Byte-Aware Floating-point Operations
through a UNUM Computing Unit

Andrea Bocco*T, Tiago T. Jost*T, Albert Cohen*, Florent de Dinechin®, Yves Durand', and Christian Fabre'
TCEA, LETI, Univ. Grenoble Alpes, Grenoble, France - iGoogle Al, Paris, France - §INSA-Ly0n, Lyon, France
Emails: andrea.bocco@cea.fr, tiago.trevisanjost@cea.fr, albertcohen @ google.com, Florent.de-Dinechin @insa-lyon.ft,
yves.durand @cea.fr, christian.fabrel @cea.fr

Abstract—Most floating-point (FP) hardware support the IEEE
754 format, which defines fixed-size data types from 16 to 128 bits.
However, a range of applications benefit from different formats,
implementing different tradeoffs. This paper proposes a Variable
Precision (VP) computing unit offering a finer granularity of high
precision FP operations. The chosen memory format is derived
from UNUM type I, where the size of a number is stored within
the representation itself. The unit implements a fully pipelined
architecture, and it supports up to 512 bits of precision for both
interval and scalar computing. The user can configure the storage
format up to 8-bit granularity, and the internal computing
precision at 64-bit granularity. The system is integrated as a
RISC-V coprocessor. Dedicated compiler support exposes the unit
through a high level programming abstraction, covering all the
operating features of UNUM type I. FPGA-based measurements
show that the latency and the computation accuracy of this
system scale linearly with the memory format length set by the
user. Compared with the MPFR software library, the proposed
unit achieves speedups between 3.5x and 18x, with comparable
accuracy.

Index Terms—Variable precision, Floating-point, UNUM, Sci-
entific computing, Instruction set architecture, Hardware archi-
tecture, RISC-V, Coprocessor, Multiple precision, FPGA, ASIC

I. INTRODUCTION

Increasing performance and reducing energy consumption
of computational systems has become a major challenge,
and a broad range of compute applications involve heavy
floating-point (FP) computations. As applications have widely
different requirements in terms of arithmetic precision, choos-
ing the appropriate data format among those offered by the
IEEE 754 standard [1] can be difficult.

A wide range of applications show an optimal performance
for FP representation that cannot be represented through the
standard format. For instance, many applications in neural
networks and signal processing require fewer than 16 bits of
representation, and using the IEEE format can be inefficient.
Others are sensitive to the accumulation of rounding, cancella-
tion and absorption computational errors. Such accumulations
can quickly lead to completely inaccurate results. This is the
case for linear solvers, experimental math, etc. which may only
show stability for formats above 128 bits, reducing the benefit
of IEEE-754 hardware support.

*Both authors contributed equally to this research.

<— es bits >»<—fs bits ———>

| S | e f | u | es-1 fs-1
sign exponent fraction ubit exponent fraction
size size

Fig. 1 The Universal NUMber (UNUM) Format.

An alternative research direction consists in rethinking
FP arithmetic in order to compensate the aforementioned
problems (overkill, cancellation, rounding, etc.). The Posit
system [2] relies on tapered precision within a fixed-size for-
mat. Another solution is Variable Precision (VP) computing,
where the computation precision is adjusted to the application
requirements. UNUM [3] is a Variable Precision (VP) format,
which offers variable-length exponent and mantissa fields,
whose lengths are encoded within the number itself. Previous
works [4]-[6] have proposed hardware solutions to support
VP FP formats. Software multi-precision libraries also exist,
such as Quad Double [7] or the state-of-the-art MPFR [8] and
Arb [9].

This paper investigates a hardware Variable Precision (VP)
computing unit allowing a finer memory granularity for FP
in memory than the IEEE-754 standard. For this purpose, the
chosen memory format is UNUM type 1.

This work complements previous work [10], [11] with a
study of the runtime capabilities needed to adjust the memory
format of FP numbers. To the best of the authors’ knowledge,
this is the first work focusing on the memory subsystem
dimension of hardware VP acceleration. The user can con-
figure the storage representation at an 8-bit granularity, and
the internal computing precision at 64-bit granularity.

