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Abstract—Monte Carlo methods are core to many routines
in quantitative finance such as derivatives pricing, hedging and
risk metrics. Unfortunately, Monte Carlo methods are very
computationally expensive when it comes to running simulations
in high-dimensional state spaces where they are still a method
of choice in the financial industry. Recently, Tensor Processing
Units (TPUs) have provided considerable speedups and decreased
the cost of running Stochastic Gradient Descent (SGD) in Deep
Learning. After having highlighted computational similarities
between training neural networks with SGD and stochastic
process simulation, we ask in the present paper whether TPUs
are accurate, fast and simple enough to use for financial Monte
Carlo. Through a theoretical reminder of the key properties of
such methods and thorough empirical experiments we examine
the fitness of TPUs for option pricing, hedging and risk metrics
computation. We show in the following that Tensor Processing
Units (TPUs) in the cloud help accelerate Monte Carlo routines
compared to Graphics Processing Units (GPUs) which in turn
decreases the cost associated with running such simulations
while leveraging the flexibility of the cloud. In particular we
demonstrate that, in spite of the use of mixed precision, TPUs
still provide accurate estimators which are fast to compute. We
also show that the Tensorflow programming model for TPUs is
elegant, expressive and simplifies automated differentiation.

Index Terms—Financial Monte Carlo, Simulation, Tensor Pro-
cessing Unit, Hardware Accelerators, TPU, GPU

I. INTRODUCTION

The machine learning community has developed several
technologies for speeding up Stochastic Gradient Descent
algorithms for Deep Learning [18], including new program-
ming paradigms, special-purpose hardware, and linear-algebra
computation frameworks. This paper demonstrates that we
can apply the same techniques to accelerate Monte Carlo
integration of stochastic processes for financial applications.

A. Monte Carlo estimation in finance and insurance

A key problem when pricing a financial instrument — for
insurance or speculation — is to estimate an average outcome
defined by a probability space (Ω,F ,P):

EP [f(ω)]

where E denotes the expectation. In the following we first
provide a basic introduction to derivatives pricing and demon-
strate how expectations lie at the core of pricing, hedging
and risk assessment. We then introduce how Monte-Carlo
methods are generally used to estimate such expectations
and focus on the case in which the random fluctuations are

generated by stochastic processes. After having introduced
state-of-the-art methods to improve the statistical properties of
such estimators, we show how hardware accelerators enable
such estimators to be computed faster thanks to parallelization.

1) Stochastic processes in continuous time: Stochastic pro-
cesses remain the main abstraction employed to model fi-
nancial asset prices. Let us briefly introduce these theoretical
constructs before we describe how they are practically ap-
proximated by numerical representations. Consider a filtered
probability space (Ω,F ,F,P) (where F = {Ft} is the cor-
responding canonical filtration) supporting a q dimensional
Brownian motion W and the Stochastic Differential Equation
(SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ] . (1)

The drift (µ) and volatility (σ) functions take values re-
spectively in Rp and Rp,q . By definition, a strong solution
(X) to Eq. (1) is a process taking values in Rp such that∫ T
s=0

(
||b(s,Xs)||2 + ||σ(s,Xs)||22

)
ds is almost surely finite

and

Xt = X0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dWs, t ∈ [0, T ] .

Assuming that X0 is a random variable with finite variance
independent of W , and that ||b(·, 0)||2 and ||σ(·, 0)||2 are
square integrable (as functions of t), then the existence of
a finite Lipschitz constant K such that

||b(t, x)− b(t, y)||2 + ||σ(t, x)− σ(t, y)||2 ≤ K||x− y||2

for all x, y ∈ Rp and t ∈ [0, T ] guarantees the existence of
such a strong solution on [0, T ].

2) Monte Carlo methods in finance and insurance: Monte
Carlo methods rely on simulation and numerical integration
to estimate EP[f(XT )] or EQ[f(XT )] under the historical or
risk-neutral probability (P and Q respectively) [16]. Some
contracts defining financial derivatives may specify a path
dependent outcome—such as Barrier or Asian options—in
which case the theory of Black, Scholes and Merton still
leads us to estimate EP[f(X0:T )] or EQ[f(X0:T )] where X0:T

denotes the observation of the process X on the interval [0, T ].
In general, we therefore seek an estimator for an expectation
of the type

E[f(X0:T )] where (Xt) solves (1) on [0, T ]. (2)



Monte-Carlo methods rely on numerical discretization and
integration to produce an estimate for (2) in the form of an em-
pirical mean over simulated trajectories

{
X̃n

0,T |i = 1 . . . N
}

:

ÎN =
1

N

N∑
n=1

f
(
X̃n

0,T

)
. (3)

In general, because the dynamics of (Xt) are specified in
continuous time with real values, a computer-based simulation
will suffer from bias coming from the limited precision in
numerical representations and more importantly the temporal
discretization. The variance of the the estimator (3) is also
a problem: typically if it costs O(N) Monte Carlo samples
to produce a result with a confidence interval of size 1 then
reducing the interval’s size to ε comes at a cost of O(Nε2 )
simulations. Furthermore, the compute time cost generally
scales as O(q2) when correlations between different compo-
nents of (Xt) are taken into account. For these reasons, Monte
Carlo methods constitute some of the most computationally
intensive tasks run routinely at scale across the financial
industry. Accelerating Monte Carlo estimation and making it
more cost effective has been a long standing challenge with
huge repercussions for derivative pricing, hedging and risk
assessment.

