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Abstract

Tumors are made of evolving and heterogeneous populations of cells which arise from suc-

cessive appearance and expansion of subclonal populations, following acquisition of muta-

tions conferring them a selective advantage. Those subclonal populations can be sensitive

or resistant to different treatments, and provide information about tumor aetiology and future

evolution. Hence, it is important to be able to assess the level of heterogeneity of tumors

with high reliability for clinical applications. In the past few years, a large number of methods

have been proposed to estimate intra-tumor heterogeneity from whole exome sequencing

(WES) data, but the accuracy and robustness of these methods on real data remains elu-

sive. Here we systematically apply and compare 6 computational methods to estimate

tumor heterogeneity on 1,697 WES samples from the cancer genome atlas (TCGA) cover-

ing 3 cancer types (breast invasive carcinoma, bladder urothelial carcinoma, and head and

neck squamous cell carcinoma), and two distinct input mutation sets. We observe significant

differences between the estimates produced by different methods, and identify several likely

confounding factors in heterogeneity assessment for the different methods. We further

show that the prognostic value of tumor heterogeneity for survival prediction is limited in

those datasets, and find no evidence that it improves over prognosis based on other clinical

variables. In conclusion, heterogeneity inference from WES data on a single sample, and its

use in cancer prognosis, should be considered with caution. Other approaches to assess

intra-tumoral heterogeneity such as those based on multiple samples may be preferable for

clinical applications.

Introduction

Cancer is characterized by the presence of cells growing and dividing without proper control.

In the 1970s, Nowell and colleagues suggested that tumor cells follow evolutionary principles,
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as any other biological population able to acquire heritable transformations [1]. This

evolutionary framework has proven very useful in deepening our understanding of cancer aeti-

ology [2].

A consequence of this progressive accumulation of mutations is intra-tumor heterogeneity.

Indeed, when a new mutation occurs in a tumor cell and provides an evolutionary advantage,

this cell tends to have a higher probability to survive and divide, hence seeding a new clonal

population [3]. This new clone may supersede the whole tumor population, or coexist along it.

This process results in a tumor made of a mosaic of clones. Next generation sequencing

(NGS), in particular whole exome and whole genome sequencing (WES, WGS), can provide

new insights into the heterogeneity and evolution of tumors. Indeed, early mutations shared

among all cancer cells should be detected in more sequencing reads than mutations acquired

later by only a fraction of the tumor cells. Thus it may be possible to estimate the intra-tumor

heterogeneity (ITH) and reconstruct the clonal history of tumors from WES or WGS data, as

reviewed by [3–5], and many computational methods have been developed for that purpose

[6–9]. We collectively refer to these methods as “ITH methods” in the following. Subclonal

reconstruction from single cell sequencing has emerged as a new field, simplifying part of the

inference problem, but raising other issues, related to technical limitations (high dropout rate)

and high cost, possibly a limitation to the availability of large cohorts [3, 10–12].

Previous studies have reported that a large proportion of tumors are heterogeneous [13–

16], with various consequences for the patient. In particular, high ITH has been associated

with treatment resistance and poor prognosis [17]. However, those results rely mostly on very

detailed case studies involving only a small number of patients, with favorable experimental

settings such as high coverage targeted sequencing on top of NGS, multiple sample collection

(multi-site or longitudinal studies) [18–20] or even single-cell sequencing [21]. In the perspec-

tive of large-scale application in a clinical context, one needs to consider more accessible data

with respect to cost and invasiveness for the patient, like moderate coverage WES on one sam-

ple per patient. A precise evaluation of existing ITH methods in this setting is needed to deter-

mine whether they allow us to find distinguishable patterns of heterogeneity and evolution of

clinical relevance. Several large scale analyses have attempted to depict the evolutionary land-

scape of ITH in several cancer types [2], and to assess the prognostic power of ITH. In particu-

lar, using data from the cancer genome atlas (TCGA), a significant association between ITH

and overall survival was found in at least one of the three studies [13, 14, 22] for 9 cancer types:

breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), brain lower

grade glioma (LGG), prostate adenocarcinoma (PRAD), glioblastoma multiforme (GBM),

head and neck squamous cell carcinoma (HNSC), ovarian serous cystadenocarcinoma (OV),

uterine corpus endometrial carcinoma (UCEC), and colon adenocarcinoma (COAD). How-

ever, 5 of them were considered in another study with no significant result. In other cancer

types, 2 studies consistently found no significant results for 3 cancer types: bladder urothelial

carcinoma (BLAC), lung squamous cell carcinoma (LUSC) and stomach adenocarcinoma

(STAD), and all 3 studies found no significant results for lung adenocarcinoma (LUAD) nor

for skin cutaneous melanoma (SKM). A possible explanation for this discrepancy is that the

studies base their analyses on different computational pipelines, from variant calling to ITH

estimation, leading to different and sometimes contradictory results [22].

To clarify the robustness and consistency of different ITH methods, we perform a system-

atic benchmark of 18 computational pipelines for ITH estimates from a single WES sample

per patient (combining 2 ways to call mutations, and 2 methods to assess copy number varia-

tions (only 3 out of 4 combinations were tested) with 6 ITH methods), using data from 1,697

patients with three types of cancer from the TCGA database (BRCA, BLCA, HNSC). We

selected these cancer types following conclusions of Morris et al. [13], since HNSC, BRCA and
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BLCA are characterized by respectively high, intermediate and absence of prognostic power of

ITH. We show that most existing ITH methods are very sensitive to the choice of mutations

and copy number variations called, and that they can give very inconsistent results between

each other. We highlight in particular that some methods are influenced by confounding fac-

tors such as tumor purity or mutation load. Finally, we show that although ITH measured by

some computational pipelines have a weak prognostic power on some cancer types, the prog-

nosis signal is not robust across methods and cancer types, and is confounded with informa-

tions available in standard clinical data. To further characterize those inconsistencies, we

report results for ITH methods on 7 WES samples associated with single cell sequencing allow-

ing to have an estimate of the ground truth. As a conclusion, we suggest that results of ITH

analysis from single sample WES data with current computational pipelines should be manip-

ulated with caution, and that more robust methods or protocols are likely to be needed for

clinical applications.

