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ABSTRACT
One of the challenges of learning-to-rank for information retrieval

is that ranking metrics are not smooth and as such cannot be opti-

mized directly with gradient descent optimization methods. This

gap has given rise to a large body of research that reformulates

the problem to fit into existing machine learning frameworks or

defines a surrogate, ranking-appropriate loss function. One such

loss is ListNet’s [4] which measures the cross entropy between a

distribution over documents obtained from scores and another from

ground-truth labels. This loss was designed to capture permutation

probabilities and as such is considered to be only loosely related

to ranking metrics. In this work, however, we show that the above

statement is not entirely accurate. In fact, we establish an analyt-

ical connection between ListNet’s loss and two popular ranking

metrics in a learning-to-rank setup with binary relevance labels.

In particular, we show that the loss bounds Mean Reciprocal Rank

and Normalized Discounted Cumulative Gain. Our analysis sheds

light on ListNet’s behavior and explains its superior performance

on binary labeled data over data with graded relevance.
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1 INTRODUCTION AND RELATEDWORK
Ranking is a central problem in information retrieval with appli-

cations in recommender systems, question answering, and ad hoc
document retrieval or search, where the goal is to order a set of doc-

uments in decreasing order of relevance given a query. A machine

learning formulation of this problem is known as learning-to-rank.
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Learning-to-rank algorithms [13] are supervised methods that

learn a parameterized function from the joint space of queries

and sets of documents into the space of permutations. Due to the

factorial growth of permutations, the learning task quickly becomes

intractable. This is generally addressed by breaking the problem

into two parts, known as the score-and-sort approach: The first

step is to learn a scoring function that takes a query and a set

of n documents into a vector in Rn , where the ith element is a

measure indicating the relevance of the ith document with respect

to the given query, and in a second step sorting documents by

relevance scores. With a few exceptions [7, 17], most learning-to-

rank methods [1–4, 10, 11, 18, 21, 22] further reduce the problem to

that of learning a univariate scoring function that produces a score

in R for a single query-document pair.

Ideally, the parameters of a learning-to-rank scoring function

are learned by directly maximizing a ranking utility. While this is

plausible when the scoring function is affine [14], in its more gen-

eral form this proves challenging. This is because ranking metrics

such as Normalized Discounted Cumulative Gain (NDCG) [9] are

functions of permutations to the real line. The discrete nature of

permutations entails that ranking metrics are non-smooth with

respect to the scoring function: small perturbations of scores may

not necessarily lead to a change in the order of documents, leading

to discontinuity at a measure-zero set and flat regions elsewhere.

The non-differentiability and otherwise uninformative gradi-

ents of ranking utilities pose a challenge that the learning-to-rank

community has sought to study. Broadly speaking, the existing

literature offers a range of methods where either the problem is

reformulated so it fits into existing machine learning frameworks

or a differentiable surrogate, ranking-appropriate loss is minimized

in an indirect attempt to maximize metrics. The first class describes

algorithms such as RankSVM [10] and RankNet [1] which focus on

the correct classification of ordered pairs, and AdaRank [23] which

optimizes an exponential upper-bound of metrics using boosted

weak learners. The second category includes most other meth-

ods [3, 4, 16, 18, 20–22]. These constitute the so-called “listwise”

algorithms—the objective is defined over the list of documents.

Some listwise methods are derived from ranking metrics [16, 18,

20] or are partially based on metrics (e.g., LambdaRank [1] or its

gradient boosted regression tree [8] variant, LambdaMART [3]).

Others such as ListMLE [22] or ListNet [4] have been known to

be disconnected from ranking metrics. For example, ListNet’s loss

function takes a probabilistic view of permutations and defines a

“top one” probability distribution over documents where the mass

allocated to a document indicates its likelihood of appearing at the

top of the ranked list. It forms two such distributions by way of

projecting a list of labels and a list of scores onto the probability

simplex (using the softmax operator to normalize scores). Finally,
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the distance between these two distributions as measured by cross

entropy forms the loss. We refer to this as the softmax cross entropy

loss function.

While the softmax cross entropy loss is seemingly disconnected

from ranking metrics, in this work we prove that there indeed

exists a link between the two concepts under certain conditions.

In particular, we show that softmax cross entropy is a bound on

Mean Reciprocal Rank (MRR) as well as NDCG when working with

binary ground-truth labels. We hope the analysis presented in this

work furthers our collective understanding of this loss function and

explains its behavior in the presence of binary relevance labels.