3) Greeks and sensitivity analysis: Monte Carlo methods
in quantitative finance are also used to estimate sensitivi-
ties of derivatives’ prices with respect to model parameters
and the current state of the market. Sensitivities to market
parameters—the financial “Greeks” [16]—are used not only
to quantify risk, but also to construct hedges and synthetic
replicating portfolios. For example, the “delta”, the sensitivity
of the price of an option with respect to the current price of the
underlying(s), specifies the amount of the underlying(s) that
needs to be held in a replicating portfolio. Automated differ-
entiation of Monte Carlo pricers is now a solution of choice in
quantitative finance as it is more computationally efficient than
methods such as bumping to compute sensitivities with respect
to many different inputs and parameters [31]. Tensorflow
was designed with automated differentiation at its very core
as this technique—often referred to as Back-Propagation—
is of key importance when training Machine Learning by
Stochastic Gradient descent [2]. Moreover, Tensorflow readily
offers the opportunity to accelerate the forward simulation
and automated differentiation by Back-Propagation without
needing any additional code— all while enabling researchers
to leverage modern hardware such as GPUs and TPUs for
acceleration.

B. Contributions

In the present paper we focus on leveraging Tensor Pro-
cessing Units (TPUs) for financial Monte Carlo methods. We
aim to show that although such accelerators were designed
primarily to accelerate the training of Deep Learning models
by Stochastic Gradient Descent, TPUs provide cutting edge
performance for Monte Carlo methods involving discretized

multi-variate stochastic processes. In particular, we present the
following contributions:
• We demonstrate that in spite of the limited numerical

precision employed natively in matrix multiplications on
TPU, accurate estimates can be obtained in a variety of
applications of Monte Carlo methods that are sensitive to
numerical precision.

• We argue that TPUs offer efficient risk assessment solu-
tions: for risk metrics being able to simulate many more
scenarios is of key importance, while in cases where
limited precision could become an issue, Multi-Level
Monte Carlo methods can potentially efficiently correct
precision-related bias.

• We benchmark the speed of TPUs and compare them
to GPUs which constitute the main source of accel-
eration for general purpose Monte-Carlo methods out-
side of Field Programmable Gate Arrays (FPGA) and
Application-specific Integrated Circuit (ASIC) based so-
lutions.

• We demonstrate that Tensorflow [2] constitutes a high
level, flexible and simple interface that can be used to
leverage the computational power of TPUs, while also
providing integrated automated differentiation.

The present paper demonstrates that Tensorflow constitutes a
flexible programming API which enables the implementation
of different simulation routines while providing substantial
benefits by running enabling the running of underlying com-
putations in the Cloud on TPUs. A key consequence is
that experiences that used to be iterative for developers now
become interactive and inherently scalable without requiring
investing in any hardware. We believe such improvements can
make financial risk management more cost-effective, flexible
and reactive.

II. RELATED WORK

A. Pricing techniques and typical computational workloads

Understanding typical computational patterns underlying
financial Monte Carlo simulations is a first step towards
acceleration. We now examine three typical computational
workloads corresponding to different types of simulations
routinely employed to price derivatives and assess risk in
quantitative finance.

1) SIMD element-wise scalar ops in Euler-Maruyama dis-
cretization schemes: A first characteristic computational work-
load is associated with mono-variate geometric Brownian
models and their extensions in the form of local [12], [19]
or stochastic volatility models [5], [13]. The Euler-Maruyama
scheme discretizes SDE (1) explicitly forward in time. Con-
sider the simulation of N independent trajectories,

X̃n
ti+1

= X̃n
ti + µ

(
ti, X̃

n
ti

)
∆ti + σ

(
ti, X̃

n
ti

)√
∆tiZ

n
i+1 (4)

for n = 1, . . . , N where X̃n
t0 = X0 ∈ R, ∆ti = ti+1−ti, Zni+1

are Pseudo-Random Numbers distributed following N (0, 1).
In the uni-variate case, where the process being simulated
has a single scalar component, implementing Equation (4)



reduces to scalar add/multiplies which are independent across
simulated scenarios. Simulating a batch of scenarios under
this discretized scheme is therefore embarrassingly parallel
and a clear example of a Single Instruction Multiple Data
(SIMD) setting where the different elements of the data
undergo independent computations. Such simulations are triv-
ial to parallelize along the batch of simulated independent
scenarios provided Pseudo-Random Numbers can be generated
in parallel and in a consistent manner [9], [25], [30], [32].