Materials and methods

Data

We downloaded data from the GDC data portal https://portal.gdc.cancer.gov/ for 3 cancer

types (BLCA—351 patients, BRCA—904 patients, HNSC—442 patients). We gathered

annotated somatic mutations, both raw variant calling output, whose access is restricted and

public mutations, from the new unified TCGA pipeline https://docs.gdc.cancer.gov/Data/

Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/, with alignment to the

GRCh38 assembly, and variant calling using 4 variant callers: MuSe, Mutect2, VarScan2 and

SomaticSniper. Instructions for download can be found in the companion Github repository

(https://github.com/judithabk6/ITH_TCGA). RNAseq data used to compute immune signa-

tures were downloaded through TCGABiolinks [23], and we downloaded clinical data from

the CBIO portal [24].

Copy number calling and purity estimation

We obtained copy number alterations (CNA) data from the ASCAT complete results on

TCGA data partly reported on the COSMIC database [25, 26]. We then converted ASCAT

results on hg19 to GRCh38 coordinates using the segment_liftover Python package

[27]. ASCAT results also provide an estimate of purity, which we used as input to ITH meth-

ods when possible. Other purity measures are available [28]; however we selected the ASCAT

estimate to ensure consistency with CNV data.

The calls of allele-specific copy number and purity from ABSOLUTE [29] were downloaded

from the GDC data portal https://gdc.cancer.gov/about-data/publications/pancanatlas on

August 18th 2019. They were converted to GRCh38 as the ones from ASCAT.

Variant calling filtering

Variant calling is known to be a challenging problem. It is common practice to filter variant

callers output, as ITH methods are deemed to be highly sensitive to false positive single nucleo-

tide variants (SNVs). We filtered out indels from the public dataset, and considered the union

of the 4 variant callers output SNVs. For the protected data, we also removed indels, and then

filtered SNVs on the FILTER columns output by the variant caller (“PASS” only VarScan2,

SomaticSniper, “PASS” or “panel_of_normals” for Mutect2, and “Tier1” to “Tier5” for MuSe).

In addition, for all variant callers, we removed SNVs with a frequency in 1000 genomes or

Exac greater than 0.01, except if the SNV was reported in COSMIC. A coverage filter was
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added, and we kept SNVs with at least 6 reads at the position in the normal sample, of which 1

maximum reports the alternative nucleotide (or with a variant allele frequency (VAF) <0.01),

and for the tumor sample, at least 8 reads covering the position, of which at least 3 reporting

the variant, or a VAF>0.2. The relative amount of excluded SNVs from protected to public

SNV sets varied significantly between the 3 cancer types (see S1 Table). All annotations are the

ones downloaded from the TCGA, using VEP v84, and GENCODE v.22, sift v.5.2.2, ESP

v.20141103, polyphen v.2.2.2, dbSNP v.146, Ensembl genebuild v.2014-07, Ensembl regbuild

v.13.0, HGMD public v.20154, ClinVar v.201601. We further denote the filtered raw mutation

set as “Protected SNVs” and the other one, which is publicly available, as “Public SNVs”.

ITH methods

Published methods. We consider four published ITH methods: SciClone [7], PhyloWGS

[8], PyClone [6] and EXPANDS [9]. In addition, we consider the MATH score [30] as a simple

indicator of ITH, as well as a baseline ITH method described below. All computations were

stopped after running 15 hours. This threshold was chosen to get results for most samples

(>95% when time was the limiting factor) for most methods while saving computational

resources. Mean and standard deviation (std) of runtimes were computed for each method

with each input mutation set separately. All parameters used for each method are detailed in

the companion public Github repository containing all the commands https://github.com/

judithabk6/ITH_TCGA. To ensure comparison, the runtimes were only performed on runs

with ASCAT copy number calls.

We performed post-treatment to keep only clones with at least 5 SNVs, except for samples

in which all clones were under 5 SNVs when all clones were considered. After running each

ITH method we extracted 5 features to characterize ITH in a sample: the number of clones, the

proportion of SNVs that belong the the major clone, the minimal cellular prevalence of a sub-

clone, the Shannon index of the clonal distribution, and the cellular prevalence of the largest

clone in terms of number of SNVs.

Consensus (CSR). We computed a consensus of several ITH methods using the open

source package CSR available at https://github.com/kaixiany/CSR. This method relies on

matrix factorization to output a consensus clustering. We computed two separate consensus

(for protected and public data), using as input the results of PyClone, SciClone, PhyloWGS,

EXPANDS and baseline. MATH estimates were not well suited for the consensus. For each

run, we ran matrix factorization for a maximum of 500 seconds.

Clinical variables

For each cancer type, we collected clinical variables from the CBIO Portal according to the

following conditions: (i) categorical variables were one-hot encoded, and each level was kept if

it involved at least 50 patients, and at most 50 patients had another level of the same variable;

(ii) we kept numerical variables available for every patient; and (iii) in addition, we only kept

the variables (if numerical) or the levels (categorical) which were significantly associated

with overall survival by a single-variable cox model estimated with the Python package

lifelines [31] after Benjamini-Hochberg correction for multiple hypothesis testing [32].

S2, S3 and S4 Tables summarize the clinical variables retained for each cancer type.

