
Reinforcement Learning for Slate-based Recommender
Systems: A Tractable Decomposition and Practical

Methodology*

Eugene Ie†,‡,1, Vihan Jain‡,1, Jing Wang‡,1, Sanmit Narvekar§,2, Ritesh Agarwal1,
Rui Wu1, Heng-Tze Cheng1, Morgane Lustman3, Vince Gatto3, Paul Covington3,

Jim McFadden3, Tushar Chandra1, and Craig Boutilier†,1

1Google Research
2Department of Computer Science, University of Texas at Austin

3YouTube, LLC

June 3, 2019

Abstract

Most practical recommender systems focus on estimating immediate user engage-
ment without considering the long-term effects of recommendations on user behavior.
Reinforcement learning (RL) methods offer the potential to optimize recommendations
for long-term user engagement. However, since users are often presented with slates
of multiple items—which may have interacting effects on user choice—methods are
required to deal with the combinatorics of the RL action space. In this work, we address
the challenge of making slate-based recommendations to optimize long-term value
using RL. Our contributions are three-fold. (i) We develop SLATEQ, a decomposition
of value-based temporal-difference and Q-learning that renders RL tractable with slates.
Under mild assumptions on user choice behavior, we show that the long-term value
(LTV) of a slate can be decomposed into a tractable function of its component item-wise
LTVs. (ii) We outline a methodology that leverages existing myopic learning-based rec-
ommenders to quickly develop a recommender that handles LTV. (iii) We demonstrate
our methods in simulation, and validate the scalability of decomposed TD-learning
using SLATEQ in live experiments on YouTube.

*Parts of this paper appeared in [Ie et al., 2019].
†Corresponding authors: {eugeneie,cboutilier}@google.com.
‡Authors Contributed Equally.
§Work done while at Google Research.

1

ar
X

iv
:1

90
5.

12
76

7v
2

 [
cs

.L
G

]
 3

1
M

ay
 2

01
9

{eugeneie,cboutilier}@google.com

1 Introduction

Recommender systems have become ubiquitous, transforming user interactions with products,
services and content in a wide variety of domains. In content recommendation, recommenders
generally surface relevant and/or novel personalized content based on learned models of
user preferences (e.g., as in collaborative filtering [Breese et al., 1998, Konstan et al., 1997,
Srebro et al., 2004, Salakhutdinov and Mnih, 2007]) or predictive models of user responses
to specific recommendations. Well-known applications of recommender systems include
video recommendations on YouTube [Covington et al., 2016], movie recommendations on
Netflix [Gomez-Uribe and Hunt, 2016] and playlist construction on Spotify [Jacobson et al.,
2016]. It is increasingly common to train deep neural networks (DNNs) [van den Oord et al.,
2013, Wang et al., 2015, Covington et al., 2016, Cheng et al., 2016] to predict user responses
(e.g., click-through rates, content engagement, ratings, likes) to generate, score and serve
candidate recommendations.

Practical recommender systems largely focus on myopic prediction—estimating a user’s
immediate response to a recommendation—without considering the long-term impact on
subsequent user behavior. This can be limiting: modeling a recommendation’s stochastic
impact on the future affords opportunities to trade off user engagement in the near-term for
longer-term benefit (e.g., by probing a user’s interests, or improving satisfaction). As a result,
research has increasingly turned to the sequential nature of user behavior using temporal
models, such as hidden Markov models and recurrent neural networks [Rendle et al., 2010,
Campos et al., 2014, He and McAuley, 2016, Sahoo et al., 2012, Tan et al., 2016, Wu et al.,
2017], and long-term planning using reinforcement learning (RL) techniques (e.g., [Shani
et al., 2005, Taghipour et al., 2007, Gauci et al., 2018]). However, the application of RL has
largely been confined to restricted domains due to the complexities of putting such models
into practice at scale.

In this work, we focus on the use of RL to maximize long-term value (LTV) of recommen-
dations to the user, specifically, long-term user engagement. We address two key challenges
facing the deployment of RL in practical recommender systems, the first algorithmic and the
second methodological.

Our first contribution focuses on the algorithmic challenge of slate recommendation
in RL. One challenge in many recommender systems is that, rather than a single item,
multiple items are recommended to a user simultaneously; that is, users are presented with a
slate of recommended items. This induces a RL problem with a large combinatorial action
space, which in turn imposes significant demands on exploration, generalization and action
optimization. Recent approaches to RL with such combinatorial actions [Sunehag et al.,
2015, Metz et al., 2017] make inroads into this problem, but are unable to scale to problems
of the size encountered in large, real-world recommender systems, in part because of their
generality. In this work, we develop a new slate decomposition technique called SLATEQ that
estimates the long-term value (LTV) of a slate of items by directly using the estimated LTV
of the individual items on the slate. This decomposition exploits certain assumptions about
the specifics of user choice behavior—i.e., the process by which user preferences dictate

2

selection and/or engagement with items on a slate—but these assumptions are minimal and,
we argue below, very natural in many recommender settings.

More concretely, we first show how the SLATEQ decomposition can be incorporated
into temporal difference (TD) learning algorithms, such as SARSA and Q-learning, so that
LTVs can be learned at the level of individual items despite the fact that items are always
presented to users in slates. This is critical for both generalization and exploration efficiency.
We then turn to the optimization problem required to build slates that maximize LTV, a
necessary component of policy improvement (e.g., in Q-learning) at training time and for
selecting optimal slates at serving time. Despite the combinatorial (and fractional) nature of
the underlying optimization problem, we show that it can be solved in polynomial-time by
a two-step reduction to a linear program (LP). We also show that simple top-k and greedy
approximations, while having no theoretical guarantees in this formulation, work well in
practice.

Our second contribution is methodological. Despite the recent successes of RL afforded
by deep Q-networks (DQNs) [Mnih et al., 2015, Silver et al., 2016], the deployment of RL
in practical recommenders is hampered by the need to construct relevant state and action
features for DQN models, and to train models that serve millions-to-billions of users. In this
work, we develop a methodology that allows one to exploit existing myopic recommenders
to: (a) accelerate RL model development; (b) reuse existing training infrastructure to a great
degree; and (c) reuse the same serving infrastructure for scoring items based on their LTV.
Specifically, we show how temporal difference (TD) learning can be built on top of existing
myopic pipelines to allow the training and serving of DQNs.

Finally, we demonstrate our approach with both offline simulation experiments and
online live experiments on the YouTube video recommendation system. We show that our
techniques are scalable and offer significant improvements in user engagement over myopic
recommendations. The live experiment also demonstrates how our methodology supports
the relatively straightforward deployment of TD and RL methods that build on the learning
infrastructure of extant myopic systems.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss
related work on the use of RL for recommender systems, choice modeling, and RL with
combinatorial action spaces. We formulate the LTV slate recommendation problem as a
Markov decision process (MDP) in Section 3 and briefly discuss standard value-based RL
techniques, in particular, SARSA and Q-learning.

We introduce our SLATEQ decomposition in Section 4, discussing the assumptions under
which the decomposition is valid, and how it supports effective TD-learning by allowing the
long-term value (Q-value) of a slate to be decomposed into a function of its constituent item-
level LTVs (Q-values). We pay special attention to the form of the user choice model, i.e., the
random process by which a user’s preferences determine the selection of an item from a slate.
The decomposition affords item-level exploration and generalization for TD methods like
SARSA and Q-learning, thus obviating the need to construct value or Q-functions explicitly
over slates. For Q-learning itself to be feasible, we must also solve the combinatorial slate
optimization problem—finding a slate with maximum LTV given the Q-values of individual

3

items. We address this problem in Section 5, showing that it can be solved effectively by first
developing a fractional mixed-integer programming formulation for slate optimization, then
deriving a reformulation and relaxation that allows the problem to be solved exactly as a
linear program. We also describe two simple heuristics, top-k and greedy slate construction,
that have no theoretical guarantees, but perform well in practice.

To evaluate these methods systematically, we introduce a recommender simulation
environment, RecSim, in Section 6 that allows the straightforward configuration of an item
collection (or vocabulary), a user (latent) state model and a user choice model. We describe
specific instantiations of this environment suitable for slate recommendation, and in Section 7
we use these models in the empirical evaluation of our SLATEQ learning and optimization
techniques.

The practical application of RL in the estimation of LTV in large-scale, practical recom-
mender systems often requires integration of RL methods with production machine-learning
training and serving infrastructure. In Section 8, we outline a general methodology by which
RL methods like SLATEQ can be readily incorporated into the typical infrastructure used by
many myopic recommender systems. We use this methodology to test the SLATEQ approach,
specifically using SARSA to get one-step policy improvements, in a live experiment for
recommendations on the YouTube homepage. We discuss the results of this experiment in
Section 9.

2 Related Work

We briefly review select related work in recommender systems, choice modeling and combi-
natorial action optimization in RL.

Recommender Systems Recommender systems have typically relied on collaborative
filtering (CF) techniques [Konstan et al., 1997, Breese et al., 1998]. These exploit user
feedback on a subset of items (either explicit, e.g., ratings, or implicit, e.g., consumption)
to directly estimate user preferences for unseen items. CF techniques include methods
that explicitly cluster users and/or items, methods that embed users and items in a low-
dimensional representation (e.g., LSA, probabilistic matrix factorization), or combinations
of the two [Krestel et al., 2009, Moshfeghi et al., 2011].

Increasingly, recommender systems have moved beyond explicit preference prediction
to capture more nuanced aspects of user behavior, for instance, how they respond to specific
recommendations, such as pCTR (predicted click-through rate), degree of engagement
(e.g., dwell/watch/listen time), ratings, social behavior (e.g., comments, sharing) and other
behaviors of interest. DNNs now play a significant role in such approaches [van den Oord
et al., 2013, Wang et al., 2015, Covington et al., 2016, Cheng et al., 2016] and often use
CF-inspired embeddings of users and items as inputs to the DNN itself.

Sequence Models and RL in Recommender Systems Attempts to formulate recommen-
dation as a RL problem have been relatively uncommon, though it has attracted more

4

attention recently. Early models included a MDP model for shopping recommendation
[Shani et al., 2005] and Q-learning for page navigation [Taghipour et al., 2007], but were
limited to very small-scale settings (100s of items, few thousands of users). More recently,
biclustering has been combined with RL algorithms for recommendation [Choi et al., 2018],
while Gauci et al. [2018] describe the use of RL in several applications at Facebook. Chen
et al. [2018] also explored a novel off-policy policy-gradient approach that is very scalable,
and was shown to be effective in a large-scale commercial recommender system. Their
approach does not explicitly compute LTV improvements (as we do by developing Q-value
models), nor does it model the slate effects that arise is practical recommendations.

