
Variable Precision Capabilities in RISC-V
Processors

Tiago Trevisan Jost1, Andrea Bocco1, Yves Durand1, Christian Fabre1, Florent De Dinechin2,
Anca Molnos1, Albert Cohen3

1CEA, LETI, Univ. Grenoble Alpes, 38000 Grenoble, France; 2INSA, Lyon, France; 3Google, Inc.
Email: andrea.bocco@cea.fr, tiago.trevisanjost@cea.fr

Abstract—This work proposes to extend RISC-V with Variable
Precision (VP) Floating-Point (FP) capabilities to accelerate
scientific computing applications. It adopts the UNUM type I
FP format in main memory to overcome the limitation of the
IEEE 754 standard. Our work comprises: 1/ a VP FP RISC-V
coprocessor; 2/ a RISC-V ISA extension for the unit, 3/ and a
programming model to support VP floats in C/C++. Results have
shown that our system can be more than 100x faster than the
MPFR library when executing basic arithmetic operations.

I. INTRODUCTION

Current computing systems for scientific applications ex-
tensively use the IEEE 754 standard for Floating-Point (FP)
representation [1]. However, scientific computing applications
(e.g. ab initio simulations [2] and small scale physical mod-
eling [3]) require large and adaptive precision during the
course of their processing (up to hundreds of digits). These
applications suffer from cancellation and rounding errors, and
increasing computation precision may significantly increase
stability, convergence, and compensate the conditioning issues.
Therefore, users often rely on multi-precision libraries, such as
MPFR [4] or GMP [5], to achieve satisfying results accuracy
at the cost of increasing the kernel execution time.

This work proposes Variable Precision (VP) FP hardware
and software support in a RISC-V environment to have bet-
ter control of accuracy for FP applications. It comprises a
RISC-V [6] coprocessor that supports a VP format for FP
computation, an ISA extension, and a programming model to
use the system. This work is an update of the one presented
at the 2018 RISC-V Workshop at Chennai, India. The main
improvements of this work are: 1/ an update to the VP ISA
extension with instructions that can operate with scalars and
intervals, 2/ a RISC-V MPFR port to serve as baseline in
experiments, 3/ and a comparison between the ISA instruction
and the MPFR library. To the best of our knowledge, this
work presents the first integrated HW-SW solution for VP
computation for scientific applications. Some previous VP
hardware implementations [7, 8] have been proposed but no
emphasis had been given to software integration.

In this paper: Section II describes the used VP representa-
tion, and introduces the coprocessor unit. Section III describes
the main properties of the ISA extension. Section IV covers the
programming model. Section V presents experimental results
and Section VI concludes this work.

Fig. 1. UNUM Floating-Point format

II. THE COPROCESSOR UNIT AND UNUM FORMAT

We implemented a VP FP coprocessor unit which supports
basic scalar and interval arithmetic operations [9] (+,-,*), We
chose the UNUM format [10] (Fig. 1) in memory. It is encoded
as sign, exponent, mantissa and self-descriptive fields ((1) on
Fig. 1). Those fields encode the length of the e and f fields and
provide support for interval arithmetic [10]. Our hardware unit
(Fig. 2) is tightly coupled to a RISC-V Rocket Chip processor
(1© on Fig. 2), through the RoCC interface 2©.

In addition to augment the data size in memory, the UNUM
format tends to generate misaligned accesses which degrade
access time. Therefore, the VP arithmetic unit requires a
custom “Load and Store” unit 3© which realigns data in
memory 5© and handles misaligned memory accesses.

Our coprocessor hosts a VP register file (vRF) in the internal
scratchpad 4©. It contains 32 registers (v0-v31) which hold
VP intervals. Each interval endpoint mantissa is organized in
eight 64-bit chunks (for a maximum of 512 bits). A descriptor
is used to encode how many mantissa chunks are actually
used for each interval endpoint. Its value depends on the
number of bits of precision specified by the user at code level.
By doing so, we maintain operations in the coprocessor fast
and coherent to the precision set by the user. The compiler
is in charge of mapping VP variables into the scratchpad

