select S′ ≤ S.

2: Output: a subset of S′ selected kernels.
3: Init: I ← K, J ← ∅.
4: for i = 1 to S′ do
5: K̃ ← argmax

K∈I
s

(
K +

∑
K′∈J

K ′, Y

)
6: I ← I \ {K̃}
7: J ← J ∪ {K̃}
8: end for
9: return J

The following result generalizes to the kernel selection prob-
lem a result that was proven by Loftus & Taylor (2015) in
the feature group selection problem with linear methods.

Theorem 1. Given a set of kernels K = {K1, . . . ,KS},
a quadratic kernel association score s, and a method for
kernel selection discussed above (filtering, forward or back-
ward stepwise selection, adaptive or not), let M̂(Y ) ⊆ K
be the subset of kernels selected given a vector of outcomes
Y ∈ Rn. For any M ⊆ K, there exists iM ∈ N, and
(QM,1, bM,1), . . . , (QM,iM , bM,iM ) ∈ Rn×n ×R such that

{Y : M̂(Y ) = M} =

iM⋂
i=1

{Y : Y >QM,iY + bM,i ≥ 0}.
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Algorithm 2 Backward stepwise kernel selection

1: Input: set of kernels K = {K1, . . . ,KS}; outcome
Y ∈ Rn; quadratic kernel association score s(., .); num-
ber of kernels to select S′ ≤ S.

2: Output: a subset of S′ selected kernels.
3: Init: J ← K.
4: for i = 1 to S − S′ do

5: K̃ ← argmax
K∈J

s

( ∑
K′∈J\{K}

K ′, Y

)
6: J ← J \ {K̃}
7: end for
8: return J

Again, the proof is simple but tedious, and is postponed to
Appendix B. Theorem 1 shows that, for a large class of se-
lection methods, we can characterize the set of outcomes Y
that lead to the selection of any particular subset of kernels
as conjunction of quadratic inequalities. This paves the way
to a variety of PSI schemes by conditioning of the event
M̂(Y ) = M , as explored for example by Loftus & Taylor
(2015); Yang et al. (2016) in the case of group selection.

It is worth noting that Theorem 1 is valid in particular when
an empirical HSIC estimator is used to select kernels, thanks
to Lemma 1. In our setting, the kernel selection procedure
proposed by Yamada et al. (2018) corresponds precisely to
the filtering selection strategy combined with an empirical
HSIC estimator. Hence Theorem 1 allows to derive an ex-
act characterization of the event M̂(Y ) = M in terms of
Y , which in turns allows to derive various PSI procedure
involving Y , as detailed below. In contrast, Yamada et al.
(2018) provide a characterization of the event M̂(Y ) = M
not in terms of Y , but in terms of the vector of values
(s(Ki, Y ))i=1,...,S . Combined with the approximation that
this vector is asymptotically Gaussian when n tends to infin-
ity, this allows Yamada et al. (2018) to derive PSI schemes to
assess the values s(Ki, Y ) of the selected kernel. Theorem 1
therefore provides a result which is valid non-asymptotically,
and which allows to test other types of hypotheses, such as
the association of one particular kernel with the outcome,
given other selected kernels.

5. Statistical Inference
Let us consider the general model

Y = µ+ σ2ε , (6)

where ε ∼ N (0, In) and µ ∈ Rn. Characterizing the set
E = {Y : M̂(Y ) = M} allows to answer a variety of
statistical inference questions about the true signal µ and its
association with the different kernels, conditional to the fact
that a given set of kernels M has been selected.

For example, testing whether s(K,µ) = 0 for a given
kernel K ∈ M , or for the combination of kernels K =∑
K′∈M K ′, is a way to assess whether K captures infor-

mation about µ. This is the test carried out by Yamada
et al. (2018) to test each individual kernel after selection by
marginal HSIC screening. Alternatively, to test whether a
given kernel K ∈M has information about µ not redundant
with the other selected kernels in M \ {K}, one may test
whether the prototype of µ built from all kernels in M is
significantly better that the prototype built without K. This
can translate into testing whether

s

( ∑
K′∈M

K ′, µ

)
= s

 ∑
K′∈M,K′ 6=K

K ′, µ

 .

Such a test is performed by Loftus & Taylor (2015); Yang
et al. (2016) to assess the significance of groups of features
in the linear setting, using the projection prototype.

