
Comparison of Deep Reinforcement Learning Policies
to Formal Methods for Moving Obstacle Avoidance

Arpit Garg1, Hao-Tien Lewis Chiang1,2, Satomi Sugaya1, Aleksandra Faust2 and Lydia Tapia1

Abstract— Deep Reinforcement Learning (RL) has recently
emerged as a solution for moving obstacle avoidance. Deep RL
learns to simultaneously predict obstacle motions and corre-
sponding avoidance actions directly from robot sensors, even
for obstacles with different dynamics models. However, deep RL
methods typically cannot guarantee policy convergences, i.e.,
cannot provide probabilistic collision avoidance guarantees. In
contrast, stochastic reachabilty (SR), a computationally expen-
sive formal method that employs a known obstacle dynamics
model, identifies the optimal avoidance policy and provides
strict convergence guarantees. The availability of the optimal
solution for versions of the moving obstacle problem provides
a baseline to compare trained deep RL policies. In this paper,
we compare the expected cumulative reward and actions of
these policies to SR, and find the following. 1) The state-value
function approximates the optimal collision probability well,
thus explaining the high empirical performance. 2) RL policies
deviate from the optimal significantly and thus negatively
impacts collision avoidance in some cases. 3) Evidence suggests
that the deviation is caused, at least partially, by the actor
net failing to approximate the action that leads to the highest
state-action value.

I. INTRODUCTION

Moving obstacle avoidance is critical for many robotic
applications such as self-driving cars [1], UAVs [2] and
service robots [3]. However, it is a challenging problem to
solve because even in the simplest case, where a 2D holo-
nomic robot must avoid collision with polygonal obstacles
moving at constant velocities, planning is NP-Hard [4] and
in PSPACE [5]. Several motion planning algorithms exist for
obstacle avoidance in dynamic environments [6], [7], [8]. In
environments with stochastically moving obstacles, the most
successful methods work by predicting the obstacle direction
and velocity [6]. However, due to the problem complexity,
no current solutions can guarantee collision-free navigation
in crowded stochastic environments [6]. Formal methods,
such as Stochastic Reachability (SR) analysis, assesses if
the robot will, with a certain likelihood, remain within a
desired subset of the robot state space. SR, through dynamic
programming and the use of models of obstacle dynamics,
can be formulated to provide probabilistic guarantees on
avoiding stochastically moving obstacles.

Deep RL policies can map sensor observations, such
as LiDAR information, directly to robot action, and have

1Department of Computer Science, University of New Mexico,
MSC01 11301 University of New Mexico, Albuquerque, NM
87131, USA lewispro@unm.edu, kiralobo@unm.edu,
satomi@cs.unm.edu and tapia@cs.unm.edu

2Google AI, Mountain View, CA 94043, USA
lewispro@google.com and faust@google.com

(a) (b)

(c) (d)

Fig. 1. VSR (a, c) and normalized VRL (b, d) in the relative coordinates for deterministic
(a, b) and stochastic (c, d) obstacle motions.

outperformed traditional approaches in tasks such as ma-
nipulation [9] and legged locomotion [10]. Deep RL has
also been used for moving obstacle avoidance [11], [12],
[13], where they learn to simultaneously predict obstacle
motions and corresponding avoidance actions through trial-
and-error. However, these methods have the following issues.
1) They use deep neural networks as nonlinear function
approximators. Thus, in general case, there is no guarantee
that the learned policy converges to an optimal or that
collision avoidance is assured with a certain probability.
2) Deep RL methods are sensitive to hyperparameters and
sometimes even random seeds [14], and 3) the learned robot
behaviors are often difficult to interpret.