The remainder of this paper is organized as follows: Sec-
tion II introduces the UNUM type I memory format and our
proposed refinements. Section III presents our VP FP archi-
tecture and its Instruction Set Architecture (ISA). Section IV
specifies the programming scheme of the unit, the new C
data type and the compiler toolchain. Section V illustrates a
performance and precision profiling comparing the proposed
hardware unit with a realization based on the MPFR software
library. Section VI concludes this work.

II. UNUM: REFINEMENTS TO THE MEMORY FORMAT

The computing precision in scientific applications may be
decided at run time, for example, depending on the compu-

LSB MSB

(a) |s|u| es-1 | fs-1 | e | f |
T et L rght 1 left | right | left | right |
(b) |s|u| es-1 | fs-1 |s|u| es-1 | fs-1 | e | e | f f |

Fig. 2 Adopted memory format for UNUMs and ubounds.

tational error of the algorithm. Thus, a Floating Point (FP)
memory format where the user can tune the sizes of the
exponent and fraction fields would be appreciable. We adopted
the UNUM type I format for storing numbers in memory
(Fig. 1 [3]) since, as the authors’ knowledge, it is the only
Variable Precision (VP) FP format available in the state of
the art which has these characteristics. The UNUM format is
a self-descriptive FP format with 6 sub-fields: the sign s, the
exponent e, the fraction f (like the IEEE 754 formats) and three
descriptor fields: u, es-1 and fs-1. The es-1 and fs-1 encode
the lengths of the e and f variable-length fields respectively.
This format is also meant to support Interval Arithmetic (IA)
using the “uncertainty” bit # and the possibility to represent an
interval as a ubound (interval consisting of a tuple of UNUMs).
The maximum length of a UNUM is defined by the length of
es-1 and fs-1. This pair of lengths (ess, fss) is called Unum
Environment (UE). For further details on the UNUM format,
the read is referred to [3].

We adopted the modifications of the UNUM format as
specified in [11]. Fig. 2 shows the memory format used for the
UNUM (Fig. 2a) and ubound (interval made of two UNUMs,
Fig. 2b) formats. The fields are re-organized in such a way that
the (rightmost) variable length fields are placed in memory
after the (leftmost) fixed-length ones. For ubounds the affinity
of left or right interval endpoint is indicated above the fields
on Fig. 2b. In this way, during load operations, the position
and the length of all the UNUM and ubound fields can be
decoded from the bytes that are loaded first.

In our system, as depicted by Fig. 3a, each VP FP number
is seen as a chain of chunks of p bits each. The p granularity is
fixed by the memory subsystem, in our case (RISC-V) p =8
bits. Fig. 3b and 3c depict the two supported addressing modes
in memory as described in [11].

The first one (Fig. 3b) supports compact arrays in memory.
Memory accesses are done sequentially since each array
element (@1’) points to the memory address of the next
one (@2’). This addressing mode does not support in-place
algorithms since the size of each data element may vary.
However, it may be used for long term storage of arrays in
memory, without loosing precision on array elements.

The second addressing mode, Fig. 3c, aligns the elements
of arrays on slots of fixed size which are a multiple of p bits.
In this way the array elements addresses (@1’ and @2”) are
data-independent and they can be computed at compile time.
However, with the UNUM format, both addressing modes may
waste memory bits (empty boxes [in Fig. 3).

The slot size is encoded in the Maximum Byte Budget
(MBB) coprocessor status register. In this way the memory
format length can be tuned by the user, depending on the

P ‘ P f P
Ul: Ul 0 ul_l | i
v2:] wo | v | w2
i i i i bit
6 I; 2‘p 3‘p length
(a) Two VP FP numbers organized in p-bit chunks.
00--00 00--00
v
@ ulo | @ | uio |
| Ul 1 |/| | Ul 1 |/|
erCwo] | | |
| w21 || @ | uvzo |
| w2 |/ | v |
| L w2
FF--FF | < 5 | FF--FF [+ 5 .