The remainder of this paper is structured as follows. In Section 2,

we formulate the problem of learning-to-rank and present a formal

overview of the softmax cross entropy loss as used in ListNet. Sec-

tion 3 presents our analysis. We discuss the findings and conclude

the paper in Sections 4 and 5.

2 BACKGROUND AND NOTATION
In this section, we formulate the problem of learning-to-rank and

present an overview of ranking metrics as well as the softmax cross

entropy loss function used in ListNet [4].

2.1 Overview of Learning-to-Rank
In this work, we focus exclusively on the classic case of offline,

supervised learning-to-rank methods where we have access to a

set of training examples. Let us denote a training set with Ψ =
{(x ,y) ∈ Xn × Rn+}, where x is a vector of n items xi , 1 ≤ i ≤ n, y
is a real vector of n nonnegative relevance labels yi , 1 ≤ i ≤ n, and
X is the space of all documents. Each document xi could generally

take any form but throughout this paper we define it to be a vector

of features representing a query-document pair.

As noted earlier, the objective is to learn a scoring function that

produces relevance scores for documents in anyx in such away that

the utility of the ordered list is maximized. Formally, the scoring

function f (·; Θ) : Xn → Rn , where Θ is a set of parameters, is

learned by minimizing the empirical loss:

L(f ) =
1

|Ψ|

∑
(x ,y)∈Ψ

ℓ(y, f (x)), (1)

where ℓ(·) is a local loss function. The function f is often univariate

and can be rewritten as f (x)|i = u(xi ), 1 ≤ i ≤ n, where f (·)|i de-

notes the ith dimension of f , and u : X → R computes a relevance

score for each item independently of other items.

LTR algorithms differ primarily in how they parameterize f
and how they define ℓ. Tried and tested parameterization methods

include linear functions [10], boosted weak learners [23], gradient-

boosted trees [2, 8], support vector machines [10], and neural net-

works [1]. For an extensive list of loss functions ℓ, we refer the

reader to Section 1.

2.2 Ranking Metrics
Ranking utilities such as NDCG or MRR are designed to emphasize

the top of the ranked list in a way that mimics user behavior; the

contribution to the utility from a document in the ranked list fades

as its rank increases, following the behavior of a typical user who

is less likely to examine documents at larger rank positions. Take

NDCG as an example. It is defined as follows:

NDCG(πf (x ),y) =
DCG(πf (x ),y)

DCG(π∗
x ,y)

, (2)

where πf (x ) is a ranked list over x induced by f , π∗
x is the ideal

ranked list (where items are sorted by y), and DCG is defined as

follows:

DCG(π ,y) =
n∑
i=1

2
yi − 1

log
2
(1 + π (i))

, (3)

where π (i) is the rank of xi ∈ x . Note that, NDCG computes a score

in the closed real interval [0, 1].

Reciprocal Rank is only considers the position of the first relevant

document and is generally appropriate for evaluations on click logs.

The metric is computed as follows:

RR(πf (x ),y) = max

{i | yi>0}

1

πf (x )(i)
. (4)

In practice, given an evaluation set Q = {(x ,y)} and a metric

M, we are interested in the mean metric:

M(πf (x ),y) =
1

|Q|

∑
(x ,y)∈Q

M(πf (x ),y). (5)

This results in mean NDCG andmean RR (orMRR) which we denote

by NDCG and RR respectively.

2.3 Softmax Cross Entropy
Finally, we detail the construction of the ListNet [4] loss function.

To compute the loss, y and f (x) are projected onto the probability

simplex to form the ground-truth distribution Py and the score

distribution Pf as follows:

Py (xi ) =
yi∑n
j=1 yj

, Pf (xi ) =
ef (x ) |i∑n
j=1 e

f (x ) |j
. (6)

These probabilities may be understood as encoding the likelihood

of document xi appearing at the top of the ranked list, referred to

as “top one” probability.

Given the two distributions, the loss is their distance as measured

by cross entropy:

ℓ(y, f (x)) = H (Py , Pf ) ≜ −

n∑
i=1

Py (xi ) log Pf (xi ). (7)

Finally, inserting this loss into Equation (1) gives the softmax cross

entropy empirical loss.

3 ANALYSIS
In this section, we begin by showing a connection between the

softmax cross entropy empirical loss and MRR when only a single

document is relevant. We then extend the proof to MRR on queries

with arbitrary number of relevant documents. Finally, we establish

that the loss bounds NDCG as well.

In each proof, we make use of the application of Jensen’s inequal-

ity to the log function. Given the concavity of log, the inequality

takes the following form:

logE[X ] ≥ E[logX ], (8)

where X is a random variable and E[·] denotes expectation.