2) Matrix-multiply ops in Multi-variate simulations of cor-
related processes: The Euler-Maruyama discretization scheme
for scalar stochastic processes naturally extends to the multi-
variate setting where each stochastic process takes values
in X̃n

ti ∈ Rp. Computationally, a major difference arises
however. If the underlying Brownian motion is in Rq , each
simulated time-step in each scenario will require calculat-
ing
√
ti+1 − tiσ

(
ti, X̃

n
ti

)
Zni+1 with Zni+1 ∼ N (0, Iq) and

σ
(
ti, X̃

n
ti

)
∈ Rp,q , which implies that a p × q matrix/vector

product has to be computed. If N scenarios are stacked
together to benefit from the corresponding hardware accel-
eration, the operation becomes a p × q, q × N matrix/matrix
products.

3) Chained linear system inversions in the Longstaff-
Schwartz Method (LSM) for value estimation: The regression-
based estimation method proposed by Longstaff and
Schwartz [24] to price American Options has become a
standard pricing method for callable financial instruments
(e.g., American or Bermuda options) with high dimensional
underlyings (e.g., call on a maximum or weighted combination
of stocks). In the setting of callable options, which can be
exercised at multiple points in time before their maturity, the
pricing problem is solved using a Monte-Carlo method to
simulate future trajectories as well as a dynamic programming
approach to back-track optimal decisions in time. To enable
dynamic programming, for each decision instant ti, one has
to estimate a Value Function on the state of the underlying:

Xti 7→ Vti(Xti) = max
(
f(Xti), E(Vti+1 |Xti)

)
with the convention that VT = f(XT ) where f is the option’s
payoff function. By definition, the conditional expectation
E(Vti+1 |Xti) is the closest square integrable random variable
(according to the L2 norm) to Xti . Therefore the LSM fits
a model to interpolate E(Vti+1

|Xti) between values of Xti

that have actually been simulated. LSM employs a linear-
regression on a set of K features derived from the the simu-
lated values of Xti such as (1, Xti , X

2
ti , . . . ) or a finite number

of Hermite polynomials evaluated at the simulated values [16],
[24]. Given a set of simulated values

{
X̃n
ti |n = 1 . . . N

}
, the

set of values
{
V
(
X̃n
ti

)
|n = 1 . . . N

}
is projected onto the

set of regressors
{
ψ1

(
X̃n
ti

)
, . . . , ψK

(
X̃n
ti

)
, |n = 1 . . . N

}
where (ψk)k=1...K are featurizing functions (e.g., Hermite
polynomials). Therefore, a linear regression of N scalar ob-
servations is needed, for each candidate time-step to exercise
the option, onto N vectors of K dimensions. Typically, for

efficiency, a Cholesky decomposition of the Grammian will
be computed prior to effectively solving the linear regression.
This computational cost adds to the cost of simulating the
original paths for the trajectory of the underlying asset(s)
which may themselves be correlated. The overall procedure
yields a price estimate as the expected value function at the
first exercise time:

ÎN =
1

N

N∑
n=1

V
(
X̃n
t0

)
. (5)

B. Bias reduction for reduced precision Monte Carlo

Multiple techniques have been developed to improve the
convergence properties of the above estimators in order to
spend less computational power for a given amount of variance
(and bias). The Application Programming Interface (API)
exposed by Tensorflow (see Figure 10 for a code snippet)
readily enables variance mitigation schemes such as antithetic
sampling, control variates and importance sampling.

1) Control and antithetic variates: The most widely known
strategy to decrease the variance of a Monte-Carlo method
employing Pseudo-Random Numbers (PRN) generated accord-
ing to a symmetrical probability distribution is perhaps the
antithetic variate approach [16], [28]. Applied to Equation (4),
the method works as follows: for each trajectory relying on
a series of generated PRN (Zni )i=1,...N (distributed following
N (0, 1)), a symmetrical trajectory using the sequence opposite
numbers as Gaussian PRNs is employed. As the outcomes
corresponding to these symmetrical trajectories are averaged
out in the final Monte-Carlo estimate, variance is reduced
without introducing bias.

2) Importance Sampling: Importance Sampling effectively
reduces the variance of Monte-Carlo estimators concerned
with rare events which are useful when pricing barrier options
with very high or low activating barriers or for Value-at-
Risk (VaR) estimation. As VaR requires the estimation of
the 95th/98th/99.9th, it can be worthwhile encouraging the
simulation to simulate for extreme outcomes which [17] en-
abled via Importance Sampling. Importance Sampling weights
are derived analytically and prevent the simulation under a
probability distribution different from P or Q from introducing
bias. Recent developments [4], [23] enable the automation
of the search for a proposal distribution for the simulations
that mitigates variance optimally. Stratified sampling has also
proven effective in accelerating Monte Carlo convergence [28].