(b) Two VP FP numbers stored in (c) Two VP FP numbers stored in
memory with the compacted address- memory with the slot aligned ad-
ing mode. dressing mode.

Fig. 3 Alternative address modes (3b, 3c) for variable length numbers 3a.

application needs, having a granularity of p=8 bits. We support
the Bounded Memory Format (BMF) introduced in [11] which
remaps the UNUM type I format for all the possible MBB
values. During store operations, if the slot size defined in
MBB is lower than the maximum UNUM bit-length (deducible
from its UE), the data is re-rounded. Special values like
Not-a-Number and positive and negative infinities are stored
with different but unique encodings.

Unlike [10], in this work we support all the possible UE
combinations between (ess=1,fss=1) and (ess=4,fss=9) and all
the possible values of MBB (from 1 to 68). The maximum
MBB value is defined by the (4,9) UE. In other words, we
are able to support up to 512 fractional bits in main memory
while giving the user the possibility to select the data memory
footprint with a byte-level granularity.

III. THE HARDWARE PLATFORM

The proposed hardware is organized as shown in Fig. 4.
The UNUM unit is embedded as a coprocessor in a RISC-V
RocketChip environment [12]. The native RocketChip system
is generated with 64-bit parallelism. It is made of a main core
(D, a Floating Point (FP) unit (2), a Load and Store Unit (LSU)
(3), a 64KBytes L1 cache @) and a RoCC interface able to
connect up to 4 coprocessors (5). Our coprocessor is dedicated
for Variable Precision (VP) FP computations and it supports
the UNUM format specified in Section II. The coprocessor
has a dedicated scratchpad (6) and Load and Store unit (7).

The coprocessor scratchpad (or register file) hosts 32 inter-
vals with up to 512 bits of mantissa precision for each interval

0l: k=0

02:rwhile convergence not reached do i [Outermost loop

03:|(for i == 1:n do i[Intermediate loop
04| o=0 i[Innermost loop_ _ 1
05{ iforj = lindo f— Rocket 01y,
061 !| ifj+ithe ! ©)

071

08| i [RoCC E(3)---mmiiies, N
09:| it i

|® => =0000

12:| k=k+1
13:'end

Fig. 4 The coprocessor architecture and its programming model: structure
and variable length mapping for an iterative solver kernel.

endpoint. Unlike UNUM/ubound, the scratchpad format has an
explicit exponent and a normalized mantissa to facilitate hard-
ware computation. This architecture is pipelined and it has an
internal parallelism of 64-bits. Thus, the scratchpad computing
precision (Working G-layer Precision, WGP) has a granularity
of 64 bits. Internal operations with higher precisions multiple
of 64 bits are done by iterating on the existing hardware.
Conversions between the scratchpad and the UNUM/ubound
formats are handled by the coprocessor LSU. Refer to [10] for
more details.

This system is best suited for applications which use VP FP
kernels which follow a common scheme. It takes advantage of
three storage types: 1/ the internal (also called register-level)
storage, 2/ the intermediate (also called L1 cache) storage, and
3/ the external (also called main memory) storage.

Fig. 4 illustrates our programming model which is made
of three levels implemented as nested loops. The outermost
one, which depends on some criteria evaluated on the final
result, manages the convergence by increasing or decreasing
the computing and/or memory precision. This level relies on
the external storage to store the input data used by the
kernel. This data is processed in the coprocessor internal
storage (6) passing through the intermediate storage (4).

The innermost level is meant for accumulation of many
partial products and it is usually processed in (6). Thus, one
objective of the compiler is to keep the computation local
at this level, in order to minimize the precision losses. Due
to the support of the modified UNUM format introduced
in Section II, the spilled variables can be written to the
intermediate storage in UNUM.

The intermediate level updates a UNUM vector (too big
to fit into the internal storage) using the accumulated results
of the innermost level. The usage of VP with this three-level
model allows to control precision with a lower consumption
of cache memory. For more details please refer to [11].