Zhao et al. [2018] explicitly consider RL in slate-based recommendation systems, devel-
oping an actor-critic approach for recommending a page of items and tested using simulator
trained on user logs. While similar in motivation to our approach, this method differs in
several important dimensions: it makes no significant structural assumptions about user
choice, using a CNN to model the spatial layout of items on a page, thus not handling the
action-space combinatorics w.r.t. generalization, exploration, or optimization (but allowing
additional flexibility in capturing user behavior). Finally, the focus of their method is online
training and their evaluation with offline data is limited to item reranking.

Slate Recommendation and Choice Modeling Accounting for slates of items in recom-
mender systems is quite common [Deshpande and Karypis, 2004, Boutilier et al., 2003,
Viappiani and Boutilier, 2010, Le and Lauw, 2017], and the extension introduces interesting
modeling questions (e.g., involving metrics such as diversity [Wilhelm et al., 2018]) and
computational issues due to the combinatorics of slates themselves. Swaminathan et al.
[2017] explored off-policy evaluation and optimization using inverse propensity scores in
the context of slate interactions. Mehrotra et al. [2019] developed a hierarchical model for
understanding user satisfaction in slate recommendation.

The construction of optimal recommendation slates generally depends on user choice
behavior. Models of user choice from sets of items is studied under the banner of choice
modeling in areas of econometrics, psychology, statistics, operations research and marketing
and decision science [Luce, 1959, Louviere et al., 2000]. Probably the most common model
of user choice is the multinomial logit (MNL) model and its extensions (e.g., the conditional
logit model, the mixed logit model, etc.)—we refer to Louviere et al. [2000] for an overview.

For example, the conditional logit model assumes a set of user-item characteristics (e.g.,
feature vector) xij for user i and item j, and determines the (random) utility u(xij) of the
item for the user. Typically, this model is linear so u(xij) = βxij , though we consider the
use of DNN regressors to estimate these logits below. The probability of the user selecting j
from a slate A of items is

P (j|A) =
eu(xij)∑
`∈A e

u(xi`)
(1)

The choice model is justified under specific independence and extreme value assumptions
[McFadden, 1974, Train, 2009]. Various forms of such models are used to model consumer
choice and user behavior in wide ranging domains, together with specific methods for model

5

estimation, experiment design and optimization. Such models form the basis of optimization
procedures in revenue management [Talluri and van Ryzin, 2004, Rusmevichientong and
Topaloglu, 2012], product line design [Chen and Hausman, 2000, Schön, 2010], assortment
optimization [Martı́nez-de Albéniz and Roels, 2011, Honhon et al., 2012] and a variety of
other areas—we exploit connections with this work in Section 5 below.

The conditional logit model is an instance of a more general conditional choice format in
which a user i selects item j ∈ A with unnormalized probability v(xij), for some function v:

P (j|A) =
v(xij)∑
`∈A v(xi`)

. (2)

In the case of the conditional logit, v(xij) = eτu(xij), but any arbitrary v can be used.
Within the ML community, including recommender systems and learning-to-rank, other

choice models are used to explain user choice behavior. For example, cascade models
[Joachims, 2002, Craswell et al., 2008, Kveton et al., 2015] have proven popular as a means
of explaining user browsing behavior through (ordered) lists of recommendations, search
results, etc., and is especially effective at capturing position bias. The standard cascade
model assumes that a user i has some affinity (e.g., perceived utility) uijk for any item
jk; sequentially scans a list of items A = (j1, j2, . . . , jK) in order; and will select (e.g.,
click) an item with probability φ(uijk) for some non-decreasing function φ. If an item is
selected when inspected, no items following will be inspected/selected; and if the last item
is inspected but not selected, then no selection is made. Thus the probability of jk being
selected is:

P (jk|A) =
∏
`<k

(1− φ(uij`))φ(uijk). (3)

Various mechanisms for model estimation, optimization and exploration have been proposed
for the basic cascade model and its variations. Recently, DNN and sequence models have
been developed for explaining user choice behavior in a more general, non-parametric
fashion [Ai et al., 2018, Bello et al., 2018]. As one example, Jiang et al. [2019] proposed a
slate-generation model using conditional variational autoencoders to model the distribution
of slates conditioned on user response, but the scalability requires the use of a pre-trained
item embedding in large domains of the type we consider. However, the CVAE model does
offer considerably flexibility in capturing item interactions, position bias, and other slate
effects that might impact user response behavior.

RL with Combinatorial Action Spaces Designing tractable RL approaches for combina-
torial actions—of which slates recommendations are an example—is itself quite challenging.
Some recent work in recommender systems considered slate-based recommendations (see,
e.g., discussion of Zhao et al. [2018] above, though they do not directly address the com-
binatorics), though most is more general. Sequential DQN [Metz et al., 2017] decomposes
k-dimensional actions into a sequence of atomic actions, inserting fictitious states between
them so a standard RL method can plan a trajectory giving the optimal action configuration.

6

While demonstrated to be useful in some circumstances, the approach trades off the expo-
nential size of the action space with a corresponding exponential increase in the size of the
state space (with fictitious states corresponding to possible sequences of sub-actions).

Sunehag et al. [2015] proposed Slate MDPs which considers slates of primitive actions,
using DQN to learn the value of item slates, and a greedy procedure to construct slates. In fact,
they develop three DQN methods for the problem, two of which manage the combinatorics
of slates by assuming the primitive actions can be executed in isolation. In our setting, this
amounts to the unrealistic assumption that we could “force” a user to consume a specific
item (rather than present them with a slate, from which no item might be consumed). Their
third approach, Generic Full Slate, makes no such assumption, but maintains an explicit Q-
function over slates of items. This means it fails to address the exploration and generalization
problems, and while the greedy optimization (action selection) method used is tractable, it
comes with no guarantees of optimality.

3 An MDP Model for Slate Recommendation

In this section, we develop a Markov decision process (MDP) model for content recommen-
dation with slates. We consider a setting in which a recommender system is charged with
presenting a slate to a user, from which the user selects zero or more items for consumption
(e.g., listening to selected music tracks, reading content, watching video content). Once
items are consumed, the user can return for additional slate recommendations or terminate
the session. The user’s response to a consumed item may have multiple dimensions. These
may include the immediate degree of engagement with the item (e.g., consumption time);
ratings feedback or comments; sharing behavior; subsequent engagement with the content
provider beyond the recommender system’s direct control. In this work, we use degree of
engagement abstractly as the reward without loss of generality, since it can encompass a
variety of metrics, or their combinations.

We focus on session optimization to make the discussion concrete, but our decomposition
applies equally well to any long-term horizon.1 Session optimization with slates can be
modeled as a MDP with states S , actions A, reward function R and transition kernel P , with
discount factor 0 ≤ γ ≤ 1.

The states S typically reflect user state. This includes relatively static user features such
as demographics, declared interests, and other user attributes, as well as more dynamic user
features, such as user context (e.g., time of day). In particular, summaries of relevant user
history and past behavior play a key role, such as past recommendations made to the user;
past user responses, such as recommendations accepted or passed on, the specific items
consumed, and degree of user engagement with those items. The summarization of history is
often domain specific (see our discussion of methodology in Section 8) and can be viewed as
a means of capturing certain aspects of user latent state in a partially observable MDP. The

1Dealing with very extended horizons, such as lifetime value [Theocharous et al., 2015, Hallak et al., 2017], is
often problematic for any RL method; but such issues are independent of the slate formulation and decomposition
we propose.

7

state may also reflect certain general (user-independent) environment variables. We develop
our model assuming a finite state space for ease of exposition, though our experiments and
our methodology admit both countably infinite and continuous state features.

The action space A is simply the set of all possible recommendation slates. We assume a
fixed catalog of recommendable items I , so actions are the subsets A ⊆ I such that |A| = k,
where k is the slate size. We assume that each item a ∈ I and each slateA is recommendable
at each state s for ease of exposition. However, our methods apply readily when certain items
cannot be recommended at particular states by specifying Is for each s ∈ S and restricting
As to subsets of Is. If additional constraints are placed on slates so that As is a strict subset
of the slates defined over Is, these can be incorporated into the slate optimization problem at
both training and serving time.2 We do not account for positional bias or ordering effects
within the slate in this work, though such effects can be incorporated into the choice model
(see below).

To account for the fact that a user may select no item from a slate, we assume that every
slate includes a (k + 1)st null item, denoted ⊥. This is standard in most choice modeling
work and makes it straightforward to specify all user behavior as if induced by a choice from
the slate.

Transition probability P (s′|s,A) reflects the probability that the user transitions to
state s′ when action A is taken at user state s. This generally reflects uncertainty in both
user response and the future contextual or environmental state. One of the most critical
points of uncertainty pertains the probability with which a user will consume a particular
recommended item a ∈ A from the slate. As such, choice models play a critical role in
evaluating the quality of a slate as we detail in the next section.

Finally, the reward R(s,A) captures the expected reward of a slate, which measures the
expected degree of user engagement with items on the slate. Naturally, this expectation must
account for the uncertainty in user response.

Our aim is to find optimal slate recommendation as a function of the state. A (stationary,
deterministic) policy π : S → A dictates the action π(s) to be taken (i.e., slate to recommend)
at any state s. The value function V π of a fixed policy π is:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′). (4)

The corresponding action value, or Q-function, reflects the value of taking an action a at
state s and then acting according to π:

Qπ(s,A) = R(s,A) + γ
∑
s′∈S

P (s′|s,A)V π(s′). (5)

The optimal policy π∗ maximizes expected value V (s) uniformly over S , and its value—

2We briefly describe where relevant adjustments are needed in our algorithms when we present them. We
also note that our methods work equally well when the feasible set of slates As is stochastic (but stationary) as
in [Boutilier et al., 2018].

8

the optimal value function V ∗—is given by the fixed point of the Bellman equation:

V ∗(s) = max
A∈A

R(s,A) + γ
∑
s′∈S

P (s′|s,A)V ∗(s′). (6)

The optimal Q-function is defined similarly:

Q∗(s,A) = R(s,A) + γ
∑
s′∈S

P (s′|s,A)V ∗(s′). (7)

The optimal policy satisfies π∗(s) = arg maxA∈AQ
∗(s,A).