Survival regression

Model. To estimate the prognosis power of a set of features, we use a survival SVM model

[33]. Survival SVM maximizes a concave relaxation of the concordance between the predicted

survival ranks and the original observed survival, regularized by a Euclidean norm penalty.
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Formally, given a training set of n patients with survival information (xi, yi, δi)i = 1, . . ., n, where

xi 2 R
p

is a vector of p features for patient i, yi 2 R is the time, and δi 2 {0, 1} indicates the

event (δi = 1) or censoring (δi = 0), a survival SVM learns a linear score of the form f(x) = w>x

for any new patient represented by features x 2 Rp
by solving:

min
w

w>w þ a
X

i;j2P

maxð0; 1 � ðw>xi � w>xjÞÞ
2
;

where P ¼ fði; jÞ 2 ½1; n�2 j yi � yj ^ dj ¼ 1g is the set of pairs of patients (i, j) which are

comparable, that is, for which we are certain that patient i lived longer than patient j. Intui-

tively, the loss penalizes the cases where patient i survives longer than patient j but the opposite

is predicted by the model. For all computations, we used the function FastSurvivalSVM
in the Python Package scikit-survival [34], with default parameters. The model was

trained and tested using a 5-fold cross-validation procedure.

Evaluation procedure. To assess the accuracy of a survival regression model, we use the

concordance index (CI) between the predicted score and the true survival information on a

cohort with survival information. Given such a cohort (xi, yi, δi)i = 1, . . ., n, the CI measures how

concordant the predicted survival times si = f(xi) are with the observed survival times yi for

comparable pairs of patients:

CI ¼
1

jPj

X

i;j2P

Iðsj � siÞ ;

with IðuÞ ¼

1 if u > 0 ;

1

2
if u ¼ 0 ;

0 otherwise:

8
>>><

>>>:

In practice, we compute an approximation of CI with the function concordance.index
from the R package survcomp [35], using the noether method [36], and the associated

one-sided test to compare CI to 0.5, which is the mean CI obtained with a random predictor.

To compare CI’s of different methods, we use a paired Student t-test for dependent samples

implemented in the function cindex.comp from the same package. In both test settings, we

aggregate p-values from each of the five cross-validation folds using the Fisher method from

Python package statsmodels, and apply a Benjamini-Hochberg correction [32] to correct

for multiple testing.

Immune signatures

We normalized RNAseq raw count data using a variance stabilizing transformation (VST)

implemented in the Deseq2 R package [37], treating each cancer type separately. We mapped

genes from Bindea et al. [38] to Ensembl GeneIds present in the TCGA matrix using EntrezId

match table downloaded from Biomart [39] on March 26th 2018. Out of 681 EntrezId (577

unique), 31 (24 unique) were not matched to an Ensembl Id with associated gene expression

in the TCGA RNAseq data. Each signature was then computed by averaging the VST output

value for the relevant Ensembl Id for each TCGA sample. The resulting signatures we used can

be found as S5 Table. For analysis purposes, we use the complementary to the maximal value

in the cohort so that the content in immune cells varies in the same direction as tumor purity

and remains a positive quantity. We denote those new variables with the prefix inv, e.g., for
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patient i in the BRCA cohort we define

inv T cellsi ¼ max
j2BRCA patients

T cellsj

� �

� T cellsi ;

where T_cellsi represents the signature for T cells estimated as explained above.

Correlations

We assessed correlations using Pearson’s correlation coefficient. We computed the

associated significance (for the null hypothesis that the correlation coefficient is 0) using the

scipy.stats.pearsonr function, and we corrected the significance for multiple testing

using the Benjamini Hochberg procedure at FDR� 0.05.

Comparison metrics. In addition to the correlations of the number of clones between

methods, we have implemented three metrics derived from [40] to compare ITH methods

together:

Score1B measures the adequacy between one number of clones J1 and another number of

clones J2. It is computed as
J1þ1� minðJ1þ1;jJ2 � J1 jÞ

J1þ1
.

Score1C is the Wasserstein distance between two clusterings, defined by the CCFs of the dif-

ferent clones and their associated weights (proportion of mutations), implemented as the

function stats.wasserstein_distance in the Python package scipy.

Score2A measures the correlation between two binary co-clustering matrices in a vector form,

M1 and M2. It is the average of 3 correlation coefficients:

Pearson correlation coefficient PCC ¼ CovðM1 ;M2Þ

sM1
;sM2

, implemented as the function pearsonr in

the Python package scipy,

Matthews correlation coefficient MCC ¼ TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p , implemented as the

function metrics.matthews_corrcoef in the Python package scikit-learn,

V-measure is the harmonic mean of a homogeneity score that quantifies the fact that each

cluster contains only members of a single class, and a completeness score measuring if all

members of a given class are assigned to the same cluster [41]; here the classes are the

true clustering. We used the function v_measure_score in the Python package

scikit-learn.

Before averaging, all those scores were rescaled between 0 and 1 using the score of the mini-

mal score between two “bad scenarios”: all mutations are in the same cluster, or all muta-

tions are in their own cluster (Mpred¼1N�N
or Mpred ¼ IN�N).

All scores as asymmetrical and were hence computed twice. In the case of score2A, only the

mutations present in the two reconstructions were considered.

WES and single cell paired dataset

Data availability and preprocessing. The raw data for 7 normal-tumor WES samples

analyzed jointly with matching single cell sequencing [42] were downloaded from the NCBI

SRA platform https://www.ncbi.nlm.nih.gov/sra and processed into fastq format using the tool

fastq-dump for the two acute lymphoblastic leukemia (ALL) patients (accession numbers:

SRR1517761, SRR1517762, SRR1517763, SRR1517764) [43], or directly downloaded in the

fastq format from the EBI ENA platform https://www.ebi.ac.uk/ena for the Triple Negative
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Breast Cancer patient (TNBC) [44] (accession number: SRR1163508 and SRR1298936), and

the two samples (primary tumor and liver metastasis) from the two colorectal cancer patients

(CRC) [45] (accession number: SRR3472566, SRR3472567, SRR3472569, SRR3472571,

SRR3472796, SRR3472798, SRR3472799, SRR3472800).