The coprocessor Instruction Set Architecture (ISA, Table I)
is organized in four groups. The first group (D-(6) supports

31 25 24 20 19 15 14 13 12 11 7 6 0

© ‘ func? ‘ 52 ‘ sl ‘ xd ‘ xsl ‘ Xs2 ‘ rd ‘ opcode ‘
7 5 5 1 1 1 5 7

o sust unused XsI 0 1 0 wunused CUST
@ lusr unused unused 1 0 0 Xd CUST
@ smbb/swgp/sdue/ssue unused Xsl 0 1 0 unused CUST
@ 1mbb/lwgp/ldue/lsue unused unused 1 0 0 Xd CUST
® srnd unused Xsl 0 1 0 unused CUST
® lrnd unused unused 1 0 0 Xd CUST
@ mov_g2g unused gRsT 0 0O 0O gRd CUST
movll/movlr unused gRsl 0 0 0 gRd CUST
©) movrl/movrr unused gRsl 0o 0 0 gRd CUST
() mov_x2g #Hmm5 Xsl 0 1 0 gRd CUST
an mov_g2x #HmmS gRs2 1 0 0 Xd CUST
(®) mov_d2g/mov_£f2g #HmmS Xsl 0 1 0 gRd CUST
@ mov_g2d/mov_g2f #imm5 gRs2 1 0 0 Xd CUST
7777777 gemp gRs2 gRsl 1 0 0 Xd CUST
@ gadd/gsub/gmul gRs2 gRsl 0 0 0 gRd CUST
gguess/gradius unused gRs1 0 0 0 gRd CUST
©w ldgu/ldub unused Xsl 0 1 0 gRd CUST
stul/stub gRs2 Xsl 0 1 0 owunused CUST
ldgu_next/ldub_next gRs2 Xsl 1 1 0 Xd CUST
@ stul_next/stub_next gRs2 Xsl 1 1 0 Xd CUST

TABLE I Coprocessor Instruction Set Architecture.

modifications on internal status registers. The second one
@-@ supports internal move operations and conversion func-
tions between float/double and scratchpad entries. The third
group - supports coprocessor operations including the
gguess to compute an interval midpoint and gradius
to compute an interval width. Division is implemented by
software. The fourth group @—@ supports load and store
operations in the two addressing modes specified in Section II.
Unlike [10], this ISA supports multiple programmable round-
ing modes for internal operations (5) and (6)), including round
to interval or round to nearest even.

IV. PROGRAMMING MODEL AND COMPILER SUPPORT

New architectures often require new software interfaces and
programming models to take advantage of the expanded hard-
ware functionalities. For example, multi-core and many-core
systems often involve an OpenMP programming interface [13],
while CUDA [15] and OpenCL [16] are widely used for
Graphics Processing Units (GPU). Complementary to these
parallel programming models, we propose an intuitive pro-
gramming abstraction of the UNUM computing unit and its
capabilities. This section covers the software support for Vari-
able Precision (VP), highlighting the most important aspects
of the language and compiler extensions.

A. New data type support

We propose a new vpfloat primitive type to allow the
use of the VP coprocessor and its operations. According to
the semantics of the data type, vpfloat variables can be
declared as global or local, and their size, in bytes, must
be provided in the declaration. The size value defines the
MBB and ranges between 1 and 68, which corresponds to the
maximum size taken by the (4, 9) Unum Environment (UE).
The size chosen for a variable hints the compiler about its UE
in memory.

The coprocessor internal precision (WGP) can be chosen
1/ automatically by the compiler according to the slot size

vpfloat pi(int n) {

1

2 vpfloat<42> sum = 0.0;

3 int sign = 1;

4 for (int i = 0; i < n; ++1i) {
5 sum += sign/ (2.0vxi+1.0v);
6 sign *= -1;

7 }

return 4.0*sum;

911

Listing 1: Usage example of the VP unit: the algorithm calculates 7 iteratively
n (=1)°

on 42 bytes using the Taylor series 7 =4 - 7" | ST

specified in the variable declaration, always respecting the
64-bit granularity; or 2/ manually by the user using the susr
and swgp assembly instructions. For the first case, WGP is
likely higher than MBB, since the former must be a multiple
of 64 and the latter can be byte-configured.