To better understand the performance of deep RL moving
obstacle avoidance policies and gain insights into their be-
havior, we compare them with SR, which provides an optimal
obstacle avoidance policy as well as collision probability.
Since SR is limited in the dimensionality of the problems that
it can address, we focus our comparison on avoiding a single
obstacle in order to help us gain insights into the general
obstacle avoidance problem. To do this, we first design a
reward function that promotes obstacle avoidance and then
train RL policies. Next, we interpret the corresponding state
value function, an expected cumulative reward of the learned
policy, as a proxy for collision probability. This interpretation
enables the direct comparison of SR and RL. Specifically,
we focus on A3C [15], a deep RL algorithm, and analyze
the policy (actor) and state value function (critic) neural

networks, to gain insights into its behavior and how it differs
from SR.

Results reveal the following. 1) End-to-end deep RL
obstacle avoidance policies have up to 15% higher success
than a state of the art multi-obstacle collision avoidance
method, APF-SR [16]. 2) We observe evolving changes in
behavior of RL policies during training. This was consistent
across environments with deterministic and stochastic obsta-
cle motions. 3) The state value function stored in the critic
net approximates the optimal collision probability reasonably
well. This explains why RL policies perform well empirically
compared to the traditional methods. 4) However, the RL
policy stored in the actor net deviates from the optimal policy
significantly and thus negatively impacts the true policy
collision probability. 5) We localize the regions of failures
of RL policies. 6) Lastly, strong evidence suggests that the
deviation from optimal policy is caused by the actor net
failing to approximate the action that leads to the highest
state action value stored in the critic net. The enclosed video
demonstrates deep RL moving obstacle avoidance policies in
environments with 50 obstacles compared to APF-SR.

II. RELATED WORK

A. RL in Moving Obstacle Avoidance

An approximate value iteration RL algorithm using a state
value function approximated is a viable solution for moving
obstacle avoidance [17], but it requires hand-engineered
features such as the distance to obstacles. Recent advances
in deep RL eliminate the need for hand-picked features, by
relying on deep neural nets to approximate value functions
[18]. As a result, deep RL policies can map raw sensor
observations such as camera image or LiDAR directly to
robot actions. This breakthrough inspired a new line of work
using deep RL for moving obstacle avoidance. For example,
an effective end-to-end (LiDAR to robot action) moving
obstacle avoidance for point to point navigation and path
following were achieved via Auto-RL, in which a large scale
evolutionary strategy automatically tunes hyperparameters,
network, and reward [11]. Proximal policy optimization [19]
learns an end-to-end policy to navigate among dense crowds
[12]. Another method, using a recurrent neural net to avoid
collision with an arbitrary number of moving obstacles,
obtains obstacle position information available through the
use of clustering [13].

B. Moving Obstacle Avoidance with SR

SR assesses whether the state of the system will, with
a certain likelihood, remain within and/or reach a desired
subset of the state space in a finite time, or avoid an undesired
subset of the state space [20]. SR can be formulated to avoid
moving obstacles by setting the undesired set of states as
states with a non-zero collision probability. To compute this
set, methods such as [21] and [22] start with the set of states
in collision and iterate backward in time using the Hamilton-
Jacobi-Isaacs (HJI) equation [23]. The complement of this
set of states assures collision avoidance. Unfortunately, the

computational cost of dynamic programming-based SR in-
creases exponentially with the number of obstacles and robot
state space dimension [20]. As a result, SR cannot be used to
avoid multiple moving obstacles directly in real-time. Several
methods sacrifice the probabilistic guarantees provided by
SR to work among many moving obstacles. These include
using SR to bias roadmap edge weights [24] and artificial
potential fields [16].

C. Evaluation of deep RL policies

Many RL methods rely on Bellman iteration to update
policies [25]. RL policy converges to optimal in limited
cases, e.g., when discrete or linear value function approxima-
tion and on-policy samples are used [26]. In the context of
stochastic moving obstacle avoidance, optimal policies and
corresponding value functions provide probabilistic guaran-
tees of obstacle avoidance. Unfortunately, since most deep
RL methods use nonlinear function approximators (neural
networks) and stochastic gradient descent-based optimizers,
it is very difficult to provide convergence guarantees [27].
As a result, previous work in deep RL empirically compares
policy performance with traditional robotics approaches [12],
[11], other RL algorithms [10], or humans [18]. These
approaches may not be sufficient for moving obstacle avoid-
ance since collisions often incur severe consequences. By
quantitatively comparing deep RL policies to methods with
theoretical guarantees, we can directly probe the safety and
performance of deep RL for moving obstacle avoidance.