All normal-tumor pairs underwent a pipeline of analysis including alignment with BWA-

MEM [46] with options “-k 19 -T 30 -M”, filtering of reads based on target intersection, map-

ping quality and PCR duplicates removal, using Picard [47], Bedtools [48] and Samtools [49],

and preprocess using GATK [50] for local realignment around indels, and base score recalibra-

tion. Variant calling was performed using Mutect2 [51], and variants filtered under the same

rules as used for the TCGA (only “PASS” variants, and minimal covering rules), and copy

number assessed with Facets [52]. SNVs used in the analysis with B-SCITE [42], passing the

covering filters but not recovered by this pipeline were added to the final variant list. Those

variants and the copy number profile were then passed to PyClone, SciClone, PhyloWGS and

Expands for ITH deconvolution.

Evaluation metrics. To measure the accuracy of subclonal reconstructions from the WES

data only using different methods, we compared these reconstructions to the reconstruction

obtained by B-SCITE using both WES and single cell sequencing [42]. To quantify the similar-

ity of the different reconstruction results, we compared the number of clones, and for the com-

mon mutations, the metric 2A, used in [40] and redefined above.

Results

Assessing ITH on TCGA samples

We collected somatic mutation information from 1,697 TCGA patients with BLCA (n = 351),

BRCA (n = 904), and HNSC (n = 442). We selected these three cancer types following conclu-

sions of Morris et al. [13], since HNSC, BRCA and BLCA are characterized by respectively

high (hazard ratio, HR = 3.75, p = 0.007 in multivariate Cox model), intermediate (HR = 2.5,

p = 0.15) and absence (HR = 1.05, p = 0.91) of prognostic power of ITH. For each patient, we

collected two sets of mutations based respectively on protected and public SNV sets. The pro-

tected set corresponds to raw variant calling outputs, with an extra filtering step described in

Methods. The public set corresponds to publicly available SNV calls, filtered from the raw vari-

ant calling outputs to only retain somatic mutations with very high confidence, in order to

ensure patients’ anonymity. S1 Table summarizes some statistics on the number of mutations

per sample for each cancer type.

We assess ITH in each sample using 6 representative computational methods: PyClone [6],

SciClone [7], PhyloWGS [8] EXPANDS [9], the mutant-allele tumor heterogeneity (MATH)

score [30], and CSR [16], a method providing a consensus of all of the above results (except

MATH which is not compatible, see Methods). Table 1 summarizes some important properties

Table 1. Main characteristics of ITH methods tested. The mean runtime is the mean time to process a TCGA sample. The success rate is the fraction of TCGA samples

for which the method produced an output without error, with ASCAT calls as input only. The MATH score was computed in one step for all samples, using a table contain-

ing all mutations for all samples; the operation lasted 3.21s (std. 47.6 ms) for the protected dataset, and 3.39s (std. 11ms) for the public dataset. All time measurements were

measured on a single cluster node with a 2.2 GHz processor and 3GB of RAM.

Method CNA as

input

Purity as

input

Outputs tree

(s)

Refe-

rence

Mean (std) runtime

protected in seconds

Mean (std) runtime public

in seconds

Success rate

(protected)

Success rate

(public)

MATH no no no [30] << 1 << 1 100% 100%

EXPANDS yes no no [9] 891 (604) 267 (258) 89% 71%

PyClone yes yes no [6] 7,035 (8,464) 1,414 (1,415) 95% 99%

SciClone yes no no [7] 62 (48) 41 (51) 92% 78%

PhyloWGS yes yes yes [8] 13,258 (9,058) 4,730 (4,139) 95% 97%

https://doi.org/10.1371/journal.pone.0224143.t001
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of the different methods, which might be helpful for designing future studies and selecting the

appropriate tool. All methods but MATH take as input the CNA information in addition to a

set of somatic mutation VAFs. PyClone and PhyloWGS also take purity as input. All input has

to be pre-computed by third-party approaches. While MATH is a single quantitative measure

of ITH based on differences in the mutant-allele fractions among mutated loci, all 6 other

methods produce more details such as the number of subclones and their respective propor-

tions in the tumor. In particular, PhyloWGS outputs a lineage tree connecting the subclones.

We tested each method three times: on each sample for the two mutation sets combined

with ASCAT calls for purity and copy number, and combined with ABSOLUTE calls for the

protected mutation set. We observed that some methods failed to produce an output on some

samples, for different reasons (see success rate for each method in Table 1). EXPANDS pro-

duces an error for 30% of the samples, mostly for tumors with high purity or very few CNAs.

SciClone fails to provide an output for samples with an insufficient number of SNV in regions

without CNA or LOH event. PyClone and PhyloWGS non completion cases were caused by a

too long runtime.

As shown in Fig 1, there is little overlap between the samples where each method fails. Out

of 1,697 initial TCGA samples, all methods produced an output for the three runs on only 686

samples (296 BRCA, 178 BLCA, 212 HNSC). Those failure cases unveil indications of each

method’s limitations, in particular EXPANDS and SciClone. In the following we restrict our

analysis to those 686 samples. One can note that there is more difference between public and

protected results for BRCA samples; this is expected as the number of mutations in those two

sets is more different for this cancer type, as shown in S1 Table.

In addition to failures, we observed that the runtime varies significantly between methods

(Table 1). As shown on Fig 2, the run time of different ITH methods increases with the num-

ber of somatic mutations. PyClone and PhyloWGS runtime rises very quickly with the number

Fig 1. Intersection of successful runs among the 4 considered ITH methods. The upper venn diagrams concern runs with the public input

SNV set, the second line with the protected, and the third the overall intersection, as results with both sets are necessary for a proper and

rigorous comparison.

https://doi.org/10.1371/journal.pone.0224143.g001
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of mutations in tumor sample, which can be a limitation for applications to heavily mutated

tumors.