In general, testing a null hypothesis of the form s(K,µ) = 0
for a positive quadratic form s can be done by forming
the statistics V = ‖H(K)Y ‖2, where H is the hat matrix
associated with s, and studying its distribution conditionally
on the event Y ∈ E. The fact that E is an intersection of
subsets defined by quadratic constraints can be exploited
to derive computationally efficient procedures to estimate
p-values and confidence intervals when, for example, H(K)
is a projection onto a subspace (Loftus & Taylor, 2015; Yang
et al., 2016). We can directly borrow these techniques in our
setting, for example for the KPCR prototype, where H(K)
is a projection matrix. For more general H(K) matrices,
the techniques of Loftus & Taylor (2015); Yang et al. (2016)
need to be adapted; another way to proceed is to estimate the
distribution of V by Monte-Carlo sampling, as explained in
the next section.

Alternatively, Reid et al. (2017) propose to test the signifi-
cance of groups of features through prototypes, which they
argue uses fewer degrees of freedom than statistics based
on the norms of prototypes, which can increase statistical
power. We adapt this idea to the case of kernels and show
here how to test the association of a single kernel (whether
one of the selected kernels, or their aggregation) with the
outcome. We refer the reader to Reid et al. (2017) for ex-
tensions to several groups, that can be easily adapted to
several kernels. Given a prototype Ŷ = H(K)Y , Reid et al.
(2017) propose to test the null hypothesis H0 : θ = 0 in the
following univariate model:

Y = µ+ θŶ + σ2ε,

where again ε ∼ N (0, In), µ is fixed, and θ is the parameter
of interest. One easily derives the log-likelihood:

`Y (θ) = log|I − θH(K)| − 1

2σ2
‖Y − µ− θH(K)Y ‖2 ,
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which is a concave function of θ that can be maximized by
Newton-Raphson iterations to obtain the maximum likeli-
hood estimator θ̂ ∈ argmaxθ `Y (θ) . We can then form the
likelihood ratio statistics

R(Y ) = 2
(
`Y (θ̂)− `Y (0)

)
, (7)

and study the distribution of R(Y ) under H0 to perform a
statistical test and derive a p-value. While R(Y ) asymptot-
ically follows a χ2

1 distribution under H0 when we do not
condition on Y (Reid et al., 2017), its distribution condi-
tioned on the event M̂(Y ) = M is different and must be
determined for valid PSI. As this conditional distribution is
unlikely to be tractable, we propose to approximate it thanks
to empirical sampling. This allows us to derive valid em-
pirical PSI p-values as the fraction of samples Yt for which
R(Yt) is larger than the R(Y ) computed from the data.

6. Constrained Sampling
We now discuss how to sample T replicates Y1, . . . , YT
according to the Gaussian model (6) conditional to the event
M̂(Y ) = M . As explained in the previous section, this is
needed to derive p-values for various statistical tests.

By Theorem 1, all replicates must be sampled within the
acceptance region defined by a series of quadratic con-
straints on Y . Several strategies can be deployed to this end.
The most straightforward one is rejection sampling, which
consists in sampling independently Yt from N

(
µ, σ2In

)
,

and only retaining samples for which all quadratic con-
straints are satisfied, i.e., Y Tt QM,iYt + bM,i ≥ 0, for
i ∈ {1, · · · , iM}. Such a strategy can be time-consuming,
especially if the volume of the acceptance region is small,
leading to a high number of rejections. Alternatively, one
could use the the Hamiltonian Monte Carlo algorithm of Pak-
man & Paninski (2014). In practice, we found that for large
values of n, it does not scale well enough to generate a
sufficient number of replicates T . Therefore, we propose a
new hit-and run sampler below.

Our proposed sampler is based on the Hypersphere Direc-
tions (HD) algorithm, first proposed by Berbee et al. (1987)
to detect nonredundant constraints in a system of linear in-
equalities. The main assumption in the HD algorithm is that
the acceptance region is open and bounded. In our case,
the boundedness assumption does not necessarily hold. For
example, if bM,i = 0 for all i = 1, . . . , iM , then the accep-
tance region is clearly an unbounded cone, that is, if Y ∈ E
then λY ∈ E for any λ ≥ 0. To use the HD algorithm
nevertheless, we apply the reparametrization Z = F (Y ),
where F : Rn →]0, 1[n is given by F (Y )i = Fµi,σ2(Yi)
for i = 1, . . . , n. Here Fµi,σ2(Yi) denotes the cumula-
tive distribution function (c.d.f.) of the normal distribu-
tion N

(
µi, σ

2
)
. Without conditioning, Z is uniformly dis-

tributed over ]0, 1[n, and when we condition on Y ∈ E, Z

is uniformly distributed on the truncated space regionM
given by the quadratic constraints:

F−1(Z)QM,iF
−1(Z) + bM,i > 0, ∀i ∈ {1, · · · , iM} .

We use strict inequalities so that M is both open and
bounded; this does not affect the probabilities we estimate.