III. PRELIMINARIES

A. Robot and Obstacle Dynamics

Consider a holonomic circular robot and a circular obstacle
in two dimensional workspace. The robot with radius Rr at
location xr

n is to avoid the obstacle with radius Ro at xo
n at

each discrete time step n. The robot may change its heading
angle, θrn, while moving with a constant speed, vr. The
obstacle moves in a straight line with a heading angle, θo,
with velocity, wn, while its speed, wn = |wn|, may change
according to a probability mass function, p(wn). The spaces
of stochastic obstacle speed and robot action are denoted by
W and U , respectively.

The discrete time dynamics of the robot and obstacle in
relative coordinates (x̃ = xr − xo ∈ X̃) is described by:

x̃n+1 = x̃n + ∆ (fr(un, θ
r
n)− fo(wn)) , (1)

where ∆ is the time step, un is the robot action, fr(u, θr)
and fo(w) are the dynamics of the robot and obstacle,
respectively. A collision occurs when

||x̃n||2 ≤ Rr +Ro. (2)

B. SR Analysis

We briefly summarize SR formulation for stochastically
moving obstacle avoidance. (See [28] for more details.)
A value function, V , which corresponds to the collision
probability over a finite time horizon, N , can be computed
by formulating the SR problem in the following manner.
First, we define an indicator function, 1K(x̃), with value one

when the system is not in collision and zero otherwise. Next,
we define the stochastic transition kernel, τ(x̃n+1|x̃n,un),
which gives the probability distribution of x̃n+1 given x̃n

and un. The value function can be computed by the iterative
relationship between time steps, starting from time step N
[20]:

VN (x̃) = 1K(x̃) (3)

Vn(x̃) = 1K(x̃)

∫
X̃
Vn+1(x̃′)τ(x̃′|x̃n,un) dx̃′ (4)

= 1K(x̃)
∑
w∈W

V ∗n+1 (x̃ + ∆ (frn − fon)) p(w), (5)

where frn = fr(un, θ
r
n), fon = fo(wn).

The optimal value function, V ∗, can be computed by
choosing the optimal action that maximizes the value func-
tion at each iteration:

V ∗n (x̃) = max
u∈U

{
1K(x̃)

∑
w∈W

V ∗n+1(x̃ + ∆(frn − fon))p(w)

}
.

(6)
The optimal value function at n = 0, V ∗0 (x̃0), is the collision
avoidance probability of state x̃0 given the best avoidance
actions in the next N time steps. Therefore, the collision
probability, VSR, is simply VSR ≡ 1− V ∗0 (x̃0). Note that we
can also use Eq. (6) to find optimal actions to avoid collisions
from a given state x̃, i.e., an optimal collision avoidance
policy.

C. Deep RL

Deep RL methods typically formulate the problem as a
Partially Observable Markov Decision Process (POMDP),
which is a 5-tuple, (O,U , τu, R, γ). The goal is to find an
optimal policy, π∗(o), that maps an observation, o ∈ O, to an
action, u ∈ U , such that the expected discounted cumulative
reward, V , is maximized, where V is the sum of discounted
rewards, R, by the factor, γ ∈ [0, 1], along trajectories under
system dynamics, τu.

A3C [15] approximates the optimal policy through the
use of actor and critic neural nets. The actor net learns a
policy π(o) through policy gradient [29], which updates the
actor net parameters towards the direction that increases the
state action value function given by the critic net. Mean-
while, the critic net parameters are updated by Bellman’s
equation (same as Q-learning). To speed up learning, A3C
employs multiple actor-learners to asynchronously collect
experiences, i.e., observation, action and reward for each time
step.