Methods quantifying ITH exhibit inconsistent results

As a first evaluation of ITH methods in the absence of ground truth, we assess the agreement

between methods, with a focus on the number of clones. Each method except MATH outputs

an estimated number S of subclonal populations, ranging from S = 1 for an homogeneous,

clonal tumor to any positive number for an heterogeneous one. Fig 3 presents the distribution

of estimated clonality among all samples for each approach and each SNV set, and each copy

number calling method. We observe large differences between methods, as well as between

SNV sets: for instance, over all samples, the percentage of estimated clonal tumors (S = 1) var-

ies from 4% (for PhyloWGS on protected data) to 57 % (for PyClone on public data). More-

over, the number of estimated populations can vary strikingly with the mutation set used, but

not really with the different input copy number. There is a clear trend among all methods to

yield higher ITH estimates with the protected mutation set. PhyloWGS and EXPANDS (and

CSR) are the only methods that detect ITH in almost all tested samples with the protected

mutation set.

Fig 2. Runtime of the different ITH methods as a function of the number of mutations in each sample. Lines represent second

degree polynomial fit with shaded regions are 95% confidence-intervals.

https://doi.org/10.1371/journal.pone.0224143.g002
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Another way to compare methods is to consider correlations (Pearson’s r) between the esti-

mated numbers of populations. This allows us to include the MATH score in the evaluation,

considering it as an increasing function of heterogeneity just like the number of populations.

In addition, we add to the comparison 5 measures directly extracted from the NGS analysis,

namely, the number of mutations in the protected and in the public sets, the percentage of

non-diploid cells (estimated by ASCAT and ABSOLUTE), the purity (estimated by ASCAT

and ABSOLUTE), and the inv_T_cell (estimated from gene expression signatures). Results are

presented in Fig 4.

Although a clear and consistent message is hard to extract, a few general trends seem to

emerge. First, there is a tendency of results to be more similar for different methods with the

same input mutation set, in particular for BRCA, where results for PyClone, SciClone, Phy-

loWGS and CSR are grouped together for each input set. Second, the really unexpected result

is to observe that ITH results with the same input can be uncorrelated, and even significantly

negatively correlated. Third, we observe two groups of methods that remain more similar

across all three cancer types: EXPANDS and MATH score on the one hand, and PhyloWGS,

PyClone, SciClone on the other hand. Those results can be related to the methods themselves.

Indeed, PyClone, PhyloWGS and SciClone all define a probabilistic model explaining all

observations of copy-number and read counts, based on a mixture model. They differ by the

exact nature of the model (choice of distributions, exact definition of parameters), but they

Fig 3. Distribution of number of clones called by ITH methods with public and protected mutations sets as inputs. Distribution of the

number of subclones for the tested ITH methods, and 2 alternative input mutation sets for samples in the different cancer types and 2 different

copy number methods for the protected mutation set. MATH could not be included in this analysis as this method does not estimate a number

of clones.

https://doi.org/10.1371/journal.pone.0224143.g003
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have similar structures. SciClone is different from PyClone and PhyloWGS in two ways: it

only relies on mutations that are in regions without copy number alterations; and it does not

correct for tumor purity. It is therefore not surprising that PyClone and PhyloWGS yield simi-

lar results, and that SciClone is a bit more different. CSR performs a consensus of all obtained

clusterings; since 3 methods out of 4 have similar results, CSR might be biased towards those 3

methods. Expands makes similar assumptions as PyClone and PhyloWGS. However, the esti-

mation process is very different: Expands estimates a distribution of read number for each

Fig 4. Correlation between various measures of ITH (MATH score, and number of subclones for the other methods), and other potential

confounding variables measured using WES and trancriptomics data. Row and color label represent the method used, with white for the

genomic measures not involving ITH. Hatches correspond to public mutation sets. Heatmap colors represent the value of the Pearson’s r, which

is written numerically whenever it is significantly different from 0 (FDR� 0.05 after Benjamini Hochberg correction for multiple tests). We can

observe clustering tendencies stable across the 3 cancer types. One of them is highlighted in black lines.

https://doi.org/10.1371/journal.pone.0224143.g004
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position, and then clusters those distributions, while PyClone, SciClone and PhyloWGS

attempt to find a common distribution for a group of mutations. The MATH score has an

entirely different rationale as it simply ignores CNVs. Similar trends are observed when com-

paring the methods based on other pairwise comparison metrics (see S2–S4 Figs).

Regarding potential confounding variables, previous studies have reported a correlation

between MATH score and CNA abundance [22, 53, 54], or between purity and ITH, as ITH

methods were initially designed to refine purity estimation [29], and we observe similar behav-

iors. Association with immune infiltration has also been considered [54], though it is worth

noting that immune infiltration and tumor purity are not independent, as immune cells are

not cancerous. Each group of ITH methods is highly correlated to distinct genomic metrics,

mutation load and CNV abundance (perc_non_diploid) for the first group (MATH,

Expands), and purity (and the opposite of immune cells infiltration (inv_T_cells)) for the

latter (PyClone, SciClone, PhyloWGS CSR). This might be indicative of systematic biases in

the different methods, rather than biological strong signal as previously reported. Indeed, the

strength and direction of all correlations vary between the two groups of ITH methods, and is

hence hardly reliable or interpretable in terms of clinically actionable information without

more data.