Algorithm 3 Hypersphere Directions hit-and-run sampler

1: Input: Y an admissible point, T the total number of
replicates and B the number of burn-in iterations.

2: Output: a sample of T replicates sampled according
to the conditional distribution.

3: Init: Z0 ← F−1(Y ), t← 0
4: repeat
5: t← t+ 1
6: Sample uniformly θt from {θ ∈ Rn, ||θ|| = 1} 1

7: at ← max

{
max
θ
(i)
t >0

−Zt−1

θt
; max
θ
(i)
t <0

1−Zt−1

θt

}
8: bt ← min

{
min
θ
(i)
t <0

−Zt−1

θt
; min
θ
(i)
t >0

1−Zt−1

θt

}
9: repeat

10: Sample uniformly λt from ]at, bt[
11: Zt ← Zt−1 + λtθt
12: Yt ← F−1(Zt)
13: until Zt ∈M
14: until t = B + T
15: return

{
YB+1, · · · , YB+T

}
Algorithm 3 presents our hit-and-run sampler (Blisle et al.,
1993), based on iteratively sampling in the hypercube. In the
HD algorithm, the unidimensional parameter λt is sampled
according to the p.d. fλt (λt|Zt−1, θt) ∝ f(Zt−1 + λtθt),
where f is the p.d. of Z = F (Y ). Given that Z is uniformly
distributed on M′ = ]0, 1[

n ∩ M, λt is then uniformly
distributed on the region Λ = {λ s.t. Zt−1 + λθt ∈ M′}.
To sample λt, we first start by uniformly sampling on the
interval [at, bt] to ensure that Zt−1 + λtθt ∈ ]0, 1[

n. The
sample λt is accepted if Zt−1 + λθt ∈M.

Though our sampling of λt is also a rejection sampling, the
resulting hit-and-run sampler is faster than a mere rejection
sampling of Yt. Indeed, λt is unidimensional while each
replicate Yt is an n-dimensional normal variable. Moreover,
the initial sampling on the interval ]at, bt[ reduces the total
number of rejections.For a proof of the convergence of the
HD sampler, we refer the reader to Smith (1984).

In hit-and-run samplers, to generate valid p-values, a large
number of burn-in iterations and of replicates are needed.
The burn-in period reduces the dependence on the original

1A classical technique to uniformly sample from the n-
dimensional sphere is to first sample θt from N (0, 1) and nor-
malize, θt ← θt/||θt||2
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sample Y , while the large number of replicates addresses
the correlation between consecutive replicates.

7. Experiments
In our experiments, we focus on the case where each kernel
corresponds to a predefined group of features, and where
we test the association of the sum of the selected kernels
with the outcome. We use ĤSICunbiased as a quadratic kernel
association score for kernel selection in all our experiments.

7.1. Statistical Validity

We first demonstrate the statistical validity of our PSI
procedure, which we refer to as kernelPSI. We simulate
a design matrix X of n = 100 samples and p = 50
features, partitioned in S = 10 disjoint and mutually-
independent subgroups of p′ = 5 features, drawn from
a normal distribution centered at 0 and with a covariance
matrix Vij = ρ|i−j|, i, j ∈ {1, · · · p′}. We set the correla-
tion parameter ρ to 0.6. To each group corresponds a local
Gaussian kernel Ki, of variance σ2 = 5.

The outcome Y is drawn as Y = θK1:3U1 + ε, where
K1:3 = K1 +K2 +K3, U1 is the eigenvector correspond-
ing to the largest eigenvalue of K1:3, and ε is Gaussian
noise centered at 0. We vary the effect size of θ across
the range θ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, and resample Y
1 000 times to create 1 000 simulations.

In this particular setting where the local kernels are ad-
ditively combined, the three kernel selection strategies in
Section 4 are equivalent. Along with the adaptive vari-
ant, we consider 3 variants with a predetermined number
of kernels, S′ ∈ {1, 3, 5}. For inference, we compute the
likelihood ratio statistics for KPCR or KRR prototypes, or
directly use ĤSICunbiased as a test statistic (see Section 5).
Finally, we used our hit-and-run sampler to provide empiri-
cal p-values (see Section 6), fixing the number of replicates
at T = 5× 104 and the number of burn-in iterations at 104.

Figure 1 shows the Q-Q plot comparing the distribution of
the p-values provided by kernelPSI with the uniform distri-
bution, under the null hypothesis (θ = 0.0). All variants
give data points aligned with the first diagonal, confirming
that the empirical distributions of the statistics are uniform
under the null.