IV. TRAINING OF DEEP RL POLICIES

a) Robot and environment: The 50 m by 50 m training
environment (Fig. 2) has 50 moving obstacles (blue circles
of radius 0.5 m) and the holonomic point robot (red dot)
has a 1D LiDAR with 72 rays with a 5 m maximum range
(green lines). When the obstacle reaches the boundary of
the environment it teleports and reappears at the opposite
boundary. We trained two policies, one with deterministic
obstacle motion, a fixed velocity (2.5 m/s), and one with

Fig. 2. Training environment. The holonomic point robot (red) makes LiDAR (green)
observations of obstacles (blue).

stochastic motion, a fixed heading but speed randomly
sampled from w = [1.5, 2.5, 3.5, 4.5] m/s with probability
Pw = [0.2, 0.3, 0.2, 0.3] at every time step (0.2 s). The robot
action is either one of the 36 directions, spread evenly across
360°, or to remain stationary. The robot has a maximum
speed of 1 m/s, which is up to 4.5 times slower than the
maximum speed of stochastically moving obstacles.

b) RL setup: We train deep RL moving obstacle avoid-
ance policies using A3C [15]. We chose A3C because,
unlike policy optimization based methods, the critic net
stores the state action value function which approximates
the expected cumulative reward. The robot observes the
72 distances returned by LiDAR. To allow observation of
obstacle velocity, the 5 most recent LiDAR measurements
are used as the observation o by A3C. At every time step
reward function, R, is evaluated, and it provides a value of
0.25 for a non-collision transition and -5 if the robot collides
with a moving obstacle. We terminate the episode if collision
occurs. We use 32 actor-learners, and the critic is updated
every time 8 experiences were collected by each learner. A
fully-connected network with two hidden layers, with [128,
32] neurons was used to approximate actor and critic.

V. EVALUATION

In this Section, we compare deep RL value functions and
policies to SR computation in order to directly probe learn-
ing outcomes. First, we begin with assessing the learning
process, and after a policy is selected, we evaluate in depth
the resulting value functions and actions selected by the two
methods.

A. Policy selection and evaluation

During training, the learned deep RL policy constantly
changes. The final policy used for obstacle avoidance is
typically chosen by picking the policy with the highest cu-
mulative reward or a performance metric [11]. Fig. 3 shows
the survival rate, the percentage of 20 second collision-
free runs of the robot in the training environment, as a
function of training steps for the stochastic and deterministic
obstacle motions. For comparison, we ran an SR based
artificial potential field method, APF-SR [16], in the same
environment. APF-SR uses the SR set as a repulsive potential

Fig. 3. 20 second survival rate as a function of global step in an environment with
50 obstacles. Deep RL policies (solid lines) and a non-learned comparison method
APF-SR (dotted lines) for stochastic (red) and deterministic (blue) obstacle motions
are shown. Stochastic and deterministic policies are picked at 0.80 (red star) and 0.95
(blue star) survival rates. APF-SR survival rates are 0.65 and 0.82 for stochastic and
deterministic obstacle motions, respectively.

(a) MSE: 0.2074 (b) MSE: 0.6315

(c) MSE: 0.1398

(d) MSE: 0.0053

Fig. 4. MSE between VSR and normalized VRL as a function of global step (main
figure) for deterministic (solid black) and stochastic (dotted red) obstacle motions. RL
collision probabilities are shown at initial state (a), the first peak (b), the second peak
(c) and convergence.

and goal as an attractive potential. Given the net potential,
SR suggests an action to take. In our scenario the task is to
survive without collision, thus there is no attractive potential.
Fig. 3 shows the survival rates of APF-SR which is 15%
and 13% lower than the survival rates of our RL policy in
stochastic and deterministic obstacle motions, respectively.

For the remaining policy analysis, we empirically pick the
RL policies with highest survival rate (95% for deterministic
and 80% for stochastic).