Similar results are obtained on an independent dataset of 7 samples from 5 patients where

both WES and single cell sequencing was performed. In this dataset, subclonal reconstruction

was performed by the method B-SCITE [42] that uses both bulk sequencing and single cell

sequencing as input, and provides the most accurate representation possible. To further illus-

trate the behavior of ITH methods, we have compared results obtained for each sample sepa-

rately to the B-SCITE result. To evaluate the concordance of each reconstruction to the

B-SCITE reconstruction, we compare the number of clones, and the score2A from [40] that

evaluates the co-clustering of mutations. The other metrics considered in [40] focus on the dis-

tance between the true and reconstructed cancer cell fraction distributions (score 1C), but in

this setting, the ground truth does not provide a true CCF distribution estimate, and on the

phylogenetic relationships between clones (score 3), but only PhyloWGS provides a tree

among the considered methods. For this evaluation, we have left the true estimate for PyClone

that provides a lot (several dozens) of clones with a single mutation. The input to ITH methods

we have used results from variant calling on the bulk WES data, whereas the input to B-SCITE

is more restrictive, and focuses on mutations detected both in the WES and in the single cells;

the score2A is computed on the common mutations. Results are presented in Table 2. As

observed on the TCGA, different methods based on WES data exhibit very different estimates

of the number of clones, and none is very close to the estimates of B-SCITE using WES and

single-cell data. In terms of clone composition, PyClone is the closest to B-SCITE in terms of

score2A correlation in four out or seven samples, although the score2A values remain very

modest.

ITH is a weak and non robust prognosis factor

To test the prognostic power of each ITH quantification method, we collected survival infor-

mation for the 686 patients on which all ITH methods ran successfully, and assessed how each

ITH method allows to predict survival. Since all ITH methods except MATH output several

features related to ITH, we did not test each feature individually but instead estimated a com-

bined score for each method with a survival SVM model (see Methods). More precisely, we

extract 5 features from each ITH method: the number of subclonal populations, the proportion

of SNVs that belong the the major clone, the minimal cellular prevalence of a subclone, the

Shannon index of the clonal distribution, and the cellular prevalence of the largest clone in
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terms of number of SNVs that enable to distinguish several evolutionary patterns, like early

(star-like evolution) or late (tree with a long trunk) clonal diversification (see Methods). We

evaluate the performance of each score by 5-fold cross-validation, and prognostic power is

assessed on the test fold by computing the concordance index between the SVM prediction

and the true patient survival. For MATH, a single feature is computed, so this procedure sim-

ply evaluates the concordance index of the MATH score with survival. In addition, we con-

sider a model where all features of all methods (i.e., a total of 6 × 5 + 1 = 26 features) are

combined together.

Fig 5 shows the results for each cancer type, each method, and each set of mutations used.

Overall, we observe at least one method achieving significant survival prediction in each

cancer type. The combined model is significantly prognostic with both protected and public

sets in all three cancer types. Among the three cancer types, in the best case, however, the

median concordance index on the test sets barely reaches 0.6 (except with the combination

with absolute copy number in BRCA, but with an important variance), which remains modest

for any clinical use. This suggests that there may be a weak prognostic signal captured by ITH

measurement, but it can not be observed consistently with a single method and a single variant

and copy number calling pipeline in the three cancer types, illustrating the frailty of obtained

results. The combined model seems to be a robust alternative, as when it is significant, it has a

concordance index in the range of the best performing single method; however the case of

BRCA seems particular, as many methods perform worse than random.

Some authors [14, 55] have suggested a non-linear relation between survival and ITH, as

very high ITH might be damaging for the tumor, while moderate ITH would be associated

with aggressive tumors and prone to treatment resistance. To test this hypothesis in our frame-

work we added squared features to the survival model, allowing second order polynomial rela-

tions between ITH and survival. However, this did not significantly impact the results (S1 Fig).

Indeed, after multiple test correction, only PyClone with the protected mutation set and

ABSOLUTE copy number in BRCA prognostic power is increased by adding the squared fea-

tures (p = 0.027, paired t-test), but both CI indexes remain below 0.5. We also assessed whether

the relatively poor performance of the different methods was due to the difficulty to learn a

prognostic score combining 5 features from limited amounts of training samples, by assessing

the prognostic ability of a single feature: the number of clones. A significant improvement was

obtained for 7and a significant decrease in performance in 3 of the 36 tested settings (4 meth-

ods, 2 mutation sets, 2 copy number methods, 3 cancer types). This suggests that the complex-

ity of the model (polynomial of order 2 instead of linear) and the choice of ITH features have

little influence on the results. This might be related to the fact that very little signal can be

detected in the first place.

Fig 5. Prognostic power of ITH measured using different ITH method and input mutation set combination. 0.5 corresponds to a random

prediction, and stars indicate statistical significance (p-value<0.001: ���,<0.01: ��,<0.05: �). Results are presented for 3 cancer types (BRCA,

BLCA and HNSC from left to right).

https://doi.org/10.1371/journal.pone.0224143.g005
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ITH prognosis signal is redundant with other known factors

We have established that in some cases, ITH may exhibit weak prognostic power. It is then

very important to assess whether it is complementary to already available prognostic features,

like clinical characteristics. To answer this question, we consider relevant clinical features, as

described in Methods.

Fig 6 presents a comparison between different prediction settings: clinical features without

any clonality and clonality associated with clinical features. In all cases, clinical features alone

have a significant prognostic power (median CI = 0.79 for BRCA, 0.65 for BLCA, 0.65 for

HNSC). More importantly, when we combine each ITH feature set with clinical features, we

observe no significant improvement over clinical features alone. This suggests that the weak

prognostic signal captured by ITH measures is in fact redundant with already available clinical

factors.