3) Multi-Level Monte-Carlo: Multi-Level Monte Carlo
(MLMC) constitutes an exciting development to accelerate
Monte-Carlo methods thanks to mixed precision computation
schemes [14], [15]. We present the method in the two-level
setting. Let us assume that two different programs are available
to compute a trajectory given a sequence of PRNs (wni )i=1...I :
an expensive high definition program PH and a relatively
inexpensive low definition program PL. While the standard
Monte-Carlo method would employ 1

N

∑N
n=1 PH ((wni )) to



estimate the expected outcome, the MLMC method instead
employs∑NH

n=1 PH ((wni ))− PL ((wni ))

NH
+

∑NL+NH

n=NL
PL ((wni ))

NL
(6)

typically with NH << NL. Indeed, as the same
perturbations are injected in PH and PL, generally
Var (PH ((wni ))− PL ((wni ))) << Var (PL ((wni ))) . A way to
interpret MLMC is that the first NH PRN sequences are spent
in MLMC to estimate the bias induced by the use of PL instead
of PH . Only a few samples are needed because the estimator’s
variance is small as consistent PRN sequences are injected into
PL and PH . The subsequent NL PRN sequences are used in
a large number to reduce the variance of the average-based
estimator with the less expensive PL. A typical example of
MLMC consists in considering the same simulation program
running in double precision for PH and half precision for PL.
Beyond simply lowering the precision of the floating point
representation, PL can be a radically coarser counterpart to PL
as in [28] with a coarser temporal discretization or a coarser
spatial discretization through quantized states.

C. Pre-existing hardware acceleration strategies

Having reviewed strategies relying on algorithmic modifica-
tions to accelerate the convergence of Monte-Carlo estimators,
we now give an overview of hardware-based techniques to
reduce their running time. A first approach to accelerate
Monte-Carlo methods had consisted in running them on High
Performance Computing (HPC) CPU grids with parallelization
paradigms such as Message Passing Interface (MPI). We focus
here on device-level acceleration with hardware accelerators
that can be used as elements of a distributed compute grid if
needed.

1) GPUs: The rise of general purpose high level APIs
to orchestrate scientific calculations on GPUs with CUDA
or OpenCL has prompted a wide development of GPU-
based approaches to accelerate Monte Carlo methods. Pricing
and estimating risk metrics in finance are especially well-
suited to acceleration by GPUs, due to the embarrassingly
parallel nature of Monte Carlo Methods, and to their use
of computationally intensive linear algebra routines. Methods
enabling the generation of PRNs in parallel correctly and
efficiently [9], [25], [30], [32] coupled with algorithmic re-
factorization to fully utilize GPUs have enabled substantial
speedups with respect to CPUs for pricing [3], [22], [26], [29],
risk metrics [10] and sensitivity analysis [11].

2) FPGAs: Field Programmable Gate Arrays (FPGAs) have
grown popular to accelerate Monte-Carlo methods and rep-
resent more specialized and energy efficient competitors to
GPUs. Many works have demonstrated that FPGAs provide
substantial speedups with respect to GPU implementations and
reduce energy costs in servers. While some methods have
employed FPGAs as standalone solutions [33], [34] other
approaches have used a mixed precision approach relying on
both a CPU and an FPGA [6], [7]. In particular, MLMC [15]
can be applied to FPGAs computing low resolution fast

simulations paired with CPUs running an implementation at
reference precision.

III. TENSOR PROCESSING UNITS

A Tensor Processing Unit (“Cloud TPU” or “TPU” for
short)—a custom-developed application-specific integrated cir-
cuit (ASIC) specialized for deep neural networks—offers
420× 1012 floating-point operations per second (FLOPS) and
128GB of high bandwidth memory (HBM) in its latest release.
The TPU architecture is abstracted behind the Tensorflow
framework. High-level Tensorflow programs, written without
using detailed knowledge of TPUs, both for for training large
deep neural networks and for performing low-latency online
prediction can be deployed on TPU hardware in the cloud.
[20] reports impressive acceleration of training and online
prediction.

Although TPU targets deep learning, it is designed for
maximum performance and flexibility to address computa-
tional challenges in various fields. In the present paper, we
particularize its application to financial Monte Carlo.

A. TPU System Architecture

One TPU is comprised of four independent chips. Each chip
consists of two compute cores called Tensor Cores. A Tensor
Core, as shown in Fig. 1 consists of scalar, vector and matrix
units (MXU). In addition, 16 GB of on-chip High Bandwidth
Memory (HBM) is associated with each Tensor Core for Cloud
TPU v3 — its latest generation. Communication between
Tensor Cores occurs through high-bandwidth interconnects.
All computing units in each Tensor Core are optimized to
perform vectorized operations. In fact, the main horsepower of
a TPU is provided by the MXU which is capable of performing
128 × 128 multiply-accumulate operations in each cycle [8].
While its inputs and outputs are 32-bit floating point values,
the MXU typically performs multiplications at the reduced
precision of bfloat16 — a 16-bit floating point representation
that provides better training and model accuracy than the IEEE
half-precision representation for deep learning as it allocates
more bits to the exponent and less to the mantissa.

B. Programming Model

Programming for TPUs is generally done through high-
level Tensorflow API. When the program is run, a Tensor-
Flow computation graph is generated and sent to the Cloud
TPU over gRPC [1]. The Cloud TPU server compiles the
computation graph just in time, partitions the graph into
portions that can run on a Cloud TPU and those that must run
on a CPU and generates Accelerated Linear Algebra (XLA)
operations corresponding to the sub-graph that is to run on
Cloud TPU. Next, the XLA compilier takes over and converts
High Level Optimizer (HLO) operations that are produced by
the TensorFlow server to binary code that can be run on Cloud
TPU, including orchestration of data from on-chip memory
to hardware execution units and inter-chip communication.
Finally, the program binary is sent to the Cloud TPU for
execution.