Figure 2 shows the Q-Q plot comparing the distribution of
the p-values provided by kernelPSI with the uniform distri-
bution, under the alternative hypothesis where θ = 0.3. We
now expect the p-values to deviate from the uniform. We
observe that all kernelPSI variants have statistical power, re-
flected by low p-values and data points located towards the
bottom right of the Q-Q plot. The three strategies (KPCR,
KRR and HSIC) enjoy greater statistical power for smaller
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Figure 1. Q-Q plot comparing the empirical kernelPSI p-values
distributions under the null hypothesis (θ = 0.0) to the uniform
distribution.

number of selected kernels. Because of the selection of irrel-
evant kernels, statistical power decreases when S′ increases.
The same remark holds for the adaptive variants, which per-
forms similarly to the fixed variant with S′ = 5. In fact, the
average support size for the adaptive kernel selection pro-
cedure is S′ = 5.05. We also observe that HSIC has more
statistical power than the KRR or KPCR variants, possibly
because we used an HSIC estimator for kernel selection,
making the inference step closer to the selection one.
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Figure 2. Q-Q plot comparing the empirical kernelPSI p-values
distributions under the alternative hypothesis (θ = 0.3) to the
uniform distribution.
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7.2. Benchmarking

We now evaluate the performance of the kernelPSI proce-
dure against a number of alternatives:

• protoLasso: the original, linear prototype method
for post-selection inference with L1-penalized regres-
sion (Reid et al., 2017);

• protoOLS: a selection-free alternative, where the proto-
type is obtained from an ordinary least-squares regres-
sion, and all variables are retained;

• protoF: a classical goodness-of-fit F-test. Here the
prototype is constructed similarly as in protoOLS, but
the test statistic is an F -statistic rather that a likelihood
ratio;

• KPCR, KRR, and HSIC: the non-selective alternatives
to our kernelPSI procedure. KPCR and KRR are ob-
tained by constructing a prototype over the sum of
all kernels, without the selection step. HSIC is the
independence test proposed by Gretton et al. (2008);

• SKAT: The Sequence Kernel Association Test (Wu
et al., 2011) tests for the significance of the joint ef-
fect of all kernels in a non-selective manner, using a
quadratic form of the residuals of the null model.

We consider the same setting as in Section 7.1, but now add
benchmark methods and additionally consider linear kernels
over binary features, a setting motivated by the application
to genome-wide association studies, where the features are
discrete. In this last setting, we vary the effect size θ over
the range {0.01, 0.02, 0.03, 0.05, 0.07, 0.1}. We relegate to
Appendix C.4.2 an experiment with Gaussian kernels over
Swiss roll data.

Figures 3 and 4 show the evolution of the statistical power as
a function of the effect size θ in, respectively, the Gaussian
and the linear data setups. These figures confirm that kernel-
based methods, particularly selective HSIC and SKAT, are
superior to linear ones such as protoLASSO. We observe
once more that the selective HSIC variants have more statis-
tical power than their KRR or KPCR counterparts, that meth-
ods selecting fewer kernels enjoy more statistical power, and
that adaptive methods tend to select too many kernels (closer
to S′ = 5 than to the true S′ = 3). We also observe that the
selective kernelPSI methods (S′ = 1, 3, 5 or adaptive) have
more statistical power than their non-selective counterparts.

Finally, we note that, in the linear setting, the KRR and
KPCR variants perform similarly. We encounter a similar
behavior in simulations (not shown) using a Wishart kernel.
Depending on the eigenvalues of K, the spectrum of the
transfer matrix HKRR = K(K + λIn×n)−1 can be concen-
trated around 0 and 1. HKRR becomes akin to a projector
matrix, and KRR behaves similarly to KPCR.
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Figure 3. Statistical power of kernelPSI variants and benchmark
methods, using Gaussian kernels for simulated Gaussian data.

In addition, we evaluate the ability of our kernel selection
procedure to recover the three true causal kernels used to
simulate the data. Table 1 reports the evolution of the pre-
cision and recall of our procedures, in terms of selected
kernels, for increasing effect sizes in the Gaussian kernels
and data setting. Note that when S′ is fixed, a random se-
lection method is expected to have a precision of 3/10 (the
proportion of kernels that are causal), and a recall of S′/10,
which corresponds to the values we obtain when there is no
signal (θ = 0). As the effect size θ increases, both precision
and recall increase.

When S′ increases, the precision increases and the recall de-
creases, which is consistent with our previous observations
that increasing S′ increases the likelihood to include irrele-
vant kernels in the selection. Once again, the performance
of the adaptive kernelPSI is close to that of the setting where
the number of kernels to select is fixed to 5, indicating that
the adaptive version tends to select too many kernels.