Discussion

Comparison to similar studies

Previous findings report divergent prognostic power for ITH in several pan cancer studies [13,

14, 22]. Andor et al [14] analyzed 1,165 patients across 12 cancer types from the TCGA, and

found an overall prognostic power by considering all types together, and suggested that this

effect might be nonlinear, with a trade-off between ITH and overall survival [55]. However,

the association between the number of subclones and overall survival was significant with

EXPANDS, but not with PyClone results, and no significant association was detected when

considering each cancer type separately, except for gliomas. This might be due to the small

number of cases of each type (between 33 and 166). Morris et al. [13] considered 3,383 patients

of 9 cancer types from the TCGA and found significant association between the number of

subclones found by PyClone in 5 types: HNSC, BRCA, KIRC, LGG, and PRAD. Noorbakhsh

et al. [22] studied 4,722 patients from 11 types from the TCGA, and found significant prognos-

tic power in 4 types using MATH score and distinct input mutation sets from different variant

callers. They obtain significant prognostic association for all variant calling results in only one

cancer type: UCEC, and already report some lack of robustness in the results. We have been

further in testing up to 7 ITH methods with 2 alternative input mutation sets, in addition to

the combination of all methods, and found no significant association, either for the same

framework in all considered cancer types, nor for the same cancer type with all frameworks.

We have also tested more powerful polynomial models to account for a potential nonlinear

relationship, and results were inconclusive. This is an important distinction, because mutation

Fig 6. Prognostic power of ITH-derived features compared to other prognostic factors (686 patients in total). ITH-derived features are

used in association with clinical features to predict overall survival. Left-most boxplots (with red contour lines) represent results using clinical

variables alone, without any ITH, to serve as reference.

https://doi.org/10.1371/journal.pone.0224143.g006
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calling can be made robust by additional experiments (targeted sequencing on WXS or WGS

candidates), but our results highlight intrinsic limitations of ITH methods.

Considering results in details, there are discrepancies that should be discussed. For BRCA,

conclusions are more discordant: Morris et al. [13] found significant results, Noorbakhsh et al.

[22] did not, and in more specialized studies like METABRIC [53], significant association was

found when considering only the upper and lower quartile of MATH score for ER+ tumors.

For BLCA, contradictory conclusions were also drawn, as previous studies [13, 14] found no

prognostic power and we have with some ITH methods. There are several explanations: each

study considered a distinct subset of patients, with a distinct pipeline for calling mutations and

measure ITH. This instability with respect to patient selection has been confirmed by our

study. All of those studies, including ours, observed ITH prognostic relevance in HNSC. Good

prognostic power for HNSC and BLCA might be an indication that the importance of ITH for

cancer aetiology differs across cancer types.

Can we truly measure ITH?

Beyond the question of the prognostic power of ITH, our results challenge the very fact that

ITH can be measured accurately with one WES sample per patient. Up to 30 methods have

been developed to tackle ITH detection and quantification from NGS data in tumor samples,

and new ones are still being developed [56]. This analysis has focused on relatively early but

among the most widely used ITH methods in order to provide valuable insight on the degree

of reliability of provided results. Indeed results presented here show that there is a very weak

correlation (and sometimes even a significant negative correlation) between results obtained

with different methods on the same patients. Another source of inconsistency is that ITH

methods rely on results from previous analysis steps, in particular variant calling. Indeed, all

ITH methods rely on the distribution of SNV frequencies, in association or not with structural

variants (also called by a variety of dedicated methods). This has already been discussed by

Noorbakhsh et al. [22] for MATH score computation. We show here that this issue is not lim-

ited to the MATH score. Some authors have suggested that being very restrictive in variant

calling, even resorting to targeted deep sequencing to experimentally validate SNVs [6], would

exhibit less noisy results. Here we have not observed any evidence that ITH methods estimated

more robust results with a restricted input mutation set (i.e. the public mutation set in this

study). Overall, lack of agreement between the different ITH measures is a real concern, indi-

cating again that ITH is probably not very accurate. A similar conclusion was recently and

independently reached by [57].

Beyond the methods used for ITH inference, the data might also be questioned. Being able

to measure ITH to one sample WES with moderate sequencing depth is tempting for future

clinical application where the cost and the inconvenience of multiple samples for patients

should be limited [3], but it may be unrealistic, as the true heterogeneity of a tumor can be

missed by a single biopsy. However, more complex experimental settings have allowed more

convincing findings in the field of tumor evolution [58, 59], and it may be necessary to further

evaluate lack of accuracy due to undersampling from the whole tumor or to use of WES

instead of WGS, and the impact of sequencing depth. A recent and broad analysis of ITH with

one WGS sample per patient [16] partially answers as the authors could detect ITH in almost

every patient, and conduct interesting further analyses as they had confidence in the robust-

ness of ITH estimates. Most published methods are able to account for multiple samples from

the same patient, either sampled at different times or from different regions of the tumor.

However, for extension to WGS analysis, our work highlights limitations with respect to the

computation time for high numbers of mutation as input.
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Association with survival, link with other variables

It is tempting to formulate the hypothesis that higher association with patient survival is a sign

of higher accuracy. We have already mentioned some technical issues associated with the set-

ting of one sample WES per patient, as even without measure issues, ITH might just be under-

represented in the sample compared to the whole tumor [60]. Another limitation is that this

does not represent a dynamic measure. For instance a tumor can be clonal because it is not

very aggressive, or on the contrary this might be the result of a selective sweep after a phase of

new clonal expansion. Moreover, several authors discuss the consequences and the interplay of

the presence of distinct subclonal populations, in terms of cooperation [61, 62], competition

[63, 64], or even neutral evolution [65, 66]. Hence, the same level of ITH might uncover very

diverse situations, and may not be a prognostic factor by itself.

Moreover, the dataset used in this survival analysis has some particularities: the TCGA has

selected patients with criteria allowing high sequencing quality, and ITH analysis itself has fur-

ther eliminated tumors with no or very high CNA abundance, which may also bias results.