Fig. 1: Hardware architecture and programming model for
Tensor Processing Units (TPUs). Detailed documentation is
available at [1].

Parameter 
matrix

Batched vectors of 
inputs

x

Matrix/matrix multiply

Batched vectors of 
outputs

Vectorized add and non-linear 
element-wise transform

Bias vector +

One layer of a Deep Neural Network

Volatility 
matrix

Batched vectors of 
random normal noise

x

Matrix/matrix multiply

Vectorized add and element-wise 
multiply with previous state

Trend term +

Single time step of multi-variate 
Geometric Brownian motion simulation

Batched vectors of 
outputs

Fig. 2: Computational similarity between computing the output
of a Deep Neural Network’s layer and a single step of Monte
Carlo simulation for correlated stochastic processes.

C. Similarity between Deep Neural Network (DNN) inference
and discretized correlated stochastic process simulation

The main reason why we investigate the use of TPUs
for risk assessment in quantitative finance is the computa-
tional similarity between DNN inference and simulating high
dimensional financial portfolio. Tensorflow and TPUs have
been designed to provide a high level interface for deep
learning programming that is easy to use, is flexible and
runs efficiently to train mission critical models rapidly. Our
proposal is to leverage such flexibility and performance for
a different purpose: running stochastic process simulation for
financial applications.

From a computational standpoint, computing the output of
DNN implies chaining matrix/matrix multiplies interleaved
with element-wise vectorizable operations. Incidently, very
similar computational patterns are involved in quantitative
finance as instantiating Equation 4 requires the computation
of matrix/matrix multiples (with batched PRNs) and element-
wise vectorizable operations. Figure 2 illustrates this very
close computational similarity. Furthermore, as training DNNs
requires computing a gradient through automated differentia-
tion between the outputs and all the parameters of the network,
a DNN learning framework such as Tensorflow is an ideal
candidate to enable sensitivity estimation through AAD in
finance [31].

IV. PSEUDO RANDOM NUMBER GENERATOR
(PRNG) ON TPU

In the interest of brevity for this first approach to leverage
TPUs for financial Monte-Carlo, we only consider PRNs
and not Quasi-Random Numbers [16], [28] We describe how
such numbers are generated on TPUs and the corresponding
throughput.

A. PRNGs: the old and the new

In order to put the PRN generation procedure in perspective,
we first recall principles employed in first generation PRN
generators and introduce the key developments that enable
simple and scalable implementations.

1) Classic PRNGs: For financial Monte Carlo, the
Mersenne Twister 19337 (MT19337) [27] constitutes a very
popular approach and yields a sequence of PRNs with pe-
riod 219337. Such a PRN sequence is produced as a single
stream and therefore parallelization of the sequence relies on
sub-stream approaches. Sub-stream parallelization will either
generate large non-overlapping sections of the sequence on
each core or generate numbers with a skip-ahead to guarantee
that distinct elements of the sequence are generated by each
processor. While sub-stream parallelization produces correct
PRN sequences, it has high computational costs, and it requires
deciding ahead of time how many PRNs will be consumed by
each core through the simulation which is not always possible.

2) PRNGs designed for parallelization: A more flexible
approach for distributed computing is to use multi-stream ran-
dom number generation as in [30]. Multi-stream algorithms,
such as Threefry and Philox, use cryptographic methods to
generate multiple sequences (xkn)n=1...N,k=1...K guaranteed to
be seemingly statistically independent as long as each gener-
ating core employs a distinct key. The number of admissible
keys is typically 264 if 64 bit integers are used to encode keys
and the period of each sequence is typically 264 if 64 bits
are used to represent the sequence iterator. [30] shows that
these methods have higher throughput and better statistical
properties when submitted to Big-Crunch [21] than standard
generators. In particular, while Threefry and Philox pass all
the tests in the battery of Big-Crunch, MT19937 fails most
of them. We have confirmed that the generation of uniformly
distributed 32 bit integers on TPU successfully passes Big-
Crunch [21] (the double precision version of Big-Crunch is not
directly relevant to TPUs which generate uniformly distributed
floats in [0, 1) in single precision only). For this reason and
because of the ease of parallelization, Tensorflow relies on
keyed multi-stream PRNGs. In particular, we employ Threefry
in our TPU experiments and Philox on GPU.

V. NUMERICAL PRECISION ON TPU AND MULTI-LEVEL
MONTE CARLO

Running dynamical system simulations, in particular in
finance, often relies on high numerical precision to produce
faithful results. We now delineate the native numerical preci-
sion of TPUs.



A. Single and bfloat16 precision on TPU

As opposed to today’s CPUs or GPUs, TPUs do not offer
double (64 bit) precision for floating point representations.
The default representation precision is single (32 bit) precision
and scalar multiplications in the MXU for matrix multiplies
are computed in bfloat16 (16 bit) precision prior to being
accumulated in single precision. As 16 bits are quite few to
represent numbers for ML applications and chained multipli-
cations in general, a non standard representation scheme has
been employed to better capture high magnitude values and
prevent overflow.