When transition and reward models are both provided, optimal policies and value
functions can be computed using a variety of methods [Puterman, 1994], though generally
these require approximation in large state/action problems [Bertsekas and Tsitsiklis, 1996].
With sampled data, RL methods such as TD-learning [Sutton, 1988], SARSA [Rummery and
Niranjan, 1994, Sutton, 1996] and Q-learning [Watkins and Dayan, 1992] can be used (see
[Sutton and Barto, 1998] for an overview). Assume training data of the form (s,A, r, s′, A′)
representing observed transitions and rewards generated by some policy π. The Q-function
Qπ can be estimated using SARSA updates of the form:

Q(t)(s,A)← α(t)[r + γQ(t−1)(s′, A′)] + (1− α(t))Q(t−1)(s,A), (8)

where Q(t) represents the tth iterative estimate of Qπ and α is the learning rate. SARSA,
Eq. (8), is on-policy and estimates the value of the data-generating policy π. However, if
the policy has sufficient exploration or other forms of stochasticity (as is common in large
recommender systems), acting greedily w.r.t. Qπ, and using the data so-generated to train a
new Q-function, will implement a policy improvement step [Sutton and Barto, 1998]. With
repetition—i.e., if the updatedQπ is used to make recommendations (with some exploration),
from which new training data is generated—the process will converge to the optimal Q-
function. Note that acting greedily w.r.t. Qπ requires the ability to compute optimal slates at
serving time. In what follows, we use the term SARSA to refer to the (on-policy) estimation
of the Q-functionQπ(s, a) of a fixed policy π, i.e., the TD-prediction problem on state-action
pairs.3

The optimal Q-function Q∗ can be estimated directly in a related fashion:

Q(t)(s,A)← α(t)[r + max
A′

γQ(t−1)(s′, A′)] + (1− α(t))Q(t−1)(s,A). (9)

where Q(t) represents the tth iterative estimate of Q∗. Q-learning, Eq. (9), is off-policy
and directly estimates the optimal Q-function (again, assuming suitable randomness in the
data-generating policy π). Unlike SARSA, Q-learning requires that one compute optimal
slates A′ at training time, not just at serving time.

3SARSA is often used to refer to the on-policy control method that includes making policy improvement
steps. We use it simply to refer to the TD-method based on SARSA updates as in Eq. (8).

9

4 SLATEQ: Slate Decomposition for RL

One key challenge in the formulation above is the combinatorial nature of the action space,
consisting of all

(|I|
k

)
· k! ordered k-sets over I. This poses three key difficulties for RL

methods. First, the sheer size of the action space makes sufficient exploration impractical.
It will generally be impossible to execute all slates even once at any particular state, let
alone satisfy the sample complexity requirements of TD-methods. Second, generalization
of Q-values across slates is challenging without some compressed representation. While
a slate could be represented as the collection of features of its constituent items, this im-
poses greater demands on sample complexity; we may further desire greater generalization
capabilities. Third, we must solve the combinatorial optimization problem of finding a
slate with maximum Q-value—this is a fundamental part of Q-learning and a necessary
component in any form of policy improvement. Without significant structural assumptions
or approximations, such optimization cannot meet the real-time latency requirements of
production recommender systems (often on the order of tens of milliseconds).

In this section, we develop SlateQ, a model that allows the Q-value of a slate to be
decomposed into a combination of the item-wise Q-values of its constituent items. This
decomposition exposes precisely the type of structure needed to allow effective exploration,
generalization and optimization. We focus on the SLATEQ decomposition in this section—
the decomposition itself immediately resolves the exploration and generalization concerns.
We defer discussion of the optimization question to Section 5.

Our approach depends to some extent on the nature of the user choice model, but critically
on the interaction it has with subsequent user behavior, specifically, how it influences both
expected engagement (i.e., reward) and user latent state (i.e., state transition probabilities).
We require two assumptions to derive the SLATEQ decomposition.

• Single choice (SC): A user consumes a single item from each slate (which may be
the null item ⊥).

• Reward/transition dependence on selection (RTDS): The realized reward (user
engagement) R(s,A) depends (perhaps stochastically) only on the item i ∈ A con-
sumed by the user (which may also be the null item ⊥). Similarly, the state transition
P (s′|s,A) depends only on the consumed i ∈ A.

Assumption SC implies that the user selection of a subset B ⊆ A from slate A has
P (B|s,A) > 0 only if |B| = 1. While potentially limiting in some settings, in our ap-
plication (see Section 9), users can consume only one content item at a time. Returning to
the slate for a second item is modeled and logged as a separate event, with the user making
a selection in a new state that reflects engagement with the previously selected item. As
such, SC is valid in our setting.4 Letting R(s,A, i) denote the reward when a user in state s,

4Domains in which the user can select multiple items without first engaging with them (i.e., without induced
some change in state) would be more accurately modeled by allowing multiple selection. Our SLATEQ model
can be extended to incorporate a simple correction term to accurately model user selection of multiple items by
assuming conditional independence of item-choice probabilities given A.

10

presented with slate A, selects item i ∈ A, and P (s′|s,A, i) the corresponding probability
of a transition to s′, the SC assumption allows us to express immediate rewards and state
transitions as follows:

R(s,A) =
∑
i∈A

P (i|s,A)R(s,A, i), (10)

P (s′|s,A) =
∑
i∈A

P (i|s,A)P (s′|s,A, i). (11)

The RTDS assumption is also realistic in many recommender systems, especially with
respect to immediate reward. It is typically the case that a user’s engagement with a selected
item is not influenced to a great degree by the options in the slate that were not selected. The
transition assumption also holds in recommender systems where direct user interaction with
items drives user utility, overall satisfaction, new interests, etc., and hence is the primary
determinant of the user’s underlying latent state. Of course, in some recommender domains,
unconsumed items in the slate (say, impressions of content descriptions, thumbnails, clips,
etc) may themselves create, say, future curiosity, which should be reflected by changes in the
user’s latent state. But even in such cases RTDS may be treated as a reasonable simplifying
assumption, especially where such impressions have significantly less impact on the user
than consumed items themselves. The RTDS assumption can be stated as:

R(s,A, i) = R(s,A′, i) = R(s, i), ∀A,A′ containing i, (12)

P (s′|s,A, i) = P (s′|s,A′, i) = P (s′|s, i), ∀A,A′ containing i. (13)

Our decomposition of (on-policy) Q-functions for a fixed data-generating policy π relies
on an item-wise auxiliary function Qπ(s, i), which represents the LTV of a user consuming
an item i, i.e., the LTV of i conditional on it being clicked. Under RTDS, this function is
independent of the slate A from which i was selected. We define:

Q
π
(s, i) = R(s, i) + γ

∑
s′∈S

P (s′|s, i)V π(s′). (14)

Incorporating the SC assumption, we immediately have:

Proposition 1. Qπ(s,A) =
∑

i∈A P (i|s,A)Q
π
(s, i).

Proof. This holds since:

Qπ(s,A) = R(s,A) + γ
∑
s′∈S

P (s′|s,A)V π(s′) (15)

=
∑
i∈A

P (i|s,A)R(s, i) + γ
∑
i∈A

P (i|s,A)
∑
s′∈S

P (s′|s, i)V π(s′) (16)

=
∑
i∈A

P (i|s,A)[R(s, i) + γ
∑
s′∈S

P (s′|s, i)V π(s′)] (17)

=
∑
i∈A

P (i|s,A)Q
π
(s, i). (18)

11

Here Eq. (16) follows immediately from SC and RTDS (see Eqs. (10, 11, 12, 13)) and
Eq. (18) follows from the definition of Qπ (see Eq. 14).

This simple result gives a complete decomposition of slate Q-values into Q-values for
individual items. Thus, the combinatorial challenges disappear if we can learn Qπ(s, i) using
TD methods. Notice also that the decomposition exploits the existence of a known choice
function. But apart from knowing it (and using it our Q-updates that follow), we make
no particular assumptions about the choice model apart from SC. We note that learning
choice models from user selection data is generally quite routine. We discuss specific choice
functions in the next section and how they can be exploited in optimization.

TD-learning of the function Qπ can be realized using a very simple Q-update rule. Given
a consumed item i at s with observed reward r, a transition to s′, and selection of slate
π(s′) = A′, we update Qπ as follows:

Q
π
(s, i)← α(r + γ

∑
j∈A′

P (j|s′, A′)Qπ(s′, j)) + (1− α)Q
π
(s, i). (19)

The soundness of this update follows immediately from Eq. 14.
Our decomposed SLATEQ update facilitates more compact Q-value models, using items

as action inputs rather than slates. This in turn allows for greater generalization and data
efficiency. Critically, while SLATEQ learns item-level Q-values, it can be shown to converge
to the correct slate Q-values under standard assumptions:

Proposition 2. Under standard assumptions on learning rate schedules and state-action
exploration [Sutton, 1988, Dayan, 1992, Sutton and Barto, 1998], and the assumptions on
user choice probabilities, state transitions, and rewards stated in the text above, SLATEQ—
using update (19) and definition of slate value (18)—will converge to the true slate Q-function
Qπ(s,A) and support greedy policy improvement of π.

Proof. (Brief sketch.) Standard proofs of convergence of TD(0), applied to the state-action
Q-function Qπ apply directly, with the exception of the introduction of the direct expectation
over user choices, i.e.,

∑
j∈A′ P (j|s′, A′), rather than the use of sampled choices.5 However,

it is straightforward to show that incorporating the explicit expectation does not impact the
convergence of TD(0) (see, for example, the analysis of expected SARSA [Van Seijen et al.,
2009]). There is some additional impact of user choice on exploration policies as well—if
the choice model is such that some item j has choice probability P (j|s,A) = 0 for any
slates A with π(s) > 0 in some state s, we will not experience user selection of item j at
state s under π (for value prediction of V π this is not problematic, but it is for learning a
Qπ). Thus the exploration policy must account for the choice model, either by sampling all
slates at each state (which is very inefficient), or by configuring exploratory slates that ensure
each item j is sampled sufficiently often. For most common choice models (see discussion
below), every item has non-zero probability of selection, in which case, standard action-level
exploration conditions apply.

5We note that sampled choice could also be used in the full on-policy setting, but is problematic for
optimization/action maximization as we discuss below.

12

Notice that update (19) requires the use of a known choice model. Such choice models
are quite commonly learned in ML-based recommender systems, as we discuss further below
in Section 8. The introduction of this expectation—rather than relying on sampled user
choices—can be viewed as reducing variance in the estimates much like expected SARSA,
as discussed by Sutton and Barto [1998] and analyzed formally by Van Seijen et al. [2009].
Furthermore, it is straightforward to show that the standard SARSA(0) algorithm (with policy
improvement steps) will converge to the optimal Q-function, subject to the considerations
mentioned above, using standard techniques [Singh et al., 2000, Van Seijen et al., 2009].

The decomposition can be applied to Q-learning of the optimal Q-function as well,
requiring only a straightforward modification of Eq. (14) to obtain Q(s, i), the optimal
(off-policy) conditional-on-click item-wise Q-function, specifically, replacing V π(s′) with
V ∗(s′) (the proof is analogous to that of Proposition 1):

Proposition 3. Q(s,A) =
∑

i∈A P (i|s,A)Q(s, i).

Likewise, extending the decomposed update Eq. (19) to full Q-learning requires only
that we introduce the usual maximization:

Q(s, i)← α(r + γ max
A′∈A

∑
j∈A′

P (j|s′, A′)Q(s′, j)) + (1− α)Q(s, i). (20)

As above, it is not hard to show that Q-learning using this update will converge, using
standard techniques [Watkins and Dayan, 1992, Van Seijen et al., 2009] and with similar
considerations to those discussed in the proof sketch of Proposition 2:

Proposition 4. Under standard assumptions on learning rate schedules and sufficient
exploration [Sutton and Barto, 1998], and the assumptions on user choice probabilities,
state transitions, and rewards stated in the text above, SLATEQ—using update (20) and
definition of slate value in Proposition 3—will converge to the optimal slate Q-function
Q∗(s,A).