7.3. Case Study: Selecting Genes in a Genome-Wide
Association Study

In this section, we illustrate the application of kernelPSI
on genome-wide association study (GWAS) data. Here we
study the flowering time phenotype “FT GH” of the Ara-
bidopsis thaliana dataset of Atwell et al. (2010). We are
interested in using the 166 available samples to test the
association of each of 174 candidate genes to this pheno-
type. Each gene is represented by the single-nucleotide
polymorphisms (SNPs) located within ± 20-kilobases. We
use hierarchical clustering to create groups of SNPs within
each gene; these clusters are expected to correspond to
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Figure 4. Statistical power of kernelPSI variants and benchmark
methods, using linear kernels for simulated binary data.

linkage disequilibrium blocks. As is common for GWAS ap-
plications, we use the identical-by-state (IBS) kernel (Kwee
et al., 2008) to create one kernel by group. We then apply
our kernelPSI variants as well as the baseline algorithms
used in Section 7.2. Further details about our experimental
protocol are available in Appendix C.6.

We first compare the p-values obtained by the different meth-
ods using Kendall’s tau coefficient τ to measure the rank cor-
relation between each pair of methods (see Appendix C.7).
All coefficients are positive, suggesting a relative agreement
between the methods. We also resort to non-metric multi-
dimensional scaling (NMDS) to visualize the concordance
between the methods (see Appendix C.9). Altogether, we
observe that related methods are located nearby (e.g. KRR
near KPCR, protoLASSO near protoOLS, etc.), while selec-
tive methods are far away from non-selective ones.

Our first observation is that none of the non-selective meth-
ods finds any gene significantly associated with the phe-
notype (p < 0.05 after Bonferroni correction), while our
proposed selective methods do. A full list of genes detected
by each method is available in Appendix C.8. None of those
genes have been associated to this phenotype by traditional
GWAS (Atwell et al., 2010). We expect the most conser-
vative methods (S′ = 1) to yield the fewest false positive,
and hence focus on those. KRR, KPCR and HSIC find,
respectively, 2, 2, and 1 significant genes. One of those,
AT5G57360, is detected by all three methods. It is interest-
ing to note that this gene has been previously associated with
a very related phenotype, FT10, differing from ours only
in the greenhouse temperature (10◦C vs 16◦C). This is also
the case of the other gene detected by KRR, AT5G65060.

Table 1. Ability of the kernel selection procedure to recover the
true causal kernels, using Gaussian kernels over simulated Gaus-
sian data.

θ S′ = 1 S′ = 3 S′ = 5 Adaptive

R
ec

al
l 0.0 0.102 0.302 0.505 0.435

0.1 0.150 0.380 0.569 0.523
0.2 0.263 0.528 0.690 0.678
0.3 0.324 0.630 0.770 0.768
0.4 0.332 0.691 0.830 0.822
0.5 0.333 0.733 0.862 0.855

Pr
ec

is
io

n 0.0 0.306 0.302 0.303 0.305
0.1 0.450 0.380 0.341 0.352
0.2 0.791 0.528 0.414 0.437
0.3 0.974 0.630 0.462 0.485
0.4 0.997 0.691 0.498 0.518
0.5 1.000 0.733 0.517 0.548

Finally, the second gene detected by KPCR, AT4G00650,
is the well-known FRI gene, which codes for the FRIGIDA
protein, required for the regulation of flowering time in late-
flowering phenotypes. All in all, these results indicate that
our proposed kernelPSI methods have the power to detect
relevant genes in GWAS and are complementary to existing
approaches.

8. Conclusion
We have proposed kernelPSI, a general framework for post-
selection inference with kernels. Our framework rests upon
quadratic kernel association scores to measure the associa-
tion between a given kernel and the outcome. The flexibility
in the choice of the kernel allows us to accommodate a
broad range of statistics. Conditionally on the kernel se-
lection event, the significance of the association with the
outcome of a single kernel, or of a combination of kernels,
can be tested. We demonstrated the merits of our approach
on both synthetic and real data. In addition to its ability
to select causal kernels, kernelPSI enjoys greater statistical
power than state-of-the-art techniques. A future direction of
our work is to scale kernelPSI to larger datasets, in partic-
ular with applications to full GWAS data sets in mind, for
example by using the block HSIC estimator (Zhang et al.,
2018) to reduce the complexity in the number of samples.
Another direction would be to explore whether our frame-
work can also incorporate Multiple Kernel Learning (Bach,
2008). This would allow us to complement our filtering
and wrapper kernel selection strategies with an embedded
strategy, and to construct an aggregated kernel prototype in
a more directly data-driven fashion.
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