Listing 1 shows toy C code to calculate 7 using an iter-
ative approach based on a Taylor series approximation with
vpfloat type numbers. In line 2, the sum variable is de-
clared as a 42-byte VP FP number. The for-1oop iteratively
calculates /4 on sum (lines 4 to 7). Notice that there is no
need for casting the i and sign variables to vpfloat since
the compiler can automatically handle type conversions when
necessary. A constant suffixed by v represents a vpfloat.

We have added support for the data type on LLVM [17],
a state-of-the-art compiler framework. A new type was added
to the LLVM Frontend and Type System so that vpfloat is
recognized at all parts of the toolchain, i.e., from the frontend
to the backend. Due to the popularity and community-driven
development model of RISC-V, we have also extended the
RISC-V LLVM backend to support the new ISA extension
illustrated in Table I and the new data type. Additionally,
the RISC-V GNU Assembler and Linker were expanded to
generate executable code for the coprocessor ISA extension.

Listing 2 shows a snippet of the assembly code generated
by LLVM for Listing 1. Coprocessor instructions are found
at lines 8-12, 14-15, 17-18, 24-26 and 30. The code starts
by setting up MBB and WGP to their correct values (lines
2-5). Notice that MBB is set to 42 bytes, which corresponds
to variable slot size. WGP is set to 384 bits (48 bytes)
since it must be a multiple of 64 bits. From lines 7-20 the
for—loop calculates the pi function through coprocessor
instructions. Line 15 calls the function which implements VP
division. As explained in Section III, the coprocessor can
operate in either intervals or scalars, as it adopts the UNUM
format. The presence of gguess instructions indicates that the
unit was configured to work with intervals. A compiler flag
(vpfloat-scalar) configures the system to work with scalars:
i.e it can be used to eliminate the generation of gguess
instructions.

B. Current compiler limitations

To the authors’ knowledge, this is the first work that
proposes tuning the data size for a VP unit by means of

1 A

2 addi a3, zero, 42 # MBB = 42 Bytes
3 addi a4, zero, 6 # WGP = 6x64 bits
4 smbb a3

5 swgp a4

6 .

7| .LBB1_2: sext.w a0, sO # $for.body

8 fevt.x.g gt0, a0l

9 gmul gt0, gt0, gsl

10 gguess gt0, gto

11 gadd gal, gt0, gs2

12 gguess gal, gal

13 sext.w a0, sl

14 fevt.x.g gal, a0

15 call vpdiv

16 neg sl, sl

17 gadd gs0, gs0, gaOl

18 gguess gs0, gs0

19 addiw s0, s0, 1
20 blt s0, s2, .LBB1l_2
21 | # $bb.3 # $for.cond.cleanup.loopexit
22 lui a0, $hi(.LCPI1_4)
23 addi a0, a0, %$lo(.LCPI1_4)
24 ldgu gt0, (a0)
25 gmul ga0, gs0, gto0
26 gguess ga0, ga0l
27 j .LBB1_S
28 | .LBB1_4: 1lui a0, %hi (.LCPI1_0)
29 addi ao, a0, %$lo(.LCPI1_0)
30 ldgu ga0, (a0)
31 | .LBB1_5: # $for.cond.cleanup
32 .
33 ret

Listing 2: Snippet of the assembly code for Listing 1: VP instructions are in
lines 8-12, 14-15, 17-18, 24-26 and 30.

an extension of the C language. Nevertheless, the current
implementation has some known limitations:

1) Constant variable slot size selection: the compiler only
supports constant size values in variable declaration.
This prevents users from writing applications that
change precision during runtime.

2) Memory size and internal computation precision han-
dling: our unit offers the capability of changing the
memory slot size (MBB) and the computing internal
precision (WGP) independently. By default the language
sets for each variable a WGP value consistent with its
memory slot size. As previously explained, WGP can
be manually modified. Furthermore, the compiler fixes
to (4, 9) the UNUM environment of variables (up to 16
bits of exponent and up to 512 bits of mantissa).