The decomposition of both the policy-based and optimal Q-functions above accomplishes
two of our three desiderata: it circumvents the natural combinatorics of both exploration and
generalization. But we still face the combinatorics of action maximization: the LTV slate
optimization problem is the combinatorial optimization problem of selecting the optimal
slate fromA, the space of all

(|I|
k

)
k! possible (ordered) k-sets over I . This is required during

training with Q-learning (Eq. (9)) and when engaging in policy improvement using SARSA.
One also needs to solve the slate optimization problem at serving time when executing the
induced greedy policy (i.e., presenting slates with maximal LTV to users given a learned
Q-function). In the next section, we show that exact optimization is tractable and also develop
several heuristic approaches to tackling this problem.

5 Slate Optimization with Q-values

We address the LTV slate optimization in this section. We develop an exact linear program-
ming formulation of the problem in Section 5.1 using (a generalization of) the conditional

13

logit model. In Section 5.2, we describe two computationally simpler heuristics for the
problem, the top-k and greedy algorithms.

5.1 Exact Optimization

We formulate the LTV slate optimization problem as follows:

max
A⊆I
|A|=k

∑
i∈A

P (i|s,A)Q(s, i). (21)

Intuitively, a user makes her choice from the slate based on the perceived properties (e.g.,
attractiveness, quality, topic, utility) of the constituent items. In the LTV slate optimization
problem, we value the selection of an item from the slate based on its LTV or Q-value, rather
than its immediate appeal to the user. As discussed above, we assume access to the choice
model P (i|s,A), since models (e.g., pCTR models) predicting user selection from a slate
are commonly used in myopic recommenders. Of course, the computational solution of the
slate optimization problem depends on the form of the choice model. We discuss the use of
the conditional logit model (CLM) in SLATEQ (and the more general format, Eq. (2)) in this
subsection.

When using the conditional logit model (see Eq. 1), the LTV slate optimization problem
is analogous in a formal sense to, assortment optimization or product line design [Chen
and Hausman, 2000, Schön, 2010, Rusmevichientong and Topaloglu, 2012], in which a
retailer designs or stocks a set of k products whose expected revenue or profit is maximized
assuming that consumers select products based on their appeal (and not their value to the
retailer).6

Our optimization formulation is suited to any general conditional choice model of the
form Eq. (2) (of which the conditional logit is an instance).7 We assume a user in state s
selects item i ∈ A with unnormalized probability v(s, i), for some function v. In the case of
the conditional logit, v(s, i) = eτu(s,i). We can express the optimization Eq. (21) w.r.t. such
a v as a fractional mixed-integer program (MIP), with binary variables xi ∈ {0, 1} for each

6Naturally, there are more complex variants of assortment optimization, including the choice of price,
inclusion of fixed production or inventory costs, etc. There are other conceptual differences with our model as
well. While not a formal requirement, LTV of an item in our setting reflects user engagement, hence reflects
some form of user satisfaction as opposed to direct value to the recommender. In addition, many assortment
optimization models are designed for consumer populations, hence choice probabilities are often reflective of
diversity in the population (though random selection by individual consumers is sometimes considered as well;
by contrast, in the recommender setting, choice probabilities are usually dependent on the features of individual
users and typically reflect the recommender’s uncertainty about a user’s immediate intent or context.

7We note that since the ordering of items within a slate does not impact choice probabilities in this model,
the action (or slate) space consists of the

(I
k

)
unordered k-sets in this case.

14

item i ∈ I indicating whether i occurs in slate A:

max
∑
i∈I

xiv(s, i)Q(s, i)

v(s,⊥) +
∑

j xjv(s, j)
(22)

s.t.
∑
i∈I

xi = k; xi ∈ {0, 1}, ∀i ∈ I. (23)

This is a variant of a classic product-line (or assortment) optimization problem [Chen and
Hausman, 2000, Schön, 2010]. Our problem is somewhat simpler since there are no fixed
resource costs or per-item costs.

Chen and Hausman [2000] show that that the binary indicators in this MIP can be relaxed
to obtain the following fractional linear program (LP):

max
∑
i∈I

xiv(s, i)Q(s, i)

v(s,⊥) +
∑

j xjv(s, j)
(24)

s.t.
∑
i∈I

xi = k; 0 ≤ xi ≤ 1, ∀i ∈ I. (25)

The constraint matrix in this relaxed problem is totally unimodular, so the optimal (vertex)
solution is integral and standard non-linear optimization methods can be used. However,
since it is a fractional LP, it is directly amenable to the Charnes-Cooper 1962 transformation
and can be recast directly as a (non-fractional) LP. To do so, we introduce an additional
variable t that implicitly represents the inverse choice weight of the selected items t =
(v(s,⊥) +

∑
j xjv(s, j))−1, and auxiliary variables yi that represent the products xi ·

(v(s,⊥) +
∑

j xjv(s, j))−1, giving the following LP:

max
∑
i

yiv(s, i)Q(s, i) (26)

s.t. tv(s,⊥) +
∑
i

yiv(s, i) = 1 (27)

t ≥ 0;
∑
i

yi ≤ kt. (28)

The optimal solution (y∗, t∗) to this LP yields the optimal xi assignment in the fractional
LP Eq. (24) via xi = y∗i /t

∗, which in turn gives the optimal slate in the original fractional
MIP Eq. (22)—just add any item to the slate where y∗i > 0. This formulation applies equally
well to the MNL model, or related random utility models. The slate optimization problem is
now immediately proven to be polynomial-time solvable.

Observation 5. The LTV slate optimization problem Eq. 21, under the general conditional
choice model (including the conditional logit model), is solvable in polynomial-time in the
number of items |I| (assuming a fixed slate size k).

15

Thus full Q-learning with slates using the SLATEQ decomposition imposes at most a
small polynomial-time overhead relative to item-wise Q-learning despite its combinatorial
nature. We also note that many production recommender systems limit the set of items to be
ranked using a separate retrieval policy, so the set of items to consider in the LP is usually
much smaller than the complete item set. We discuss this further below in Section 8.

5.2 Top-k and Greedy Optimization

While the exact maximization of slates under the conditional choice model can be accom-
plished in polynomial-time using Q and the item-score function v, we may wish to avoid
solving an LP at serving time. A natural heuristic for constructing a slate is to simply add
the k items with the highest score. In our top-k optimization procedure, we insert items into
the slate in decreasing order of the product v(s, i)Q(s, i).8 This incurs only a O(log(I))
overhead relative to the O(I) time required for maximization for item-wise Q-learning.

One problem with top-k optimization is the fact that, when considering the item to
add to the Lth slot (for 1 < L ≤ k), item scores are not updated to reflect the previous
L− 1 items already added to the slate. Greedy optimization, instead of scoring each item
ab initio, updates item scores with respect to the current partial slate. Specifically, given
A′ = {i(1), . . . i(L−1)} of size L−1 < k, the Lth item added is that with maximum marginal
contribution:

arg max
i 6∈A′

v(s, i)Q(s, i) +
∑

`<L v(s, i(`))Q(s, i(`))

v(s, i) + v(s,⊥) +
∑

`<L v(s, i(`))
.

We compare top-k and greedy optimizations with the LP solution in our offline simulation
experiments below.

Under the general conditional choice model (including for the conditional logit model),
neither top-k nor greedy optimization will find the optimal solution as following counterex-
ample illustrates:

Item Score (v(s, i)) Q-value
⊥ 1 0
a 2 0.8

b1, b2 1 1

The null item is always on the slate. Items b1, b2 are identical w.r.t. their behavior. We
have V ({a}) = 1.6/3, greater than V ({bi}) = 1/2. Both top-k and greedy will place a on
the slate first. However, V ({a, bi}) = 2.6/4, whereas the optimal slate {b1, b2} is valued at
2/3. So for slate size k = 2, neither top-k nor greedy find the optimal slate.

While one might hope that the greedy algorithm provides some approximation guarantee,
the set function is not submodular, which prevents standard analyses (e.g., [Nemhauser
et al., 1978, Feige, 1998, Buchbinder et al., 2014]) from being used. The following example
illustrates this.

8Top-k slate construction is quite common in slate-based myopic recommenders. It has recently been used in
LTV optimization as well [Chen et al., 2018].

16

Item Score (v(s, i)) Q-value
⊥ 1 10
a 1 10
b 2 ε

We have expected values of the following item sets: V (∅) = 10;V ({a}) = 10;V ({b}) =
(10 + ε)/3;V ({a, b}) = 5 + ε/2. The fact that V ({a}) − V (∅) < V ({a, b}) − V ({b})
demonstrates lack of submodularity (the set function is also not monotone).9

While we have no current performance guarantees for greedy and top-k, it’s not hard to
show that top-k can perform arbitrarily poorly.

Observation 6. The approximation ratio of top-k optimization for slate construction is
unbounded.

The following example demonstrates this.

Item Score (v(s, i)) Q-value
⊥ ε 0
a ε 1
b 1 ε

Suppose we have k = 1. Top-k scores item b higher than a, creating the slate with value
V ({b}) = ε/(1 + ε), while the optimal slate has value V ({a}) = 1/2.

5.3 Algorithm Variants

With a variety of slate optimization methods at our disposal, many variations of RL algorithms
exist depending on the optimization method used during training and serving. Given a trained
SLATEQ model, we can apply that model to serve users using either top-k, greedy or the
LP-based optimal method to generate recommended slates. Below we use the designations
TS, GS, or OS to denote these serving protocols, respectively. These designations apply
equally to (off-policy) Q-learned models, (on-policy) SARSA models, and even (non-RL)
myopic models.10

During Q-learning, slate optimization is also required at training time to compute the
maximum successor state Q-value (Eq. 20). This can also use either of the three optimization
methods, which we designate by TT, GT, and OT for top-k, greedy and optimal LP training,
respectively. This designation is not applicable when training a myopic model or SARSA
(since SARSA is trained only on-policy). This gives us the following collection of algorithms.
For Q-learning, we have:

9It is worth observing that without our exact cardinality constraint (sets must have size k), the optimal set
under MNL can be computed in a greedy fashion [Talluri and van Ryzin, 2004] (the analysis also applies to the
conditional logit model).

10A myopic model is equivalent to a Q-learned model with γ = 0.

17

Serving
Top-k Greedy LP (Opt)

Training
Top-k QL-TT-TS QL-TT-GS QL-TT-OS

Greedy QL-GT-TS QL-GT-GS QL-GT-OS
LP (Opt) QL-OT-TS QL-OT-GS QL-OT-OS

For SARSA and Myopic recommenders, we have:

Serving SARSA Myopic
Top-k SARSA-TS MYOP-TS

Greedy SARSA-GS MYOP-GS
LP (Opt) SARSA-OS MYOP-OS

In our experiments below we also consider two other baselines: Random, which rec-
ommends random slates from the feasible set; and full-slate Q-learning (FSQ), which
is a standard, non-decomposed Q-learning method that treats each slate atomically (i.e.,
holistically) as a single action. The latter is a useful baseline to test whether the SLATEQ
decomposition provides leverage for generalization and exploration.