B. Critic Comparison

Recall that the critic in A3C returns a scalar, VRL, which
approximates the expected cumulative reward. By training
with the reward function described in Sec. IV, VRL can be
normalized to have values between zero and one to serve

as a proxy for collision probability. This allows for a direct
comparisons with the collision probability, VSR, given the
optimal avoidance policy from SR. Note that SR suffers from
the curse of dimensionality and computing collision avoid-
ance with multiple obstacles is infeasible [28]. Therefore,
we compare VSR and normalized VRL in the presence of one
moving obstacle.

Fig. 4 shows the Mean Squared Error (MSE) between
VSR and normalized VRL, for the deterministic and stochastic
obstacle motion as a function of global steps. Both curves
follow the same trend, with two peaks of larger error before
MSE converges. The four inset figures of normalized VRL in
Fig. 4 show distinct robot behaviors during training. At the
initial stage of learning (inset a), VRL is essentially random.
Next, the robot learned to approach the obstacle, resulting in
a high collision rate and MSE (inset b). This behavior helps
the robot in the next stage of learning avoid the obstacle
(inset c), but it does not consider the motion of obstacle.
Lastly at convergence (inset d), the robot learns to consider
obstacle motion thus resulting in a low MSE.

Figs. 1b and 1d show normalized VRL for the best perform-
ing policies (as picked in Section V-A), given deterministic
(top row) and stochastic (bottom row) obstacle motion. Also,
for comparison, the VSR is shown in Figs. 1a and 1c. The
VSR plots show that since the obstacle moves faster than
the robot, the robot cannot avoid collision if it is positioned
inside the obstacle or in a small region in front of the obstacle
(collision probability of one). In addition to these regions,
stochastically moving obstacles also have regions where the
robot may only probabilistically avoid collision. Collision
avoidance would only be achievable if the obstacle moves at
slow speed. Lastly, there is a large area with zero collision
probability for SR. The critic net captures these regions
reasonably well as normalized VRL shown in Figs. 1 (b) and
1 (d) is similar to VSR, resulting in a low MSE.

C. Actor Comparison

After comparing the critic net with the collision probability
given by SR, we compare the deep RL policy (actor net) with
the optimal policy given by SR (Eq. (6)). Fig. 5 shows action
as a function of robot position (white arrows) overlaid with
VSR on the left and normalized VRL on the right, for obstacles
with deterministic motion (top row) and stochastic motion
(bottom row). A visual comparison of the arrows shows that
RL actions are not the same as optimal actions given by
SR. For example, there are actions in the RL deterministic
obstacle case that suggest outrunning the obstacle. And,
there are actions in the RL stochastic case that seemingly
move toward the incoming obstacle. These suggest potential
collisions. It should be noted that in VSR arrows are not
shown for those locations with zero collision probability
because all actions are equally optimal. The deep RL policy,
however, returns an action for each location.

Since the actions selected by the actor net deviates sig-
nificantly from SR, we would like to answer the following
questions: 1) How does this affect collision avoidance perfor-
mance (Sec. V-D) and 2) what causes the discrepancy (Sec.

(a) (b)

(c) (d)

Fig. 5. VSR (a, c) and normalized VRL (b, d) contour overlayed with SR and RL action at each position (shown by arrows), for deterministic (a, b) and stochastic (c, d) obstacle
motions.

V-D).

D. Collision Probability Comparison

In this section, we analyze how the deep RL and SR
policy discrepancy affects collision avoidance. To do this,
we compute the RL collision probability of a given position.
This is achieved by starting the robot at every position and
executing actions given by the actor net until either collision
occurs or a horizon of six time steps is reached. This process
is repeated 20 times for each position.

Fig. 6 (b, e) show the RL collision probability compared
to the optimal collision probability given by SR, Fig. 6 (a,
d), for deterministic (top row) and stochastic (bottom row)
obstacle motions. It is clear that the RL collision probability
differs significantly from the optimal. This means that the
deep RL policy is not optimal and is more likely to collide
with obstacles, particularly in regions where the RL policy
deviates significantly with the optimal policy.