UNUM

co-proc

RoCCRoCC

LSU

RISC-V

FPU

LSU
$

L1

Scratchpad

R

A

M

1

2

3

5

4

Rocket Chip

Fig. 2. Architecture of the host/coprocessor couple

TABLE I
VARIABLE PRECISION ISA EXTENSION

31 25 24 20 19 15 14 13 12 11 7 6 0
0© func7 rs2 rs1 xd xs1 xs2 rd opcode

7 5 5 1 1 1 5 7
1© SUSR unused Xs1 0 1 0 unused OP-CUST
2© LUSR unused unused 1 0 0 Xd OP-CUST
3© MOV G2G unused gRs1 0 0 0 gRd OP-CUST
4© MOVLL/MOVLR unused gRs1 0 0 0 gRd OP-CUST
5© MOVRL/MOVRR unused gRs1 0 0 0 gRd OP-CUST
6© MOV X2G #imm5 Xs1 0 1 0 gRd OP-CUST
7© MOV G2X #imm5 gRs2 1 0 0 Xd OP-CUST
8© GCMP gRs2 gRs1 1 0 0 Xd OP-CUST
9© GADD/GSUB/GMUL gRs2 gRs1 0 0 0 gRd OP-CUST
10© GGUESS/GRADIUS unused gRs1 0 0 0 gRd OP-CUST
11© LDU/LDUB unused Xs1 0 1 0 gRd OP-CUST
12© STUL/STUB gRs2 Xs1 0 1 0 unused OP-CUST
13© LDU NEXT/LDUB NEXT gRs2 Xs1 1 1 0 Xd OP-CUST
14© STUL NEXT/STUB NEXT gRs2 Xs1 1 1 0 Xd OP-CUST

Example 1 Usage of the variable precision unit

v p f l o a t (1 6 , 256) f a c t o r i a l (v p f l o a t (1 6 , 256) k) {
v p f l o a t (1 6 , 256) f a c t = 1 ;
f o r (i n t i = 1 ; i < k +1; ++ i) {

f a c t ∗= i ;
}
re turn f a c t ;

}

memory. Supporting VP computation in hardware complicates
the coprocessor pipeline design since hardware operations on
multiple chunks mantissas have to be treated iteratively.

III. ISA EXTENSION FOR VP

The RISC-V ISA is extended to map the coprocessor
instructions on a dedicated set of opcodes. Table I shows
the coprocessor instructions to manipulate VP numbers. They
make use of the coprocessor vRF described in section II.

Instructions are divided into four groups: internal status
register manipulation (1©- 2©); register move operations (3©-
7©) that cover moves between coprocessor and main processor

RFs, and between VP registers; arithmetic operation (8©-10©)
and memory-related operations (11©-14©).

IV. PROGRAMMING MODEL FOR THE VP UNIT

Exploring new functionalities to the hardware also requires
a substantial effort at the software side. Our proposal includes
a programming model to support the use of Variable Precision
(VP) Floating-Point (FP) in C/C++.

Along with the hardware proposal for VP computing, we
propose the new vpfloat C data type. With it, the user can
declare VP FP variables by specifying the maximum lengths
of the exponent and mantissa fields.

Example 1 shows how to calculate the factorial of numbers
using vpfloat in C. This algorithm tends to generate num-
bers with high orders of magnitude, so it is fitted as a practical
example of how VP can be used in code.

We have extended LLVM [11] with an initial support for
the vpfloat type. Compiler is able to identify vpfloat
variables and to assign exponent and precision to the middle-
end representation. It also supports the coprocessor ISA,
generating VP FP instructions. Once that the code is compiled,
the RISC-V GNU Assembler and Linker were expanded to
generate executable code for the coprocessor extension.

23
,6

2 30
,7

3

26
,9

6

23
,5

0

22
,0

4

20
,6

8

19
,6

1

18
,8

428
,7

9 37
,1

0

31
,8

6

27
,8

4

25
,1

9

23
,8

2

22
,3

3

21
,4

429
,0

6

69
,6

5 80
,7

2

77
,7

5

79
,7

3

83
,7

3

86
,9

7

90
,7

2

1,
40 4,

39 5,
24 5,
62

5,
86

5,
09 5,
58 6,
62

64 128 192 256 320 384 448 512
MPFR/COPROC add MPFR/COPROC sub MPFR/COPROC mul MPFR/COPROC div