3) Multiple precisions at a time: since variables addresses
and sizes are defined in compile time, we take a con-
servative approach of restricting to one precision at a
time.

V. EXPERIMENTAL RESULTS

This section presents the methodology used for our ex-
periments. Results are divided into two types of tests:
1/ performance evaluation comparing our approach to the
state-of-the-art, and 2/ byte-aware precision analysis showing

554
(=]

A

18

16 \‘\A——A/’k/‘\—‘
5y /I\:\
S 14 S———
s
%12 A

'S

% 10 ry
E 8

16
w2
>y
Q
2 2
2.
SO
@)

64 128 192 256 320 384 448 512
Precision

mge (hilbert)
#mcg (hilbert)

#ge (random)
cg (random)

4ge (diag dom)
#Acg (diag dom)
Aja (diag dom)

Fig. 5 Performance comparison between our VP coprocessor unit and the
MPFR library: speedups between 3.5x and 18x.

how the performance and error behaviour according to the se-
lected slot size for variables (MBB). Results are collected from
a Xilinx Virtex-7 FPGA implementing our system (Section III)
and applications are executed in a bare-metal environment.

A. Performance evaluation

For our performance evaluation, we have selected three ma-
trix-based linear solvers as case studies for Variable Precision
(VP): 1/ Gauss elimination (GE), 2/ the Conjugate gradient
(CG) and 3/ Jacobi (JA). These algorithms execute long
chains of multiply-addition operations that tend to accumulate
errors, so they are suitable for experimentation. Three different
matrices were selected for performance and error evaluation: a
Hilbert 15x 15 matrix (Hilbert), a randomly generated 24 x24
matrix (random) and a 40x40 dominant diagonal matrix (diag
dom). Applications GE and CG were compiled and run for all
three configurations, while JA used only diagonal-dominant
matrix due to algorithm constraints.

As a baseline, since no hardware solution is available for
comparison, we have implemented the same benchmarks using
MPFR [8]. For a more fair comparison between hardware-
and software-based solutions, MPFR was accelerated by im-
plementing some of its frequently used routines in assembly.
More specifically, we have implemented GMP routines unable
to take advantage of the mulhu [18] RISC-V instruction. We
are able to reduce the number of instructions of umul_ppm
and mul_1 GMP routines from 25 and 12 to 11 and 3,
respectively. These routines are extensively used for many
mathematical functions within the library. Because MPFR uses
GMP routines underneath, the implemented routines help to
improve MPFR applications.

Fig. 5 shows the performance comparison between our
solution and the baseline. Having hardware support for high-
er-than-standard precisions shows a clean advantage over a
software solution with speedups between 3.5x and 18x. We
notice how speedups vary according to the application and

precision used. They are in function of the algorithm types,
while matrices sizes and types have little influence over them.

B. Byte-aware precision analysis

In the second experiment, we measured the impact on
execution time and computational error of a kernel, varying
the slot size of VP variables (MBB, from 1 to 68 Bytes) and
the computation precision (WGP, from 64 to 512 bits). As
kernels we have chosen the Gauss elimination algorithm using
different sizes of a Hilbert matrix and a randomly generated
vector as inputs. Due to our compiler limitations (see Sec-
tion IV-B), we have implemented the applications in assembly
using the instructions described in Section III. The aim of this
experiment is two-fold: 1/ understand how precision and error
behave according to the adopted slot size, and 2/ observe the
relation between memory and computational precision.

Fig. 6a-6¢ and Fig. 6d-6f depict how the latency in clock
cycles and the computational error behave according to the
computation precision (WGP) and to the slot size (MBB) used
for variables. Every color on the graphs correspond to a dif-
ferent WGP value, and the x-axis denotes the MBB variation.
For the application latency we can observe a linear increasing
varying the WGP and MBB coprocessor parameters.

For the computational error we can observe a linear decrease
(in logarithmic scale) varying the WGP and MBB coprocessor
parameters. The flat zone for each WGP values appear when
the mantissa precision corresponding to the chosen MBB value
is greater than the specified one in WGP.