E. Causes for Sub-optimality

In this section, we aim to identify causes for the sub-
optimality of the deep RL policy. We observe that normalized
VRL (Fig. 1 (b)) is close to the collision probability given by
SR (Fig. 1 (a)) for deterministic obstacle motion. This is also
reflected in the low MSE in Fig. 4. However, the RL policy
deviates from the optimal given by SR significantly. This
led to a hypothesis that the actor net failed to approximate

the action that leads to the highest state-action value stored
in the critic net. To support this hypothesis, we bypassed
the actor net and devised a new RL policy from the critic
net, πcritic(o). This policy maps observation to action by
evaluating the critic state-action value, Q(o,a), for each
action and select the action acritic with the highest Q:

acritic = argmax
a

Q(o,a) (7)

We compute the collision probability of this “critic policy”
with the procedure described in Sec. V-D. Figs. 6 (c, d) show
this collision probability for deterministic and stochastic
obstacle motions, respectively. Comparing to the collision
probability of the original RL policy (actions obtained from
the actor net, shown in Figs. 6 (b, e)), it is clear that the critic
policy performs better for deterministic obstacle motion. This
is a strong evidence supporting our hypothesis.

To further support our hypothesis, we compare the actions
of the original deep RL policy (left column) and critic
policies (right column) in Fig. 7 for deterministic (top row)
and stochastic (bottom row) obstacle motions. It is clear that
the actions are significantly different. This strongly suggests
that the actor net failed to approximate the action that leads
to the highest state-action value stored in the critic net. The
same conclusion can be drawn for stochastic obstacle motion,
as Figs. 7 (c, d) show that the two policies are significantly
different.

(a) (b) (c)

(d) (e) (f)

Fig. 6. VSR (a, d), collision probability of the RL policy (b, e) and “critic policy” described in Sec. V-D (c, f) for deterministic (top) and stochastic (bottom) obstacle motions.

(a) (b)

(c) (d)

Fig. 7. RL actions as a function of position given by the actor net (a, c) and critic net ((b, d), actions that lead to the highest state-action value). The top and bottom rows show
the obstacle (red circle) with deterministic and stochastic motion, respectively.

However, in contrast to deterministic obstacle motion,
Fig. 6 (f) shows the critic policy for stochastic motion
performs only slightly better than the original policy 6 (e).
This indicates that the critic is not learning the optimal
collision probability, as shown in Fig. 1 (c, d). This maybe
due to the stochastic nature of obstacle speeds, which has

a higher average speed (3.1 m/s compared to 2.5 m/s of
deterministic obstacle motion) and randomly varies every
time step.

We also ruled out some other sources for the discrepancy.
We tried increasing the number of LiDAR beams to 288
(4 times as many as the) and increasing the network size

and shape. These changes did not result in better empirical
performance among many obstacles, and the true policy
collision probability did not better approximate the optimal.

VI. CONCLUSION

In this paper we examined how the deep RL actor and
critic compare to a traditional formal method, SR, for the
task of avoiding moving obstacles. To that end, we per-
formed a comparative analysis. In the presence of multiple
moving stochastic obstacles RL performs empirically better
than a state of the art planning method while having less
information about obstacle dynamics and position. In the
presence of a single obstacle, we uncover regions where
RL policy under-performs an optimal SR computation. This
is important because it gives a cue to practitioners where
secondary safety policies might need to be added, to improve
obstacle avoidance in physical systems. We also discover a
consistent evolution of the RL agents during the training,
where learning for both deterministic and stochastic obstacles
passes through the same phases. This is important as it can
provide further insight into both the performance of the agent
and when deciding if more training is necessary.

ACKNOWLEDGMENT

We would like to thank Meeko Oishi, University of New
Mexico, and Kendra Lesser, Verus Research, for help com-
puting the SR sets for this work. Tapia, Chiang, Garg, and
Sugaya are partially supported by the National Science Foun-
dation under Grant Numbers IIS-1528047 and IIS-1553266.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[2] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent & Robotic Systems, vol. 57, no. 1, pp. 65–100, 2010.