Fig. 3. MPFR vs. coprocessor: single operation clock cycle comparison

98
,5

3 11
5,

25

10
8,

35

97
,2

4

83
,9

9

80
,2

8

76
,0

9

71
,1

2

11
5,

39

12
8,

67

12
1,

26

10
6,

69

96
,6

4

88
,8

9

82
,9

2

79
,6

5

59
,5

9

15
4,

46

22
1,

61 26
4,

95

26
6,

20

26
4,

33

25
9,

36

25
4,

08

0,
76 2,
42 3,
66

4,
09

4,
57

4,
18

4,
49 5,
40

64 128 192 256 320 384 448 512
MPFR/COPROC add MPFR/COPROC sub MPFR/COPROC mul MPFR/COPROC div

Fig. 4. MPFR vs. coprocessor: series of 10 operation clock cycle comparison

V. EXPERIMENTAL RESULTS

Fig. 3 and Fig. 4 show the speedup achieved by our
coprocessor in comparison to the MPFR library on an FPGA.
We have tested the basic arithmetic operators (+, -, *, /): 1/
with a single operation (Fig. 3) 2/ and with ten consecutive
independent operations (Fig. 4). Results show that operations
between 64 and 512 bits of precision can achieve speedups of
more than 100x for addition, subtraction and multiplication.
We implement the division by software, hence it can not reach
the same speedup ratio.

VI. CONCLUSION

This work aimed at increasing accuracy on scientific appli-
cations by proposing a RISC-V VP FP computing system. The
work included: a coprocessor, an ISA, a programming model,
and compiler support. Measurements showed that speedups of
more than 100x are possible to be achieved compared to the
MPFR software library.

As this is a work-in-progress, we envision future work
including: 1/ Implement the system in silicon; 2/ Improve
compiler support; 3/ Validate and experiment with real-life
applications, such as the three-body problem [12] and compu-
tational fluid dynamics [13].

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic. IEEE
754-2008, also ISO/IEC/IEEE 60559:2011. Aug. 2008.
DOI: 10.1109/IEEESTD.2008.4610935.

[2] David H Bailey and Jonathan M Borwein. “High-
precision arithmetic in mathematical physics”. In: Math-
ematics (2015), pp. 337–367.

[3] David H Bailey. “High-precision floating-point arith-
metic in scientific computation”. In: Computing in sci-
ence & engineering 7.3 (2005), pp. 54–61.

[4] Laurent Fousse et al. “MPFR: A Multiple-precision
Binary Floating-point Library with Correct Rounding”.
In: ACM Trans. Math. Softw. 33.2 (June 2007). ISSN:
0098-3500. DOI: 10.1145/1236463.1236468. URL: http:
//doi.acm.org/10.1145/1236463.1236468.

[5] Torbjörn Granlund and the GMP development team.
GNU MP: The GNU Multiple Precision Arithmetic
Library. Version 5.0.5. 2012. URL: https://gmplib.org/.

[6] “RISC-V Foundation - Instruction Set Architecture
(ISA)”. In: URL: https://riscv.org.

[7] F. Glaser et al. “An 826 MOPS, 210uW/MHz Unum
ALU in 65 nm”. In: 2018 IEEE International Sym-
posium on Circuits and Systems (ISCAS). May 2018,
pp. 1–5.

[8] J. Hou et al. “Enhancing Precision and Bandwidth in
Cloud Computing: Implementation of a Novel Floating-
Point Format on FPGA”. In: IEEE CSCloud. June 2017,
pp. 310–315.

[9] A. Bocco, Y. Durand, and F. De Dinechin. “Hard-
ware support for UNUM floating point arithmetic”. In:
PRIME. IEEE. 2017, pp. 93–96.

[10] John L Gustafson. The End of Error: Unum Computing.
Chapman and Hall/CRC, 2015.

[11] C. Lattner and V. Adve. “LLVM: a compilation frame-
work for lifelong program analysis transformation”. In:
CGO. 2004, pp. 75–86.

[12] Christian Marchal. The three-body problem. Elsevier,
2012.

[13] S. Che et al. “Rodinia: A benchmark suite for heteroge-
neous computing”. In: 2009 IEEE International Sympo-
sium on Workload Characterization (IISWC). Oct. 2009,
pp. 44–54. DOI: 10.1109/IISWC.2009.5306797.