Lastly, to simplify notation and arguments, we assume all queries

have at least a single relevant document. As queries with no relevant

documents do not contribute to the loss function, excluding them

in our analysis does not lead to loss of generality.

Theorem 1. Consider Ψ = {(x ,y) ∈ Xn × {0, 1}n |yT 1 = 1}

(i.e., a single relevant document per query). Softmax cross entropy
empirical loss is a bound on mean reciprocal rank in log-scale.

Proof. Consider first a single example (x ,y) and let r be the

index of its relevant document (yr = 1). Let πf (x ) be a permutation

produced by a ranking function f for x , and denote the rank of xi
with πf (x )(i). Let Ip be the indicator function that takes the value

1 if the predicate p is true and 0 otherwise, and write fk for f (x)|k .
We have the following:

πf (x )(r ) = 1 +
∑
i,r
Ifi>fr = 1 +

∑
i,r
Ifi−fr >0

≤ 1 +
∑
i,r

efi−fr =
∑
i
efi−fr =

∑
i e

fi

efr
,

which leads to the following result:

RR(πf (x ),y) =
1

πf (x )(r )
≥

efr∑
i e

fi
. (9)

Consider now log(RR). By Equation (9) and Jensen’s inequality:

logRR(πf (x ),y) = log

1

|Ψ|

∑
(x ,y)

1

πf (x )(r )
≥

1

|Ψ|

∑
(x ,y)

log

efr∑
i e

fi

Turning the problem above from maximization to minimization,

it is clear that the last term is the mean of the softmax cross entropy

loss. Given that maximizing RR is equivalent tominimizing negative

log of the same quantity—as log(·) is monotonically increasing—the

above completes the proof. □

Theorem 2. Consider Ψ = {(x ,y) ∈ Xn × {0, 1}n } (i.e., multiple
relevant documents per query). Softmax cross entropy empirical loss
is a bound on mean reciprocal rank in log-scale.

Proof. Define I (x) = {i |yi = 1}, the set of indices of relevant

documents in x . By definition

∑
i yi = |I (x)|. Rewrite Equation (4)

as follows:

RR(πf (x ),y) = max

r ∈I (x )

1

πf (x )(r )
≥

1

|I (x)|

∑
r ∈I (x )

1

πf (x )(r )
. (10)

As a result:

RR(πf (x ),y) =
1

|Ψ|

∑
(x ,y)

RR(πf (x ),y)

≥
1

|Ψ|

∑
(x ,y)

1

|I (x)|

∑
r ∈I (x )

1

πf (x )(r )
(by Eq. (10))

≥
1

|Ψ|

∑
(x ,y)

1

|I (x)|

∑
r ∈I (x )

efr∑
i e

fi
. (by Eq. (9))

Taking the log of the above:

logRR(πf (x ),y) ≥ log

1

|Ψ|

∑
(x ,y)

1

|I (x)|

∑
r ∈I (x )

efr∑
i e

fi

≥
1

|Ψ|

∑
(x ,y)

1

|I (x)|

∑
r ∈I (x )

log

efr∑
i e

fi
. (Jensen’s applied twice)

Turning the maximization problem into a minimization by negating

the objective function as in the proof of Theorem 1, it is clear that

the last term is the mean of softmax cross entropy loss, thereby

completing the proof. □

Theorem 3. Consider Ψ = {(x ,y) ∈ Xn × {0, 1}n } (i.e., multiple
relevant documents per query). Softmax cross entropy empirical loss
is a bound on mean Normalized Discounted Cumulative Gain in
log-scale.

Proof. Similar to the proof of Theorem 2, define I (x) = {i |yi =
1}. Consider first DCG(π∗

x ,y) for a single example (x ,y):

DCG(π∗
x ,y) =

|I (x ) |∑
i=1

1

log
2
(1 + i)

≤

|I (x ) |∑
i=1

1 ≤ |I (x)|.

Clearly, then:

1

DCG(π∗,y)
≥

1

|I (x)|
. (11)

Turning to DCG(πf (x ),y) and using 1 + z ≤ ez or equivalently

log(1 + z) ≤ z, we have the following:

DCG(πf (x ),y) =
∑

r ∈I (x )

1

log
2
(1 + πf (x )(r ))

(12)

≥
∑

r ∈I (x )

1

πf (x )(r )
≥

∑
r ∈I (x )

efr∑
i e

fi
, (13)

where the last inequality holds by Equation (9).