The single precision IEEE floating point standard allocates
bits as follows: 1 sign bit, 8 exponent bits and 23 mantissa bits.
The IEEE half precision standard uses 1 sign bit, 5 exponent
bits and 10 mantissa bits. In contrast, the bfloat16 format
employs 1 sign bit, 8 exponent bits and 7 mantissa bits.

We found in our numerical experiments that both the
single precision — used in accumulators and vector units for
element-wise operations — and the bfloat16 precision did not
yield significantly different results as compared to the double
precision in the context of financial Monte Carlo.

B. Numerical precision, discretization bias and variance in
risk metrics

Financial Monte-Carlo methods are typically concerned
with the simulation of a continuous time SDE such as Equation
(1). Analyzing the convergence of the Monte-Carlo estimator
ÎN in Equation ( 3) hinges upon the well known bias-variance
decomposition of the L2 error [28]:

||E [f(X0:T )]−ÎN ||22 =
(
E [f(X0:T )]− E

[
ÎN

])2
+

Var
(
ÎN

)
N

.

The bias term typically conflates the bias induced by temporal
discretization and floating point numerical representation.

When simulating a SDE, a temporal discretization occurs
that induces most of the bias affecting the Monte-Carlo
simulation. Indeed, as opposed to the actual process of interest
(Xt)t∈[0,T ], the Monte-Carlo simulation typically employs a
piece-wise continuous approximation (X̃t)t∈[0,T ] for which
only H values are computed (if H is the number of temporal
discretization steps) every ∆t (where ∆t is the temporal
discretization step). Under several assumptions which are typi-
cally true for financial pricing, the Taley-Tubaro theorem [28]
states that the discretization bias reduces as O( 1

H ), that is
inversely to the number of steps employed when discretizing
the process. Such a bias term dominates in practice as we
will demonstrate in some of our numerical experiments. In
comparison, the numerical precision induced bias is negligible.
Furthermore, the impact of the estimator’s variance on the L2

error shows that adding more Monte Carlo paths is generally
more beneficial in reducing it than increasing the numerical
precision. Finally, the MLMC method can efficiently estimate
the numerical bias term if it is significant and compensate for
it.

VI. NUMERICAL EXPERIMENTS

We now demonstrate that TPUs are fast instruments whose
numerical precision is commensurate with the needs of finan-
cial Monte-Carlo based risk metrics. In the following, we use
the Philox on GPU and Threefry on TPU (where it is more
challenging to support certain low-level operations leveraged
by Philox). Also, we use the same python Tensorflow code
on GPU and TPU for two reasons: we want to make our
comparison with a library that has been highly optimized for
speed and we want to make comparisons of speed at equal
level of software engineering effort. Here NVidia v100 GPUs
are used to anchor our results, but no architecture specific opti-
mizations have been done, which could considerably improve
their performance. Therefore, the GPU wall times we give can
only be considered a solid reference but not an indicator of the
peak performance one can obtain on the NVidia V100 GPU.
In the following, we do not take into account compilation
times when measuring wall time on TPU as the corresponding
overhead is obviously amortized in most applications that are
latency sensitive, and is not a hindrance for an interactive
experience in a Colaboratory notebook (interactive notebooks
comparable to ipython Jupyter notebooks).

A. European option pricing and hedging

Our first experiments are concerned with European option
pricing, i.e. non-callable derivatives with a single terminal
payoff.

1) Uni-variate process simulation to benchmark TPUs’
VPU: Uni-variate stochastic process simulations do not need
matrix multiplies and therefore constitute helpful benchmarks
to specifically assess the performance of the Vector Processing
Unit (VPU) on TPUs, which performs single (32-bit) floating
point arithmetic.

Vanilla Call: First we start with the extremely simple
example of pricing a 1 year maturity European Call option
(strike at 120) under the standard Black-Scholes model with
constant drift (0.05) and volatility (0.2) with an initial under-
lying price of 100. The analytic price of the option in double
precision is 3.24747741656. What we intend to show here
— as we know the actual option price analytically — is that
temporal discretization bias largely dominates over numerical
precision bias. Each of the 100 simulation runs has 25 to
100 discretization steps and 10M samples. One can verify in
Figure 3 that TPUs provide a comfortable speed-up compared
to GPUs running the same Tensorflow graph, and that the bias
induced by the use of lower precision is negligible compared
to that induced by the temporal discretization.

