

Using Dependency Grammars in guiding templatic Natural Language Generation

Ariel Gutman relgu@google.com

Anton Ivanov aii@google.com
Google

Jessica Kirchner jkirchner@google.com

Introduction

Notwithstanding recent advances, neural NLG is still error-prone. To ensure **high-quality** messages in a **multilingual** & **wide-coverage** NLG system, human-authored NLG templates are still the easiest way to go.

To alleviate efforts of the template authors, we propose a templatic system enriched **by dependency relations**. This allows easy integration of **grammatical regularities** using a simple grammatical formalism, while at the same time maintaining **maximum flexibility** of the templates, which can combine static and dynamic elements.

System components

- Lexical features of dynamic content, e.g.
 AGR [NUMBER, GENDER, PERSON]
 DET [DEFINITENESS, DECLENSION]
- Lexical & POS constraints:
 e.g. for nouns, set the PERSON feature to third.
- Selection of lexical forms, according to grammatical constraints and markedness of forms.
- Dependency analysis using the Universal Dependencies framework

Feature unification across dependency arcs

Examples and Challenges of Templates with Dependency Annotation

(Danish/Swedish) (det:\$article) (amod:BIG) (root:HOUSE)
Difference between Swedish and Danish is lexical, for the definite article:

- Swedish has feature DECLENSION strong → Select noun form huset
- Danish has feature DECLENSION weak → Select noun form hus
- Both have DEFINITENESS definitive
 ⇒ Select adjective form stora

- (French) (nsubj:\$agent) (dobj:\$pronoun) (aux:AUX) (root:\$verb)
 Subject agreement features flow from the subject to the auxiliary (nsubj ~ root ~
- Object agreement flows through the dobj relation under some conditions.

aux), while being parked as covert agreement features in the participle.

Selection of auxiliary verb possible through the aux relation.

Advantages of the System

- Reuse of template structure for multiple languages:
 Dependency parses abstract away from languagespecific details (at least for similar languages)
- Hybrid templates simplify system design and template creation: No need to parse static or irrelevant parts of template, making it much easier to get a system up and running, and to add new templates.

Select references

Ariel Gutman, Alexandros A. Chaaraoui, and Pascal Fleury. 2018. Crafting a lexicon of referential expressions for NLG applications. In: Ilan Kernerman and Simon Krek (eds.), *Proceedings of the LREC 2018 Workshop "Globalex 2018 – Lexicography & WordNets".*

Richard Kittredge and Igor A. Mel'Cuk. 1983. Towards a Computable Model of Meaning-Text Relations Within a Natural Sublanguage. In *Proceedings of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-83)*. 657–659. François Lareau and Leo Wanner. 2007. *Towards a Generic Multilingual Dependency Grammar for Text Generation*. In Tracy Holloway King and Emily M. Bender (eds.), *Proceedings of the GEAF 2007 Workshop*. CSLI Publications, Stanford.

203–223.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. 2013.

Universal Dependency Annotation for Multilingual Parsing. In *Proceedings of ACL 2013*.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender. 2003. *Syntactic Theory: A Formal Introduction*. Second edition. CSLI publications, Stanford.

n publications, Stanford. Nikolai Trubetzkoy. 1931. *Die phonologischen Systeme*. Travaux du Cercle Linguistique de Prague 4. 96-116.