Looking at these results it is possible to compute the optimal
WGP-MBB points where the latency is minimal and having
the same precision, taking into consideration the expected
average error. Counter-intuitively, the latency plots results
show that the overhead of having misaligned memory accesses
is not dramatic and does not considerably impact performance.
This is due to our optimized LSU which is generating the
minimum number of load/store operations depending on the
value of the misaligned access. Moreover, we also observe
a finer relation between memory slot size and computation
precision. Varying WGP and keeping MBB constant does not
improve the computational error, which means that memory
slot size and computation precision must be managed together.
As expected [19], the roundoff error is bounded and behaves
linearly according to the problem size.

VI. CONCLUSION

We described a computing unit implementing variable pre-
cision floating point operations of up to 512 bits of precision in
both interval and scalar arithmetic. The main contributions are:
1/ an integrated, fully pipelined co-processor with a memory
subsystem supporting high and variable precision; 2/ byte-level
storage granularity for variable precision, suitable for a variety
of scientific applications; and 3/ seamless integration as a new
first-class data type in the C language, with specific compiler
support and transparent type conversion.

Compared with the MPFR software library [8], the proposed
unit achieves speedups between 3.5x and 18x with comparable

Latency in clock cycles on (ess=4 fss=9) UE
1.8

Latency in clock cycles on (ess=4 fss=9) UE

Latency in clock cycles on (ess=4 fss=9) UE

......... wep0=64b T T T T 5.0 v wop0=64b T T T L—f 3.0 - wop0=64b T T I,-/-

;1 6 gpu= [;4‘5 gpuU= i] i gpU= P
516 j|---—-wgpl=128b T = ----wgpl=128b e Sg 5 l[-—wgpl=128b e
% g4 |7 wep2=192b) T T X4.0 - wep2=192b| . Tt - X ~-wgp2=192b| .~ _—
2 wgp3=256bL~" ":_/- - @ wgp3=256b[" __. 2 wgp3=256b[”_. .~
<1.2 wgp4=320bl i s 3.5 wgp4=320b[* T <20 wgp4d=320b[" T
z wgp5=384b 230 wgp5=384b _ z wgp5=384b
'§ 1.0 H-—wgp6=448b - —§ —-wgp6=448b '§ 1.5 H-— wgp6=448b -
T | wgp7=512b 525 ff— wgp7=512b T < = wgp7=512b| " .
g08 I el H2.0 E1.0 -
> S 2 Iy
g 0.6 1.5 - g
80 N 2 20.5 - -
ki 310 3

0.2 0.5 | | | | | | 0.0 I l L l L

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
MBB MBB MBB

(a) Performance on Hilbert matrix size of 15.

||Ax-b||2 error on (ess=4 fss=9) UE

(b) Performance on Hilbert matrix size of 50.

||Ax-b||2 error on (ess=4 fss=9) UE

||Ax-b||2 error on (ess=4 fss=9) UE

(c) Performance on Hilbert matrix size of 200.

104 T T T T T T - _3 i T T T T T 100 F =T T T T T f _]
10,7 FS<C s I 1 ol]
107 °° - — _25 < 10720 -

—29 [a 10 - m _30 [7]
e Y emE N 1 Lok :

Il —51 . _ ~ 107 N - Il —50 _

= 18*52 - wgp0i64b N 1 = o j ng0f64b N 4 = 13—60 - ngoiﬁtlb 7

: 73 wgpl=128b| "\ 10— 69 wgpl=128b . a ; 70 wgpl=128b

£ 10778 0 wepa-102b 4 £ 1974 [| - wepe-192b £ 10770 - wgp=192b .

= 103 wep3=256b, -4 = - wegp3=256b. q T ooz wep3=256b, -
1072 wgp4=320b| . 107 0 wgp4=320b 1 10- wgp4=320b| N\ —
107 10 i~ wepb=384b - 107 5 [| — wep5=384b T 107 0 i wepb=384b N -
107 00 |~ wep6=448b Gy 107 0 [wep6=448b, i 107 0 [~ wep6=448b e
}g: 139 [LZwep7=512b] i { \"'1\ - 187135 -~ wepT=512b| | | \._L - }g:mu - wepT=512b| | 1 h SNy]

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
MBB MBB MBB

(d) Precision on Hilbert matrix size of 15.