Finally, absence of prognosis power in one dataset does not constitute a formal proof that ITH

is not associated with survival.

Besides, ITH is likely to be influenced and to interplay with other external factors including

tumor micro-environment, immune response, nutrient availability. Recent work has tried to

set a full framework for analysis including many factors [67]. However, in the case of the

TCGA, not all those variables are measurable, but some might be included in further work. In

this line of thought, earlier results exhibited correlation of ITH with other factors like CNA

abundance, sample purity, immune infiltration [13, 53, 54, 68]. Our results show that the

strength (and even direction in the case of CNA abundance and mutation load) of correlation

between those factors and ITH varies between the different tested ITH measures. This again

calls for further and more detailed analysis, as results show ambiguity and lack of robustness.

Can we build a gold standard dataset for benchmark?

The main difficulty of ITH estimation is to assess the accuracy of the results. In this work, we

have considered two possibilities. The first one on data from the TCGA is to work without any

ground truth proxy and measure other features of accuracy: robustness, agreement of results

obtained by different methods and association with other clinical variables. The obtained

results suggest that the considered ITH methods are relatively robust to changes in the copy

number input, but very sensitive to the input mutations. The last two options are more difficult

to work with, as one method could be in disagreement with all the others but still provide the

most accurate result, and absence or presence of association between ITH and other clinical or

genomic variables can be either due to a real biological signal or be an artifact (or bias) of the

method. Though the goal of this study is not to provide a formal evaluation of the considered

method, the results on the TCGA provide information on systematic trends of each method,

and the level of confidence to expect when applying ITH methods.

A second possibility is to try and obtain a proxy for the ground truth. This can be done

using single cell sequencing in addition to the bulk sequencing. Though suffering from other

issues, single cell sequencing provides true associations or exclusions of mutations, and hence

constraints the subclonal reconstruction [42]. However, a large number of cells is necessary. In

the 7 samples considered in this study, only a subset of the mutations identified in the bulk

sequencing were also identified in single cells, limiting the representativity and the relevance

of the extracted accuracy measures. A second possibility is to rely on several samples from

the same tumor to obtain a better ground truth to compare to the result obtained with one

sample. However, each sample is a priori heterogeneous itself, requiring a first multi-sample
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deconvolution. This first step can be challenging, as it is thought that multi-sample reconstruc-

tion is subject to a larger statistical bias compared to single sample reconstruction [69], and the

accuracy of this first step will be critical in the final results. A final possibility is to rely on simu-

lated data, which have the major drawback to not be necessarily representative of the true bio-

logical data, as recently highlighted for ITH in [69], that point to an aspect of the input data so

far overlooked by the community.

Supporting information

S1 Fig. Prognostic power of diverse combination of ITH-derived features, on the three can-

cer types (respectively BRCA, HNSC and BLCA from top to bottom). In each plot, the back-

ground color indicates the ITH method used. Each method is tested on protected or public

mutations (hashed). For each method, we assess the ability to predict survival with a survival

SVM using 4 sets of features: (i) the number of clones alone, (ii) the five custom features which

include the number of clones, and (iii) and (iv) the concatenations of features in (i) and (ii)

with their squares, to account for possible nonlinear quadratic effects. We observe no clear

trend of one of the two sets performs systematically better than the other, and the squared fea-

tures have not significantly improved results either.

(TIF)

S2 Fig. Pairwise computation of score1B for the different ITH methods and inputs.

Score1B is a metric designed in [40] penalizes differences between the number of clones

inferred in each case in a symmetric way (only the difference matters, either more or fewer

clones are detected), following the formula
J1þ1� minðJ1þ1;jJ2 � J1 jÞ

J1þ1
, with J1 and J2 the numbers of

clones found by each method. The score was computed for all patients, and this heatmap rep-

resents the median score. We observe a particular feature of PyClone, which tends to find a lot

(sometimes several dozens) of clones with only one mutation. They were discarded when com-

paring the number of clones, but not for the computation of metric 1B to ensure consistency

with the other metrics.

(TIF)

S3 Fig. Pairwise computation of score1C for the different ITH methods and inputs.

Score1C is a metric designed in [40] that represents the Wasserstein distance between the can-

cer cell fraction (CCF) distribution resulting from each clone’s mean CCF and number of

mutations. Due to the number of single-mutation clones of PyClone, the resulting distribution

is quite different from the other cases. As CSR only takes as input the mutation attribution to

clones by other methods, without taking into account their CCF, we did not compute score1C

for that method. The score was computed for all patients, and this heatmap represents the

median score.

(TIF)

S4 Fig. Pairwise computation of score2A for the different ITH methods and inputs.

Score2A is a metric designed in [40] that assesses the similarity of the mutation clustering

resulting from subclonal reconstruction (see Methods for details). We recover the previously

observed pattern that PyClone and PhyloWGS are the closest methods. The score was com-

puted for all patients, and this heatmap represents the median score.

(TIF)

S1 Table. Characteristics of input mutation sets. Summary statistics of the number of pro-

tected and public mutations per sample for BRCA, BLCA and HNSC samples. The protected
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set corresponds to raw variant calling outputs. The public set corresponds to publicly available

SNV calls.

(PDF)

S2 Table. Clinical variables significance for single-variable cox model for BLCA (409

patients). Variable significantly associated with survival are shaded.

(PDF)

S3 Table. Clinical variables significance for single-variable cox model for BRCA (1080

patients). Variable significantly associated with survival are shaded.

(PDF)

S4 Table. Clinical variables significance for single-variable cox model for HNSC (526

patients). Variable significantly associated with survival are shaded.

(PDF)

S5 Table. Signatures adapted from Bindea et al. [38]. Genes Id were matched from tables

available at https://github.com/judithabk6/ITH_TCGA/tree/master/external_data.

(PDF)
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