Path dependent exotic Put: We make things slightly more
complex and consider pricing an In and Out Put (activating
Barrier). The initial price of the underlying is 100, the strike
120, the barrier 140. The drift is still constant (0.03) as
well as the volatility (0.8). The analytic price of the option
(given by the symmetry principle under the Black-Scholes
model) in double precision is 23.1371783926. Between each
two discretization steps with values x and y we simulate the
maximum of the Brownian bridge — classically [16], [28] with
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Fig. 3: Vanilla call: Estimate distributions in single and double
precision. Bias terms with various numerical precision and
discretization steps for the estimation of a European Call
price under a Black-Scholes model (108 samples) and their
sensitivity with respect to the temporal discretization step
size. The temporal discretization bias clearly dominates the
numerical precision bias.

m ∼ 0.5

(
x+ y +

√(
(x− y)

2
)
− 2∆tσ2 log(U)

)
where U

is distributed uniformly in (0, 1) — to reduce the discretization
bias of the method. Such an experiment also demonstrates that
programming in Tensorflow is flexible enough to allow for
varied simulation schemes. Each of the 100 simulation runs
has 25 to 100 discretization steps and 2M samples. Again, in
Figure 4, one can appreciate the speed up for a Tensorflow
graph running on TPU with respect to an identical graph
running on GPU while the impact of the use of single precision
as opposed to double precision is hardly noticeable.

2) Multi-variate process simulation to benchmark TPUs’
MXU: Multi-variate stochastic simulations represent heavier
computational workloads than their uni-variate counterparts
whenever they involved correlated dynamics. A matrix/matrix
multiply is then involve at each step of the simulation when
computing the product of the volatility matrix with the mul-
tidimensional normally distributed stacked PRNs. In such a
setting, the speed of the MXU on TPUs may be beneficial, but,
as it uses a custom floating point representation, one needs to
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Fig. 4: Path dependent exotic Put: Estimate distributions in
single and double precision. Bias terms with various numerical
precision and discretization steps for the estimation of a
European Put Up In price under a Black-Scholes model and
their sensitivity with respect to the temporal discretization step
size. Again, the temporal discretization bias clearly dominates
the numerical precision bias.

assess that no substantial numerical precision bias appears.
Basket European option: We price an at-the-money Basket

European call with 2048 underlyings whose price is initially
100. The interest rate is 0.05 and the volatility matrix we
use is a historical estimate based on market data collected on
daily variations of randomly selected stocks from the Russell
3000 through 2018. 2K samples are used for each of the 100
simulations. Simulations now involve matrix multiplications
corresponding to Equation (1) and therefore the MXU of the
TPU is used with a reduced bfloat16 precision. All other
computations on TPU run in single precision. In Figure 5 we
present the estimates provided in mixed precision on TPU and
compare them with single and double precision estimates. We
find that running simulations on TPU does not introduce any
significant bias while offering substantial speed ups compared
to GPUs.

Basket European option Delta: As automated differen-
tiation is integrated into the Tensorflow framework, almost
no additional engineering effort is required to compute path-
wise sensitivities of a MC simulation. Considering the same
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Fig. 5: Basket European Option: Estimate distributions
and wall times when the MXU is employed on TPU with
mixed precision. No significant bias is introduced by running
computations on a TPU. The measured wall times, which
include the network round trip between front end host and
TPU, are very competitive.

European option, we now compute its “delta”, that is to say
the first order derivative of the option’s price estimate with
respect to the initial price vector (with 2048 components). As
demonstrated in the code snippet of Figure 10, presented in
section VII, computing such a sensitivity estimate, which can
represent a substantial software engineering effort for libraries
not designed with AAD in mind [31], only requires a single
line of code in Tensorflow. In Figure 6, we can appreciate
that although back-propagation introduces an additional chain
of multiplications, no significant bias is added (we present
results here only for the first component of the “delta” for
ease of reading).

B. Risk metrics

The impact of mixed precision on variance may become a
concern for risk metrics such as VaR and CVaR whose purpose
is to estimate percentiles and losses for a given portfolio that
occur in rare adverse scenarios.

1) Estimating Value-at-Risk with many underlying factors:
In this simulation, we consider the simulation of the same
2048 underlying assets as in the Basket option experiment (all
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Fig. 6: Basket European Option Delta: Estimate distributions
and wall times for the first component of the option’s delta
when the MXU is employed on TPU with mixed precision.
No significant bias is introduced by running computations
on a TPU. The measured wall times, which include the
network round trip between front end host and TPU, are very
competitive.

from the Russel 3000) with a trend and correlation structure
estimated based on historical data on daily variations. The
portfolio whose loss distribution we sample from consists of
5 call options with different strikes on each of the underlying
assets. As a result the portfolio of interest has 10240 instru-
ments.

Value-at-Risk: We simulate the distribution of profit and
losses (PnL) for the portfolio of interest over the course of a
year with different scales of temporal discretization. The first
risk metric of interest is the standard Value-at-Risk (VaR) at
level α. By definition, VaR is a quantile of the distribution
of losses on an investment in the presence of contingencies.
Given a random variable PnL(ω) representing the PnL of the
overall portfolio subjected to random perturbations ω, we have
to estimate the quantile of level α of the PnL distribution:

VaRα (PnL(ω)) = −inf {x ∈ R : P (PnL(ω) ≥ x) > α} .

The results presented in Figure 7 show that limited precision
in the MXU has some impact in the estimated VaR terms
as some bias is present (less than 1% in relative magnitude
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Fig. 7: Value-at-Risk: Estimates of VaR0.95 and correspond-
ing wall times (the MXU is used with bfloat16 precision on
TPU for matrix multiplies). Some bias is introduced by run-
ning computation in mixed precision on TPU. The measured
wall times (including the network round trip for TPUs) are
very competitive for TPU.

compared to a double precision simulation). However, the
speed-ups reported are substantial, so that a Multi-Level-
Monte-Carlo approach could be employed to preserve most
of the computational gains while identifying the TPU-induced
bias to later correct it.