(e) Precision on Hilbert matrix size of 50.

(f) Precision on Hilbert matrix size of 200.

Fig. 6 Latency and precision measurements of a Gauss kernel (lower is better) using the proposed modified UNUM type I format in the (4, 9) UE, varying
the data memory footprint (MBB), the internal computing precision (WGP), and the input Hilbert matrix size.

accuracy. Further experiments demonstrates very little perfor-
mance degradation when operating on misaligned data.

The compiler flow is currently limited in its ability to
support multiple precision and storage formats within a given
function. Scientific applications also lack a variable precision
implementation of high-performance numerical libraries, such
as OpenBLAS [20]. Given our promising performance results
and seamless memory subsystem integration, we believe it will
be possible to address these shortcomings through incremental
refinements to existing programming models and the HPC
software stack.

ACKNOWLEDGMENTS

This work was partially funded by the French Agence
nationale de la recherche (ANR) for project IMPRENUM
(Improving Predictability of Numerical Computations) under
grant n° ANR-18-CE46-0011.

[1]
[2]

[3]
[4]
[51

[6]

REFERENCES

“IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008.

J. Gustafson and I. Yonemoto, “Beating floating point at its own game:
Posit arithmetic,” Supercomputing Frontiers and Innovations, 2017.
John L. Gustafson, The End of Error: Unum Computing, ser. Chapman
& Hall/CRC Computational Science. Chapman and Hall/CRC, 2015.
A. Bocco, Y. Durand, and F. de Dinechin, “Hardware support for UNUM
floating point arithmetic,” in PRIME, June 2017, pp. 93-96.

F. Glaser, S. Mach, A. Rahimi, F. K. Grkaynak, Q. Huang, and L. Benini,
“An 826 MOPS, 210uW/MHz unum ALU in 65 nm,” in International
Symposium on Circuits and Systems, May 2018, pp. 1-5.

F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: The
good, the bad and the ugly,” in CoNGA’19, March 2019.

[7]

[8]

[9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating-point arithmetic,” in /5th Symposium on Computer
Arithmetic. 1EEE, 2001, pp. 155-162.

L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007.

F. Johansson, “Arb: a C library for ball arithmetic.” ACM Communica-
tions on Computer Algebra, vol. 47, no. 3/4, pp. 166-169, 2013.

A. Bocco, Y. Durand, and F. de Dinechin, “SMURF: Scalar multiple-
precision unum risc-v floating-point accelerator for scientific comput-
ing,” in CoNGA’19, March 2019.

——, “Dynamic precision numerics using a variable-precision UNUM
type i HW coprocessor,” in ARITH’19, 2019.

“The rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016.

R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.
M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and
D. Walker, MPI-the Complete Reference: The MPI core. MIT press,
1998, vol. 1.

D. Kirk, “NVIDIA CUDA software and GPU parallel computing archi-
tecture,” in Proceedings of the 6th International Symposium on Memory
Management, ser. ISMM *07. New York, NY, USA: ACM, 2007.

A. Munshi, “The OpenCL specification,” in 2009 IEEE Hot Chips 21
Symposium (HCS). 1EEE, 2009, pp. 1-314.

C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis transformation,” in Intl. Symp. on Code Generation
and Optimization (CGO), 2004, pp. 75-86.

A. Waterman and K. Asanovi¢, “The risc-v instruction set manual,
volume i: User-level isa,” Tech. Rep., May 2017.

C. B. Moler, “Iterative refinement in floating point,” J. ACM, vol. 14,
no. 2, pp. 316-321, Apr. 1967.

Z. Xianyi, W. Qian, and Z. Chothia, “OpenBLAS,” URL: http://xianyi.
github. io/OpenBLAS, 2014.