5.4 Approaches for Other Choice Models

The SLATEQ decomposition works with any choice model that satisfies the assumptions
SC and RTDS, though the form of the slate optimization problem depends crucially on the
choice model. To illustrate, we consider the cascade choice model outlined in Section 2
(see, e.g., Eq. (3)). Notice that the cascade model, unlike the general conditional choice
model, has position-dependent effects (i.e., reordering of items in the slate changes selection
probabilities and the expected LTV of the slate). However, it is not hard to show that the
cascade model exhibits a form of “ordered submodularity” if we assume that the LTV or
conditional Q-value of not selecting from the slate is no greater that the Q-value of selecting
any item on the slate, i.e., if Q(s, i) ≥ Q(s,⊥) for all i ∈ I.11 Specificially, the value of
the marginal increase in value induced by adding item i`+1 to the (ordered) partial slate
(i1, i2, . . . i`) is no greater than the increase in value of adding i`+1 to a prefix of that slate
(i1, i2, . . . ij) for any j < `. Thus top-k optimization can be used to support training and
serving of the SLATEQ approach under the cascade model.12

While the general conditional choice model is order-independent, in practice, it may be
the case that users incorporate some elements of a cascade-like model into the conditional
choice model. For example, users may devote a random amount of time t or effort to inspect
a slate of k recommended items, compare the top k′ ≤ k items, where k′ = F (t) is some
function of the available time, and select (perhaps noisily) the most preferred item from
among those inspected. This model would be a reasonable approximation of user behavior

11The statements to follow hold under the weaker condition that, for all states s, there are at least k items
is1, . . . i

s
k such that Q(s, isj) ≥ Q(s,⊥), ∀j ≤ k (where k is the slate size).

12It is also not hard to show that top-k is not optimal for the cascade model.

18

in the case of recommenders that involve scrolling interfaces for example. In such a case,
we end up with a distribution over slate sizes. A natural heuristic for the conditional choice
model would be, once the k-slate is selected, to order the items on slate based their top-k
or greedy scores to increase the odds that the random slate actually observed by the user
contains items that induce highest expected long-term engagement.

6 User Simulation Environment

We discuss experiments with the various SLATEQ algorithms in Section 7, using a simulation
environment that, though simplified and stylized, captures several essential elements of a
typical recommender system that drive a need for the long/short-term tradeoffs captured by
RL methods. In this section, we describe the simulation environment and models used to test
SLATEQ in detail. We describe the environment setup in a fairly general way, as well as the
specific instantiations used in our experiments, since the simulation environment may be of
broader interest.

6.1 Document and Topic Model

We assume a set of documents D representing the content available for recommendation. We
also assume a set of topics (or user interests) T that capture fundamental characteristics of
interest to users; we assume topics are indexed 1, 2, . . . |T |. Each document d ∈ D has an
associated topic vector d ∈ [0, 1]|T |, where dj is the degree to which d reflects topic j.

In our experiments, for simplicity, each document d has only a single topic T (d),
so d = ei for some i ≤ |T | (i.e., we have a one-hot encoding of the document topic).
Documents are drawn from content distribution PD over topic vectors, which in our one-hot
topic experiments is simply a distribution over individual topics.

Each document d ∈ D also has a length `(d) (e.g., length of a video, music track or
news article). This is sometime used as one factor in assessing potential user engagement.
While the model supports documents of different lengths, in our experiments, we assume
each document d has the same constant length `.

Documents also have an inherent quality Ld, representing the topic-independent attrac-
tiveness to the average user. Quality varies randomly across documents, with document d’s
quality distributed according to N (µT (d), σ

2), where µt is a topic-specific mean quality for
any t ∈ T . For simplicity, we assume a fixed variance across all topics. In general, quality
can be estimated over time from user responses as we discuss below; but in our experiments,
we assume Ld is observable to the recommender system (but not to the user a priori, see
below). Quality may also be user-dependent, though we do not consider that here, since the
focus of our stylized experiments is on the ability of our RL methods to learn average quality
at the topic level. Both the topic and quality of a consumed document impact long-term user
behavior (see Section 6.4 below).

In our experiments, we use T = 20 topics, while the precise number of documents |D|
is immaterial as we will see. Of these, 14 topics are low quality, with their mean quality

19

evenly distributed across the interval µt ∈ [−3, 0]. The remaining 6 topics are high quality,
with their mean quality evenly distributed across the interval µt ∈ [0, 3].

6.2 User Interest and Satisfaction Models

Users u ∈ U have various degrees of interests in topics, ranging from −1 (completely
uninterested) to 1 (fully interested), with each user u associated with an interest vector
u ∈ [−1, 1]|T |. User u’s interest in document d is given by the dot product I(u, d) = ud.
We assume some prior distribution PU over user interest vectors, but user u’s interest vector
is dynamic, i.e., influenced by their document consumption (see below). To focus on how
our RL methods learn to influence user interests and the quality of documents consumed, we
treat a user’s interest vector u as fully observable to the recommender system. In general,
user interests are latent, and a partially observable/belief state model is more appropriate.

A user’s satisfaction S(u, d) with a consumed document d is a function f(I(u, d), Ld)
of user u’s interest and document d’s quality. While the form of f may be quite complex
in general, we assume a simple convex combination S(u, d) = (1 − α)I(u, d) + αLd.
Satisfaction influences user dynamics as we discuss below.

In our experiments, a new user u’s prior interest u is sampled uniformly from u ∈
[−1, 1]|T |; specifically, there is no prior correlation across topics. We use an extreme value of
α = 1.0 so that a user’s satisfaction with a consumed document is fully dictated by document
quality. This leaves user interest only to drive the selection of the document from the slate
which we describe next.

6.3 User Choice Model

When presented with a slate of k documents, a user choice model impacts which document
(if any) from the slate is consumed by the user. We assume that a user can observe any
recommended document’s topic prior to selection, but cannot observe its quality before
consumption. However, the user will observe the true document quality after consuming it.
While somewhat stylized, this treatment of topic and quality observability (from the user’s)
perspective is reasonably well-aligned with the situation in many recommendation domains.

The general simulation environment allows arbitrary choice functions to be defined as
a function of user’s state (interest vector, satisfaction) and the features of the document
(topic vector, quality) in the slate. In our experiments, we use the general conditional choice
model (Eq. (2)) as the main model for our RL methods. User u’s interest in document d,
I(u, d) = ud, defines the document’s relative appeal to the user and serves as the basis of
the choice function. For slates of size k, the null document ⊥ is always added as a (k + 1)st
element, which (for simplicity) has a fixed utility across all users.

We also use a second choice model in our experiments, an exponential cascade model
[Joachims, 2002], that accounts for document position on a slate. This choice model assumes
“attention” is given to one document at a time, with exponentially decreasing attention given
to documents as a user moves down the slate. The probability that the document in position j
is inspected is β0βj , where β0 is a base inspection probability and β is the inspection decay.

20

If a document is given attention, then it is selected with a base choice probability P (u, d); if
the document in position j is not examined or selected/consumed, then the user proceeds to
the (j + 1)st document. The probability that the document in position j is consumed is:

P (j, A) = β0β
jP (u, d).

While we don’t optimize for this model, we do run experiments in which the recommender
learns a policy that assumed the general conditional choice model, but users behave according
to the cascade model. In this case, the base choice probability P (u, d) for a document in
the cascade model is set to be its normalized probability in the conditional choice model.
While the cascade model allows for the possibility of no click, even without the fictitious
null document ⊥, we keep the null document to allow the probabilities to remain calibrated
relative to the conditional model. In our experiments, we use β0 = 1.0 and β = 0.65.

6.4 User Dynamics

To allow for a non-myopic recommendation algorithm—in our case, RL methods—to
impact overall user engagement positively, we adopt a simple, but natural model of session
termination. We assume each user u has an initial budget Bu of time to engage with content
during an extended session. This budget is not observable to the recommender system, and is
randomly realized at session initiation using some prior P (B).13 Each document d consumed
reduces user u’s budget by the fixed document length `. But after consumption, the quality of
the document (partially) replenishes the used budget where the budget decreases by the fixed
document length ` less a bonus b < ` that increases with the document’s appeal S(u, d). In
effect, more satisfying documents decrease the time remaining in a session at a lower rate. In
particular, for any fixed topic, documents with higher quality have a higher positive impact
on cumulative engagement (reduce budget less quickly) than lower quality documents. A
session ends once Bu reaches 0. Since sessions terminate with probability 1, discounting is
unnecessary.

In our experiments, each user’s initial budget is Bu = 200 units of time; each consumed
document uses ` = 4 units; and if a slate is recommended, but no document is clicked, 0.5
units are consumed. We set bonus b = 0.9

3.4 · ` · S(u, d).
The second aspect of user dynamics allows user interests to evolve as a function of

the documents consumed. When user u consumes document d, her interest in topic T (d)
is nudged stochastically, biased slightly towards increasing her interest, but allows some
chance of decreasing her interest. Thus, a recommender faces a short-term/long-term tradeoff
between nudging a user’s interests toward topics that tend to have higher quality at the
expense of short-term consumption of user budget.

We use the following stylized model to set the magnitude of the adjustment—how much
the interest in topic T (d) changes—and its polarity—whether the user’s interest in topic
T (d) increases or decreases. Let t = T (d) be the topic of the consumed document d and It

13Naturally, other models that do not use terminating sessions are possible, and could emphasize amount of
engagement per period.

21

be user u’s interest in topic t prior to consumption of document d. The (absolute) change in
user u’s interest is ∆t(It) = (−y|It|+ y) · −It, where y ∈ [0, 1] denotes the fraction of the
distance between the current interest level and the maximum level (1,−1) that the update
move user u’s interest. This ensures that more entrenched interests change less than neutral
interests.

In our experiments we set y = 0.3. A positive change in interest, It ← It + ∆t(It),
occurs with probability [I(u, d) + 1]/2, and a negative change, It ← It − ∆t(It), with
probability [1 − I(u, d)]/2. Thus positive (resp., negative) interests are more likely to be
reinforced, i.e., become more positive (resp., negative), with the odds of such reinforcement
increasing with the degree of entrenchment.

6.5 Recommender System Dynamics

At each stage of interaction with a user, m candidate documents are drawn from PD, from
which a slate of size k must be selected for recommendation. This reflects the common situa-
tion in many large-scale commercial recommenders in which a variety of mechanisms are
used to sub-select a small set of candidates from a massive corpus, which are in turn scored
using more refined (and computationally expensive) predictive models of user engagement.