Conditional Value-at-Risk: The Conditional Value-at-Risk
(CVaR) (otherwise known as expected shortfall) is another risk
metric used jointly with VaR. The great advantage of CVaR is
that it is a coherent risk measure and therefore provides a more
principled view on risks associated with a given portfolio [16].
While VaR is defined as the quantile of a loss distribution,
CVaR corresponds to a conditional expectation on losses. More
precisely, CVaR estimates the expected loss conditioned to the
fact that the loss is already above the VaR. For a level of
tolerance α, CVaRα is defined as follows:

CVaRα (PnL(ω)) = −EP [PnL(ω)| − PnL(ω) > VaRα] .

The results reported in Figure 8 demonstrate that while the
use of mixed precision on TPU introduces some bias (less
than 1% in relative magnitude compared to a double precision
simulation) in the estimation of CVaR it also comes with
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Fig. 8: Conditional Value-at-Risk: Estimates of CVaR0.95

and corresponding wall times (the MXU is used with bfloat16
precision on TPU for matrix multiplies). Some bias is intro-
duced by running computation in mixed precision on TPU.
The measured wall times (including the network round trip
for TPUs) are very competitive for TPU.

substantial speed ups. As for the computation of VaR, the
results indicate that TPUs are therefore good candidates for the
use of Multi-Level-Monte-Carlo to produce unbiased estimates
rapidly.

C. Monte Carlo American option pricing

Monte Carlo option pricing of an American option with
multiple underlyings presents the computational difficulties
encountered in European Basket option pricing because of the
need for the simulation of multi-variate diffusion processes
while adding the additional complexity of having to proceed
with dynamic programming.

1) Longstaff-Schwartz pricing of an American Maximum
Option: The Longstaff-Schwartz (LSM) method for multi-
variate American option pricing relies on a set of samples
of the paths of the underlyings to compute the terminal
payoff at the expiration of the option assuming there was
no early exercise. As explained earlier in sub-section II-A3,
LSM then proceeds with dynamic programming taking the
form of chained linear regressions by Ordinary Least Squares.
In pratice, we use the Cholesky based solver for such systems
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Fig. 9: Longstaff-Schwartz pricing of an American Max-
imum Option: LSM is employed on both TPU and GPU
to price an American Max-of-Two Call. The very setting of
Example 8.6.1 from [16] is reproduced and the estimates on
all hardware are close to the stated true price of 13.90.

integrated in Tensorflow after a Cholesky decomposition of the
Grammian. From a numerical standpoint, as the MXU is now
used for both the forward simulations and the linear inversions
in dynamic programming there is an added level of uncertainty
related to the impact of the use of bfloat16 in the MXU.
The mixed precision could be causing numerical instability
problems. In practice, this has not been the case on TPU and
we have had to add a regularization term to the regression only
to help the GPU implementation which was often failing to do
the Cholesky decomposition. We reproduced the experiment
reported in [16] in Example 8.6.1 which assesses the true
price as 13.90. The results presented in Figure 9 show that
no significant bias was introduced by the use of TPU while
substantial speedups were gained. It is noteworthy that here
we only use one TPU core because there are multiple ways
of parallelizing LSM and discussing their different properties
is beyond the scope of the present paper.

Fig. 10: Code snippet to set up a simulation in an interactive
notebook.

VII. PROGRAMMING SIMULATIONS WITH
TENSORFLOW

A. Minimal code to run a Monte Carlo simulation

In Figure 10, we show the sufficient code to set up a Monte
Carlo simulation in Tensorflow. We demonstrate effectively
that one can devise a simulation for a European Basket Option
price estimator with a few lines of code, all while working in
an interactive Colaboraty (or Jupyter) notebook.

B. Automated Differentiation with one line of code

In Figure 10, we also show that a single line of code
suffices to turn payoff estimates into sensitivies (first order
derivatives with respect to the initial price in this case com-
puted by AAD, i.e. back-propagation). This is a remarkable
consequence of employing the Tensorflow framework which
is not only optimized for linear algebra acceleration as well as
fast random number generation but also integrates automated
differentiation.



VIII. CONCLUSION

In conclusion we argue that TPUs are indeed accurate, fast
and easy to use for financial simulation. Our experiments on
multiple diverse workloads demonstrate that even for large
simulations written in Tensorflow, TPUs enable a responsive
interactive experience with a higher speed than GPUs running
Tensorflow. Results also indicated that if cases arise in which
the mixed precision calculations running on TPUs create too
significant a bias, Multi-Level-Monte-Carlo offer an efficient
way of correcting this bias. As next steps, we want to confirm
Multi-Level-Monte-Carlo methods can work successfully on
TPUs. We also aim to enable faster model calibration and
leverage more advanced models for better derivatives pricing
and improved risk assessment.
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