Finally, consider log(NDCG):

logNDCG = log

1

|Ψ|

∑
(x ,y)

1

DCG(π∗
x ,y)

DCG(πf (x ),y)

≥ log

1

|Ψ|

∑
(x ,y)

1

|I (x)|
DCG(πf (x ),y) (by Eq. (11))

≥ log

1

|Ψ|

∑
(x ,y)

1

|I (x)|

∑
r ∈I (x )

efr∑
i e

fi
(by Eq. (13))

≥
1

|Ψ|

∑
(x ,y)

1

|I (x)|

∑
r ∈I (x )

log

efr∑
i e

fi
. (Jensen’s)

As before, negating the objective function to create a minimization

problem completes the proof. □

4 DISCUSSION
The analysis in Section 3 suggests that optimizing the ListNet loss

is an indirect attempt at optimizing MRR or NDCG when given

binary relevance judgments—we note that the bound does not hold

when labels are graded. We believe, in addition to the discussion in

the original work [4], our analysis explains ListNet’s behavior in

comparison with other “pairwise” methods that focus on preference

ordering. Moreover, our analysis sheds light on why ListNet was

shown in [4] to outperform other methods on the TREC .GOV

collection [6], which provides binary relevance judgments, by a



Table 1: Comparison of learning-to-rank models on the test
set by mean NDCG (95% confidence intervals) over 5 trials.
λMART’s gain over ListNet is also reported.

Model NDCG@5 NDCG@10

ListNet Web30K 46.72 (±0.08) 48.98 (±0.09)

λMART Web30K 49.20 (±0.07, ↑5.3%) 51.05 (±0.02, ↑4.2%)

ListNet Web30K-b 75.83 (±0.07) 73.89 (±0.08)

λMART Web30K-b 78.16 (±0.08, ↑3.1%) 75.60 (±0.09, ↑2.3%)

ListNet Yahoo! 72.90 (±0.05) 77.49 (±0.05)

λMART Yahoo! 74.16 (±0.14, ↑1.7%) 78.40 (±0.10, ↑1.2%)

ListNet Yahoo!-b 89.95 (±0.07) 90.80 (±0.05)

λMART Yahoo!-b 90.56 (±0.07, ↑0.7%) 91.21 (±0.07, ↑0.4%)

much wider margin than on other datasets with graded relevance

labels.

In an attempt to verify the consistency of this behavior, we have

conducted experiments of our own on two benchmark datasets:

MSLR Web30K [15] Fold 1 and Yahoo! Learning-to-Rank Chal-

lenge [5] Set 1. Both contain roughly 30,000 queries. Web30K (Ya-

hoo!) has 120 (24) documents per query on average, each repre-

sented by 136 (519) numeric features. Documents are labeled with

graded relevance from 0 to 4 with larger labels indicating a higher

relevance. It is important to note that in both datasets, queries with

no relevant documents are discarded during evaluation. Finally, by

setting all non-zero labels to 1 we construct two synthetic variants

of these datasets with binary labels which we refer to as Web30K-b

and Yahoo!-b.

We implemented the ListNet loss in LightGBM [12] and compare

its performance with LambdaMART [3] (λMART). Hyperparam-

eters are tuned on validation sets and are configured as follows:

For Web30K (Yahoo!), learning rate is 0.1, num_leaves is 255 (200),

min_data_in_leaf is 50 (100), and min_sum_hessian_in_leaf is 100

(10). Hyperparameters do not change for Web30K-b but for Yahoo!-

b, min_sum_hessian_in_leaf is set to 400. We use NDCG@5 on

validation sets to select the best models and allow up to 500 trees

with early stopping rounds set to 30.

Table 1 summarizes the results. While λMART consistently and

statistically significantly outperforms ListNet as anticipated, the

gap between ListNet and λMART is narrower on the datasets with

binary labels. This finding is in agreement with the analysis in

Section 3 as well as the results reported in [4].

5 CONCLUSION AND FUTUREWORK
In this work, we provided proof that ListNet’s loss function is a

bound on MRR and NDCG in the binary relevance regime. Our

analysis helps explain ListNet’s behavior and sheds light on its

superior performance on binary labeled data as presented in the

original publication as well as experiments in this work.

We conclude by noting that the form of the softmax cross en-

tropy loss is more friendly than λMART to incorporating inverse

propensity weights [19] for countering position bias. Together with

the fact that it can be computed very efficiently, these factors make

the loss an appropriate choice for learning from click logs. We wish

to explore these directions in future work.
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