In our simulation experiments, we use m = 10 and k = 3. This small set of candidate
documents and the small slate size is used to allow explicitly enumeration of all slates, which
allows us to compare SLATEQ to RL methods like Q-learning that do not decompose the
Q-function. In our live experiments with the YouTube platform (see Section 9), slates are of
variable size and the number of candidates is on the order of O(1000).

7 Empirical Evaluation: Simulations

We now describe several sets of results designed to assess the impact of the SLATEQ
decomposition. Our simulation environment is implemented in a general fashion, supporting
many of the general models and behaviors described in the previous sections. Our RL
algorithms, both those using SLATEQ and FSQ, are implemented using Dopamine [Castro
et al., 2018]. We use a standard two-tower architecture with stacked fully connected layers
to represent user state and document. Updates to the Q-models are done online by batching
experiences from user simulations. Each training-serving strategy is evaluated over 5000
simulated users for statistical significance. All results are within a 95% confidence interval.

7.1 Myopic vs. Non-myopic Recommendations

We first test the quality of (non-myopic) LTV policies learned using SLATEQ to optimize
engagement (γ = 1), using a selection of the SLATEQ algorithms (SARSA vs. Q-learning,
different slate optimizations for training/serving). We compare these to myopic scoring
(MYOP) (γ = 0), which optimizes only for immediate reward, as well as a Random policy.
The goal of these comparisons is to identify whether optimizing for long-term engagement

22

using RL (either Q-learning or 1-step policy improvement via SARSA) provides benefit over
myopic recommendations.

The following table compares several key metrics of the final trained algorithms (all
methods use 300K training steps):

Strategy Avg. Return (%) Avg. Quality (%)
Random 159.2 -0.5929

MYOP-TS 166.3 (4.46%) -0.5428 (8.45%)

MYOP-GS 166.3 (4.46%) -0.5475 (7.66%)

SARSA-TS 168.4 (5.78%) -0.4908 (17.22%)

SARSA-GS 172.1 (8.10%) -0.3876 (34.63%)

QL-TT-TS 168.4 (5.78%) -0.4931 (16.83%)

QL-GT-GS 172.9 (8.61%) -0.3772 (36.38%)

QL-OT-TS 169.0 (6.16%) -0.4905 (17.27%)

QL-OT-GS 173.8 (9.17%) -0.3408 (42.52%)

QL-OT-OS 174.6 (9.67%) -0.3056 (48.46%)

The LTV methods (SARSA and Q-learning) using SLATEQ offer overall improvements
in average return per user session. The magnitude of these improvements only tells part
of the story: we also show percentage improvements relative to Random are shown in
parentheses—Random gives a sense of the baseline level of cumulative reward that can be
achieved without any user modeling at all. For instance, relative to the random baseline, QL-
OT-GS provides a provides a 105.6% greater improvement than MYOP. The LTV methods
all learn to recommend documents of much higher quality than MYOP, which has a positive
impact on overall session length, which explains the improved return per user.

We also see that LP-based slate optimization during training (OT) provides improvements
over top-k and greedy optimization (TT, GT) in Q-learning when comparing similar serving
regimes (e.g., QL-OT-GS vs. QL-GT-GS , and QL-OT-TS vs. QL-TT-TS). Optimal serving
(OS) also shows consistent improvement over top-k and greedy serving—and greedy serving
(GS) improves significantly over top-k serving (TS)—when compared under the same
training regime. However, the combination of optimal training and top-k or greedy serving
performs well, and is especially useful when serving latency constraints are tight, since
optimal training is generally done offline.

Finally, optimizing using Q-learning gives better results than on-policy SARSA (i.e.,
one-step improvement) under comparable training and serving regimes. But SARSA itself
has significantly higher returns than MYOP, demonstrating the value of on-policy RL for
recommender systems. Indeed, repeatedly serving-then-training (with some exploration)
using SARSA would implement a natural, continual policy improvement. These results
demonstrate, in this simple synthetic recommender system environment, that using RL to
plan long-term interactions can provide significant value in terms of overall engagement.

23

7.2 SLATEQ vs. Holistic Optimization

Next we compare the quality of policies learned using the SLATEQ decomposition to FSQ,
the non-decomposed Q-learning method that treats each slate atomically as a single action.
We set |T | = 20, m = 10, and k = 3 so that we can enumerate all

(
10
3

)
slates for FSQ

maximization. Note that the Q-function for FSQ requires representation of all
(
20
3

)
= 1140

slates as actions, which can impede both exploration and generalization. For SLATEQ we
test only SARSA-TS (since this is the method tested in our live experiment below). The
following table shows our results:

Avg. Return (%) Avg. Quality (%)
Random 160.6 -0.6097

FSQ 164.2 (2.24%) -0.5072 (16.81%)

SARSA-TS 170.7 (6.29%) -0.5340 (12.41%)

While FSQ, which is an off-policy Q-learning method, is guaranteed to converge to
the optimal slate policy in theory with sufficient exploration, we see that, even using an
on-policy method like SARSA with a single step of policy improvement, SLATEQ methods
perform significantly better than FSQ, offering a 180% greater improvement over Random
than FSQ. This is the case despite SLATEQ using no additional training-serving iterations
to continue policy improvement. This is due to the fact that FSQ must learn Q-values for
1140 distinct slates, making it difficult to explore and generalize. FSQ also takes roughly 6X
the training time of SLATEQ over the same number of events. These results demonstrate the
considerable value of the SLATEQ decomposition.

Improved representations could help FSQ generalize somewhat better, but the approach
is inherently unscalable, while SLATEQ suffers from no such limitations (see live experiment
below). Interestingly, FSQ does converge quickly to a policy that offers recommendations of
greater average quality than SLATEQ, but fails to make an appropriate tradeoff with user
interest.

7.3 Robustness to User Choice

Finally, we test the robustness of SLATEQ to changes in the underlying user choice model.
Instead of the assumed choice model defined above, users select items from the recommended
slate using a simple (exponential) cascade model, where items on the slate are inspected
from top-to-bottom with a position-specific probability, and consumed with probability
proportional to I(u, d) if inspected. If not consumed, the next item is inspected. Though
users act in this fashion, SLATEQ is trained using the original conditional choice model and
the same decomposition is also used to optimize slates at serving time.

The following table shows results:

24

Strategy Avg. Return (%) Avg. Quality (%)
Random 159.9 -0.5976

MYOP-TS 163.6 (2.31%) -0.5100 (14.66%)

SARSA-TS 166.8 (4.32%) -0.4171 (30.20%)

QL-TT-TS 166.5 (4.13%) -0.4227 (29.27%)

QL-OT-TS 167.5 (4.75%) -0.3985 (33.32%)

QL-OT-OS 167.6 (4.82%) -0.3903 (34.69%)

SLATEQ continues to outperform MYOP, even when the choice model does not accu-
rately reflect the true environment, demonstrating its relative robustness. SLATEQ can be
used with other choice models. For example, SLATEQ can be trained by assuming the cas-
cade model, with only the optimization formulation requiring adaptation (see our discussion
in Section 5.4). But since any choice model will generally be an approximation of true user
behavior, this form of robustness is critical.

Notice that QL-TT and SARSA have inverted relative performance compared to the
experiments above. This is due to the fact that Q-learning exploits the (incorrect) choice
model to optimize during training, while SARSA, being on-policy, only uses the choice
model to compute expectations at serving time. This suggests that an on-policy control
method like SARSA (with continual policy improvement) may be more robust than Q-
learning in some settings.

8 A Practical Methodology

The deployment of a recommender system using RL or TD methods to optimize for long-
term user engagement presents a number of challenges in practice. In this section, we identify
several of these and suggest practical techniques to resolve them, including ways in which
to exploit an existing myopic, item-level recommender to facilitate the deployment of a
non-myopic system.

Many (myopic) item-level recommender systems [Liu et al., 2009, Covington et al.,
2016] have the following components:

(i) Logging of impressions and user feedback;

(ii) Training of some regression model (e.g., DNN) to predict user responses for user-item
pairs, which are then aggregated by some scoring function;

(iii) Serving of recommendations, ranking items by score (e.g., returning the top k items
for recommendation).

Such a system can be exploited to quickly develop a non-myopic recommender system based
on Q-values, representing some measure of long-term engagement, by addressing several
key challenges.

25

8.1 State Space Construction

A critical part of any RL modeling is the design of the state space, that is, the development of
a set of features that adequately capture a user’s past history to allow prediction of long-term
value (e.g., engagement) in response to a recommendation. For the underlying process to
be a MDP, the feature set should be (at least approximately) predictive of immediate user
response (e.g., immediate engagement, hence reward) and self-predictive (i.e., summarizes
user history in a way that renders the implied dynamics Markovian).

The features of an extant myopic recommender system typically satisfy both of these
requirements, meaning that an RL or TD model can be built using the same logged data
(organized into trajectories) and the same featurization. The engineering, experimentation
and experience that goes into developing state-of-the-art recommender systems means that
they generally capture (almost) all aspects of history required to predict immediate user
responses (e.g., pCTR, listening time, other engagement metrics); i.e., they form a sufficient
statistic. In addition, the core input features (e.g., static user properties, summary statistics
of past behavior and responses) are often self-predictive (i.e., no further history could
significantly improve next state prediction). This fact can often be verified by inspection
and semantic interpretation of the (input) features. Thus, using the existing state definition
provides a natural, practical way to construct TD or RL models. We provide experimental
evidence below to support this assertion in Section 9.

8.2 Generalization across Users

In the MDP model of a recommender system, each user should be viewed as a separate
environment or separate MDP. However, it is critical to allow for generalization across users,
since few if any users generate enough experience to allow reasonable recommendations
otherwise. Of course, such generalization is a hallmark of almost any recommender system.
In our case, we must generalize the (implicit) MDP dynamics across users. The state
representation afforded by an extant myopic recommender system is already intended to do
just this, so by learning a Q-function that depends on the same user features and the myopic
system, we obtain the same form of generalization.

8.3 User Response Modeling

As noted in Sections 4 and 5, SLATEQ takes advantage of some measure of immediate item
appeal or utility (conditioned on a specific user or state) to determine user choice behavior.
In practice, since myopic recommender systems often predict these immediate responses,
for example, using pCTR models, we can use these models directly to assess the immediate
appeal v(s, i) required by our SLATEQ choice model. For instance, we can use a myopic
model’s pCTR predictions directly as a (unnormalized) choice probabilities for items in
a slate, or we can use the logits of such a model in the conditional logit choice model.
Furthermore, by using the same state features (see above), it is straightforward to build
a multi-task model [Zhang and Yang, 2017] that incorporates our long-term engagement

26

Regression

Ranking
Example

User Label

Logging

Affect

Logging

LTV Label

LTV Label
Generation

LTV Component

Figure 1: Schematic View of a Non-myopic Recommender Training System

prediction with other user response predictions.

8.4 Logging, Training and Serving Infrastructure

The training of long-term values Qπ(s, a) requires logging of user data, and live serving
of recommendations based on these LTV scores. The model architecture we detail below
exploits the same logging, (supervised) training and serving infrastructure as used by the
myopic recommender system.