[3] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila,
M. Chetouani, D. Cremers, V. Evers, M. Fiore et al., “Spencer: A
socially aware service robot for passenger guidance and help in busy
airports,” in Field and Service Robotics. Springer, 2016, pp. 607–622.

[4] J. Canny and J. Reif, “New lower bound techniques for robot motion
planning problems,” in Found. of Comp. Sci., Annual Symp. IEEE,
1987, pp. 49–60.

[5] J. Canny, “Some algebraic and geometric computations in pspace,”
in Proc. of annual ACM symp. on Theory of computing, 1988, pp.
460–467.

[6] H.-T. L. Chiang, B. HomChaudhuri, L. Smith, and L. Tapia, “Safety,
challenges, and performance of motion planners in dynamic environ-
ments,” in The International Symposium on Robotics Research (ISRR),
2017, pp. 1–16.

[7] R. Benenson, S. Petti, T. Fraichard, and M. Parent, “Integrating
perception and planning for autonomous navigation of urban vehicles,”
in Proc. IEEE Int. Conf. on Intel. Robot. Sys. (IROS), 2006, pp. 98–
104.

[8] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–
772, 1998.

[9] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” arXiv preprint arXiv:1806.10293, 2018.

[10] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[11] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end to end with auto-rl,” Robot. and Automat.
Lett., pp. 2007–2014, 2019.

[12] T. Fan, X. Cheng, J. Pan, P. Long, W. Liu, R. Yang, and D. Manocha,
“Getting robots unfrozen and unlost in dense pedestrian crowds,”
Robot. and Automat. Lett., pp. 1178–1185, 2019.

[13] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in Proc. IEEE Int. Conf. on Intel. Robot. Sys. (IROS). IEEE, 2018,
pp. 3052–3059.

[14] H. Mania, A. Guy, and B. Recht, “Simple random search of static
linear policies is competitive for reinforcement learning,” in Advances
in Neural Information Processing Systems, 2018, pp. 1805–1814.

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. Int. Conf. on Machine Learning
(ICML), 2016, pp. 1928–1937.

[16] N. Malone, H.-T. Chiang, K. Lesser, M. Oishi, and L. Tapia, “Hybrid
dynamic moving obstacle avoidance using a stochastic reachable set-
based potential field,” IEEE Trans. Robot., pp. 1124–1138, 2017.

[17] A. Faust, H.-T. Chiang, N. Rackley, and L. Tapia, “Avoiding moving
obstacles with stochastic hybrid dynamics using pearl: preference
appraisal reinforcement learning,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). IEEE, 2016, pp. 484–490.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[20] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems,” Automatica, vol. 44, pp. 2724–2734, 2008.

[21] K. Margellos and J. Lygeros, “Hamilton-Jacobi formulation for reach-
avoid problems with an application to air traffic management,” Amer-
ican Control Conference (ACC), pp. 3045–3050, 2010.

[22] J. H. Gillula, G. M. Hoffmann, H. Haomiao, M. P. Vitus, and C. J.
Tomlin, “Applications of hybrid reachability analysis to robotic aerial
vehicles,” Int. J. Robot. Res., vol. 30, pp. 335–354, 2011.

[23] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games,”
Transaction on Automatic Control, vol. 50, pp. 947–957, 2005.

[24] N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Stochastic reachability
based motion planning for multiple moving obstacle avoidance,” in
Hybrid Systems: Computation and Control. HSCC, 2014, pp. 51–60.

[25] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” arXiv preprint
arXiv:1708.05866, 2017.

[26] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming.
Athena Scientific Belmont, MA, 1996, vol. 5.

[27] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song,
“Sbeed: Convergent reinforcement learning with nonlinear function
approximation,” arXiv preprint arXiv:1712.10285, 2017.

[28] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Aggres-
sive moving obstacle avoidance using a stochastic reachable set based
potential field,” in Proc. Int. Workshop on Algorithmic Foundations of
Robotics (WAFR), pp. 73–89.

[29] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proc. Int. Conf.
on Machine Learning (ICML), 2014.