Fig. 1 illustrates the structure of our LTV-based recommender system—here we focus on
SARSA rather than Q-learning, since our long-term experiment in Section 9 uses SARSA.
In myopic recommender systems, the regression model predicts immediate user response
(e.g., clicks, engagement), while in our non-myopic recommender system, label generation
provides LTV labels, allowing the regressor to model Qπ(s, a).

Models are trained periodically and pushed to the server. The ranker uses the latest model
to recommend items and logs user feedback, which is used to train new models. Using LTV
labels, iterative model training and pushing can be viewed as a form of generalized policy
iteration [Sutton and Barto, 1998]. Each trained DNN represents the value of the policy that
generated the prior batch of training data, thus training is effectively policy evaluation. The
ranker acts greedily with respect to this value function, thus performing policy improvement.

LTV label generation is similar to DQN training [Mnih et al., 2015]. A main network
learns the LTV of individual items, Qπ(s, a)—this network is easily extended from the
existing myopic DNN. For stability, bootstrapped LTV labels (Q-values) are generated using
a separate label network. We periodically copy the weights of the main network to the label
network and use the (fixed) label networkQlabel(s, a) to compute LTV labels between copies.
LTV labels are generated using Eq. (19).

27

9 Empirical Evaluation: Live Experiments

We tested the SLATEQ decomposition—specifically, the SARSA-TS algorithm, on YouTube
(https://www.youtube.com/), a large-scale video recommender with O(109) users
andO(108) items in its corpus. The system is typical of many practical recommender systems
with two main components. A candidate generator retrieves a small subset (hundreds) of
items from a large corpus that best match a user context. The ranker scores/ranks candidates
using a DNN with both user context and item features as input. It optimizes a combination
of several objectives (e.g., clicks, expected engagement, several other factors).

The extant recommender system’s policy is myopic, scoring items for the slate using
their immediate (predicted) expected engagement. In our experiments, we replace the myopic
engagement measure with an LTV estimate in the ranker scoring function. We retain other
predictions and incorporate them into candidate scoring as in the myopic model. Our
non-myopic recommender system maximizes cumulative expected engagement, with user
trajectories capped at N days. Since homepage visits can be spaced arbitrarily in time, we
use time-based rather than event-based discounting to handle credit assignment across large
time gaps. If consecutive visits occur at times t1 and t2, respectively, the relative discount
of the reward at t2 is γ(t2−t1)/c, where c is a parameter that controls the time scale for
discounting.

Our model extends the myopic ranker using the practical methodology outlined in
Section 8. Specifically, we learn a multi-task feedforward deep network [Zhang and Yang,
2017], which learns Q(s, i), the predicted long-term engagement of item i (conditional
on being clicked) in state s, as well as the immediate appeal v(s, i) for pCTR/user choice
computation (several other response predictions are learned, which are identical to those
used by the myopic model). The multi-task feedforward DNN network has 4 hidden layers of
sizes 2048, 1024, 512, 256; and used ReLU activation functions on each of the hidden layers.
Apart from the LTV/Q-value head, other heads include pCTR, and other user responses.
To validate our methodology, the DNN structure and all input features are identical to the
production model which optimizes for short-term (myopic) immediate reward. The state is
defined by user features (e.g., user’s past history, behavior and responses, plus static user
attributes). This also makes the comparison with the baseline fair.

The full training algorithm used in our live experiment is shown in Algorithm 1. The
model is trained using TensorFlow in a distributed training setup [Abadi et al., 2015] using
stochastic gradient descent. We train on-policy over pairs of consecutive start page visits,
with LTV labels computed using Eq. 19, and use top-k optimization for serving—i.e., we
test SARSA-TS. The existing myopic recommender system (baseline) also builds slates
greedily—i.e., MYOP-TS.

We note that at serving time, we don’t just choose the slate using the top-k method, we
also order the slate presented to the user according to the item scores v(s, i)Q

π
(s, i) for each

item i (at state s). The reason for this is twofold. First, we expect that the user experience is
positively impacted by placing more appealing items, that are likely to induce longer-term
engagement, earlier in the slate. Second, the scrolling nature of the interface means that the

28

Algorithm 1 On-policy SLATEQ for Live Experiments
1: Parameters:

• T : the number of iterations.

• M : the interval to update label network.

• γ: discount rate.

• θmain: the parameter for the main neural network.

• Qmain: that predicts items’ long-term value.

• θlabel: the parameter for the label neural network Qlabel.

• θpctr: the parameter for the neural network that predicts items’ pCTR.
2: Input: Dtraining = (s,A,C, Lmyopic, s

′, A′): the training data set.
• s: current state features

• A = (a1, ..., ak): recommended slate of items in current state; ai denotes item
features

• C = (c1, ..., ck): ci denotes whether item ai is clicked

• Lmyopic = (l1myopic, ..., l
k
myopic): myopic (immediate) labels

• s′: next state features

• A′ = (a′1, ..., a
′
k): recommended slate of items in next state.

3: Output: Trained Q-network Qmain that predicts items’ long-term value.
4: Initialization θlabel = 0, θmain randomly, θpctr randomly
5: for i = 1 . . . T do
6: if i mod M = 0 then
7: θlabel ← θmain
8: end if
9: for each example (s,A,C, Lmyopic, s

′, A′) ∈ Dtraining do
10: for each item ai ∈ A do
11: update θpctr using click label ci
12: if ai is clicked then
13: probability: pCTR(s′, a′i, A

′)← pCTR(s′, a′i)/
∑

a′i∈A
pctr(s′, a′i)

14: LTV label: liltv ← limyopic +
∑

a′i∈A′ pCTR(s′, a′i, A
′)Qlabel(s

′, a′i)

15: update θmain using LTV label liltv
16: end if
17: end for
18: end for
19: end for

29

day 1
day 3

day 5
day 7

day 9
day 11

day 13
day 15

day 17
day 19

day 21

0.2

0.4

0.6

0.8

1.0

1.2

%
 c

ha
ng

e
in

 a
gg

re
ga

te
d

us
er

 e
ng

ag
em

en
t r

el
at

iv
e

to
 c

on
tro

l

Figure 2: Increase in user engagement over the baseline. Data points are statistically signifi-
cant and within 95% confidence intervals.

slate size k is not fixed at serving time—the number of inspected items varies per user-event
(see discussion in Section 5.4).

We experimented with live traffic for three weeks, treating a small, but statistically
significant, fraction of users to recommendations generated by our SARSA-TS LTV model.
The control is a highly-optimized production machine learning model that optimizes for
immediate engagement (MYOP-TS). Fig. 2 shows the percentage increase in aggregate
user engagement using LTV over the course of the experiment relative to the control, and
indicates that our model outperformed the baseline on the key metric under consideration,
consistently and significantly. Specifically, users presented recommendations by our model
had sessions with greater engagement time relative to baseline.

Fig. 3 shows the change in distribution of cumulative engagement originating from items
at different positions in the slate. Recall that the number of items viewed in any user-event
varies, i.e., experienced slates are of variable size and we show the first ten positions in the
figure. The results show that the users under treatment have more engaging sessions (larger
LTVs) from items ranked higher in the slate compared to users in the control group, which
suggests that top-k slate optimization performs reasonably in this domain.14

10 Conclusion

In this work, we addressed the problem of optimizing long-term user engagement in slate-
based recommender systems using reinforcement learning. Two key impediments to the
use of RL in large-scale, practical recommenders are (a) handling the combinatorics of
slate-based action spaces; and (b) constructing the underlying representations.

14The apparent increase in expected engagement at position 10 is a statistical artifact due to the small number
of events at that position: the number of observed events at each position decreases roughly exponentially, and
position 10 has roughly two orders of magnitude fewer observed events than any of the first three positions.

30

Figure 3: Percentage change in long-term user engagement vs. control (y-axis) across
positions in the slate (x-axis). Top 3 positions account for approximately 95% of engagement.

To handle the first, we developed SLATEQ, a novel decomposition technique for slate-
based RL that allows for effective TD and Q-learning using LTV estimates for individual
items. It requires relatively innocuous assumptions about user choice behavior and system
dynamics, appropriate for many recommender settings. The decomposition allows for ef-
fective TD and Q-learning by reducing the complexity of generalization and exploration to
that of learning for individual items—a problem routinely addressed by practical myopic
recommenders. Moreover, for certain important classes of choice models, including the con-
ditional logit, the slate optimization problem can be solved tractably using optimal LP-based
and heuristic greedy and top-k methods. Our results show that SLATEQ is relatively robust
in simulation, and can scale to large-scale commercial recommender systems like YouTube.

Our second contribution was a practical methodology for the introduction of RL to
extant, myopic recommenders. We proposed the use of existing myopic models to bootstrap
the development of Q-function-based RL methods, in a way that allows the substantial
reuse of current training and serving infrastructure. Our live experiment in YouTube rec-
ommendation exemplified the utility of this methodology and the scalability of SLATEQ. It
also demonstrated that using LTV estimation can improve user engagement significantly in
practice.

There are a variety of future research directions that can extend the work here. First, our
methodology can be extended by relaxing some of the assumptions we made regarding the
interaction between user choice and system dynamics. For instance, we are interested in
models that allow unconsumed items on the slate to influence user latent state and choice
models that allow for multiple items on a slate to be used/clicked. Further analysis of, and
the development of corresponding optimization procedures for, additional choice models
using SLATEQ remains of intense interest (e.g., hierarchical model such as nest logit). In a
related vein, methods for simultaneous learning of choice models, or their parameters, while
learning Q-values would be of great practical value. Finally, the simulation environment
has the potential to serve as a platform for additional research on the application of RL to
recommender systems. We hope to release a version of it to the research community in the
near future.

31

Acknowledgments. Thanks to Larry Lansing for system optimization and the IJCAI-2019
reviewers for helpful feedback.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. Learning a deep listwise context
model for ranking refinement. In Proceedings of the 41st Annual International ACM
Conference on Research and Development in Information Retrieval (SIGIR-18), pages
135–144, 2018.

Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban, Xiyang Luo,
Alan Mackey, and Ofer Meshi. Seq2slate: Re-ranking and slate optimization with rnns.
arXiv:1810.02019 [cs.IR], 2018.

Dimitri P. Bertsekas and John. N. Tsitsiklis. Neuro-dynamic Programming. Athena, Belmont,
MA, 1996.

Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active collaborative filtering.
In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence
(UAI-03), pages 98–106, Acapulco, 2003.

Craig Boutilier, Alon Cohen, Avinatan Hassidim, Yishay Mansour, Ofer Meshi, Martin
Mladenov, and Dale Schuurmans. Planning and learning with stochastic action sets. In
Proceedings of the Twenty-seventh International Joint Conference on Artificial Intelligence
(IJCAI-18), pages 4674–4682, Stockholm, 2018.

Jack S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive al-
gorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI-98), pages 43–52, Madison, WI, 1998.

Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. Submodular
maximization with cardinality constraints. In Proceedings of the Twenty-fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-14), pages 1433–1452, 2014.

32

Pedro G. Campos, Fernando Dı́ez, and Iván Cantador. Time-aware recommender systems: A
comprehensive survey and analysis of existing evaluation protocols. User Modeling and
User-Adapted Interaction, 24(1–2):67–119, 2014.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G.
Bellemare. Dopamine: A research framework for deep reinforcement learning.
arXiv:1812.06110 [cs.LG], 2018.

Abraham Charnes and William W. Cooper. Programming with linear fractional functionals.
Naval Research Logistics Quarterly, 9(3-4):181–186, 1962.

Kyle D. Chen and Warren H. Hausman. Mathematical properties of the optimal product
line selection problem using choice-based conjoint analysis. Management Science, 46(2):
327–332, 2000.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed Chi. Top-k
off-policy correction for a REINFORCE recommender system. In 12th ACM International
Conference on Web Search and Data Mining (WSDM-19), pages 456–464, Melbourne,
Australia, 2018.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi
Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria
Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning
for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, pages 7–10, Boston, 2016.

Sungwoon Choi, Heonseok Ha, Uiwon Hwang, Chanju Kim, Jung-Woo Ha, and Sungroh
Yoon. Reinforcement learning-based recommender system using biclustering technique.
arXiv:1801.05532 [cs.IR], 2018.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for YouTube rec-
ommendations. In Proceedings of the 10th ACM Conference on Recommender Systems,
pages 191–198, Boston, 2016.

Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experimental comparison
of click position-bias models. In Proceedings of the 2008 International Conference on
Web Search and Data Mining (WSDM-08), pages 87–94. ACM, 2008.

Peter Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8:341–362, 1992.

Mukund Deshpande and George Karypis. Item-based top-n recommendation algorithms.
ACM Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

Uriel Feige. A threshold of ln(n) for approximating set cover. Journal of the ACM, 45(4):
634–652, 1998.

33

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Yuchen He, Zachary Kaden,
Vivek Narayanan, and Xiaohui Ye. Horizon: Facebook’s open source applied reinforce-
ment learning platform. arXiv:1811.00260 [cs.LG], 2018.

Carlos A. Gomez-Uribe and Neil Hunt. The Netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information Systems,
6(4):13:1–13:19, 2016.

Assaf Hallak, Yishay Mansour, and Elad Yom-Tov. Automatic representation for lifetime
value recommender systems. arXiv:1702.07125 [stat.ML], 2017.

Ruining He and Julian McAuley. Fusing similarity models with Markov chains for sparse
sequential recommendation. In Proceedings of the IEEE International Conference on
Data Mining (ICDM-16), Barcelona, 2016.

Dorothee Honhon, Sreelata Jonnalagedda, and Xiajun Amy Pan. Optimal algorithms for
assortment selection under ranking-based consumer choice models. Manufacturing and
Service Operations Management, 14(2):279–289, 2012. doi: 10.1287/msom.1110.0365.
URL http://pubsonline.informs.org/doi/abs/10.1287/msom.1110.0365.

Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze
Cheng, Tushar Chandra, and Craig Boutilier. SlateQ: A tractable decomposition for
reinforcement learning with recommendation sets. In Proceedings of the Twenty-eighth
International Joint Conference on Artificial Intelligence (IJCAI-19), Macau, 2019. To
appear.

Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon. Music
personalization at Spotify. In Proceedings of the 10th ACM Conference on Recommender
Systems (RecSys16), pages 373–373, Boston, Massachusetts, USA, 2016.

Ray Jiang, Sven Gowal, Timothy A. Mann, and Danilo J. Rezende. Beyond greedy ranking:
Slate optimization via List-CVAE. In Proceedings of the Seventh International Conference
on Learning Representations (ICLR-19), New Orleans, 2019.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-02), pages 133–142, 2002.

Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R. Gordon,
and John Riedl. GroupLens: Applying collaborative filtering to Usenet news. Communi-
cations of the ACM, 40(3):77–87, 1997.

Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent Dirichlet allocation for tag
recommendation. In Proceedings of the 3rd ACM Conference on Recommender Systems
(RecSys09), pages 61–68, New York, 2009.

34

http://pubsonline.informs.org/doi/abs/10.1287/msom.1110.0365

Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits:
Learning to rank in the cascade model. In Proceedings of the Thirty-second International
Conference on Machine Learning (ICML-15), pages 767–776, 2015.

Dung D. Le and Hady W. Lauw. Indexable Bayesian personalized ranking for efficient top-k
recommendation. In Proceedings of the ACM Conference on Information and Knowledge
Management (CIKM-17), pages 1389–1398, 2017.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

Jordan J. Louviere, David A. Hensher, and Joffre D. Swait. Stated Choice Methods: Analysis
and Application. Cambridge University Press, Cambridge, 2000.

R. Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley, 1959.

Victor Martı́nez-de Albéniz and Guillaume Roels. Competing for shelf space. Production
and Operations Management, 20(1):32–46, 2011. doi: 10.1111/j.1937-5956.2010.01126.x.
URL http://dx.doi.org/10.1111/j.1937-5956.2010.01126.x.

Daniel McFadden. Conditional logit analysis of qualitative choice behavior. In Paul
Zarembka, editor, Frontiers in Econometrics, pages 105–142. Academic Press, 1974.

Rishabh Mehrotra, Mounia Lalmas, Doug Kenney, Thomas Lim-Meng, and Golli Hashemian.
Jointly leveraging intent and interaction signals to predict user satisfaction with slate
recommendations. In 2019 World Wide Web Conference (WWW’19), pages 1256–1267,
San Francisco, 2019.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction
of continuous actions for deep RL. arXiv:1705.05035 [cs.LG], 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

Yashar Moshfeghi, Benjamin Piwowarski, and Joemon M. Jose. Handling data sparsity in
collaborative filtering using emotion and semantic based features. In Proceedings of the
34th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR-11), pages 625–634, Beijing, 2011.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—I. Mathematical Programming, 14(1):265–294,
1978.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, New York, 1994.

35

http://dx.doi.org/10.1111/j.1937-5956.2010.01126.x

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
Markov chains for next-basket recommendation. In Proceedings of the 19th International
World Wide Web Conference (WWW-10), pages 811–820, Raleigh, NC, 2010.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems.
Technical Report Technical Report TR166, University of Cambridge, Department of
Engineering, Cambridge, UK, 1994.

Paat Rusmevichientong and Huseyin Topaloglu. Robust assortment optimization in revenue
management under the multinomial logit choice model. Operations Research, 60(4):
865–882, 2012.

Nachiketa Sahoo, Param Vir Singh, and Tridas Mukhopadhyay. A hidden Markov model for
collaborative filtering. Management Information Systems Quarterly, 36(4), 2012.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems 20 (NIPS-07), pages 1257–1264, Vancouver,
2007.

Cornelia Schön. On the optimal product line selection problem with price discrimination.
Management Science, 56(5):896–902, 2010.

Guy Shani, David Heckerman, and Ronen I. Brafman. An MDP-based recommender system.
Journal of Machine Learning Research, 6:1265–1295, 2005.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence
results for single-step on-policy reinforcement learning algorithms. Machine Learning,
38(3):287–308, 2000.

Nathan Srebro, Jason Rennie, and Tommi Jaakkola. Maximum margin matrix factorization.
In Advances in Neural Information Processing Systems 17 (NIPS-2004), pages 1329–1336,
Vancouver, 2004.

Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin, and Ben
Coppin. Deep reinforcement learning with attention for slate Markov decision processes
with high-dimensional states and actions. arXiv:1512.01124 [cs.AI], 2015.

Richard S. Sutton. Learning to predict by the method of temporal differences. Machine
Learning, 3:9–44, 1988.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In Advances in Neural Information Processing Systems 9 (NIPS-96),
pages 1038–1044, 1996.

36

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford,
Damien Jose, and Imed Zitouni. Off-policy evaluation for slate recommendation. In
Advances in Neural Information Processing Systems 30 (NIPS-17), pages 3632–3642,
Long Beach, CA, 2017.

Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. Usage-based web recommenda-
tions: A reinforcement learning approach. In Proceedings of the First ACM Conference
on Recommender Systems (RecSys07), pages 113–120, Minneapolis, 2007. ACM.

Kalyan Talluri and Garrett van Ryzin. Revenue management under a general discrete choice
model of consumer behavior. Management Science, 50(1):15–33, 2004.

Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, pages 17–22, Boston, 2016.

Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh. Personalized ad
recommendation systems for life-time value optimization with guarantees. In Proceedings
of the Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI-15),
pages 1806–1812, Buenos Aires, 2015.

Kenneth E. Train. Discrete Choice Methods with Simulation. Cambridge University Press,
Cambridge, 2009.

Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music
recommendation. In Advances in Neural Information Processing Systems 26 (NIPS-13),
pages 2643–2651, Lake Tahoe, NV, 2013.

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical
and empirical analysis of expected SARSA. In IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pages 177–184, 2009.

Paolo Viappiani and Craig Boutilier. Optimal Bayesian recommendation sets and myopically
optimal choice query sets. In Advances in Neural Information Processing Systems 23
(NIPS), pages 2352–2360, Vancouver, 2010.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender
systems. In Proceedings of the Twenty-first ACM International Conference on Knowledge
Discovery and Data Mining (KDD-15), pages 1235–1244, Sydney, 2015.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292,
1992.

37

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and Jennifer
Gillenwater. Practical diversified recommendations on YouTube with determinantal point
processes. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management (CIKM18), pages 2165–2173, Torino, Italy, 2018.

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. Recurrent
recommender networks. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining (WSDM-17), pages 495–503, Cambridge, UK, 2017.

Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv:1707.08114
[cs.LG], 2017.

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang. Deep
reinforcement learning for page-wise recommendations. In Proceedings of the 12th ACM
Conference on Recommender Systems (RecSys-18), pages 95–103, Vancouver, 2018.

38

	1 Introduction
	2 Related Work
	3 An MDP Model for Slate Recommendation
	4 SlateQ: Slate Decomposition for RL
	5 Slate Optimization with Q-values
	5.1 Exact Optimization
	5.2 Top-k and Greedy Optimization
	5.3 Algorithm Variants
	5.4 Approaches for Other Choice Models

	6 User Simulation Environment
	6.1 Document and Topic Model
	6.2 User Interest and Satisfaction Models
	6.3 User Choice Model
	6.4 User Dynamics
	6.5 Recommender System Dynamics

	7 Empirical Evaluation: Simulations
	7.1 Myopic vs. Non-myopic Recommendations
	7.2 SlateQ vs. Holistic Optimization
	7.3 Robustness to User Choice

	8 A Practical Methodology
	8.1 State Space Construction
	8.2 Generalization across Users
	8.3 User Response Modeling
	8.4 Logging, Training and Serving Infrastructure

	9 Empirical Evaluation: Live Experiments
	10 Conclusion

