
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Quantitative approaches for optimization of user experience based on
network resilience for wireless service provider networks

Deepak Kakadiaa,b, Dr. Jose Emmanuel Ramirez-Marqueza,⁎

a School of Systems Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
bGoogle, 1600 Amphitheatre Way, Mountain View, CA, United States

A B S T R A C T

Since the 1980′s and in particular 1996, telecom operators and recently mobile operators have been facing increasingly fierce competition, combined with flat
subscriber growth and increased data usage resulting in tremendous downward pressures on profitability, forcing operators to differentiate themselves by trying to
offer network services with better customer experience at lower operational costs. Wireless operators are challenged with measuring user experience which in itself is
subjective, in a manner that accurately reflects the functional and emotional aspects of perceived quality and linking to Network Resiliency which characterizes the
network behavior as it responds to disruptions. Current network faults and alarms only consider device failures and do not consider actual impact to user experience.
For instance a failed router may not impact the users experience due to built in redundancies in the network. Studies to date, have proposed methods and models that
focus on specific aspects of user experience in wired and cellular networks. However, to the best of our knowledge, there is currently very little research that connects
linking poor user network experience to root cause. Previous recent work in this area focus on identifying what and where measurements to gage subscriber OoE,
modeling and high level concepts, but do not address realistic challenges and approaches that can be automated to materially impact improved customer experiences
at lower operational expenses. There is a gap on how operators can automatically associate poor user experience, relevant network metrics and root causes with a suitable
model that can be analyzed and optimized. We propose a general framework for a solution that links these entities together, with a quantified approach to optimize user
network experience by optimizing network resilience using a model that can be analyzed and optimized using machine learning methods to improve resilience and
hence user experience. Results of directly applying existing machine learning algorithms for identifying root causes to network telemetry data have proven to be
ineffective in practice due to the fact that existing machine learning algorithms are designed for prediction, classification and ranking not for identifying causal
relationships and further complicated by the fact that these algorithms have assumptions on the data and in reality the network data distributions vary wildly during
network disturbances. The proposed general framework combines existing methods for anomaly detection and machine learning algorithms, however the novel
contribution centers on improving the accuracy of finding associated root causes by dynamically selecting the optimal machine learning algorithm based on the
network telemetry data features that are recomputed before, during and after network disturbances. The proposed approach then allows us to automate the time
consuming manual tasks of network engineers that proactively monitor key performance metrics for anomalies, correlate with other data sources to ultimately
determine actionable insights to maintain a certain acceptable level of user experience by dynamically selecting the appropriate machine learning algorithm for the
given data characteristics or features. We describe an example case study specific to wireless provider environment, illustrating the potential viability with results
from actual wireless(approx 8 million monthly subscribers) operations data showing promising results by applying the proposed approach. The prototype im-
plementation was able to programmatically detect anomalies, identify potential root causes using different algorithms suitable for the given data and time frame,
which dramatically increased the accuracy and efficiency of the small network engineering team, and hence improved the user experience by improving network
resiliency.

1. Introduction

Telecom deregulation starting from the 1980s to 1996 in the United
States and then in other nations has benefited consumers but devastated
incumbent, slow to adapt, operators due to increased competition and
lower Average Revenue Per User(ARPU). Wireless Network Service
Providers which have emerged from telecom operators, scramble to
differentiate themselves by providing better user experience, while
being under tremendous pressure to deliver more data volume, at faster
rates, and above all at lower costs than their competitors. Network

Operations Costs consume a significant portion of the overall network
operating budget, making it even more challenging to provide high
quality user experience. Looking closer at the underlying reasons of
high operational costs, are experienced network engineers, that follow
manual, time consuming processes to resolve network issues often,
without knowing if the particular issue directly impacts user experience
or not. Current technologies in Network Operations Tools are silo so-
lutions that do not integrate well, focus on a single or few aspects of the
network and require high skilled, expensive network engineers to cor-
relate and resolve issues after there has been a reported user complaint.
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Prior research has described user experience from a single aspect rather
than a network wide perspective. For instance, many studies con-
centrate on the optimization of only one application such as video and
one network segment such as the Radio Access Network(RAN) and
adjusting parameters without considering adverse impacts to other
parts of the network or user experience. By not knowing how this
benefits the user experience of all users is of limited value to operators.

Second, prior research has discussed extensively on how to optimize
the availability of the network at various layers from the optical fiber,
DWDM, IP, MPLS and other availability mechanisms. The operators are
now finding that some parts of the network are over engineered at high
cost with little incremental benefit to users experience and other parts
of the network that are single points of failure and under engineered
which impact user experience significantly. By not aligning the network
availability with user experience with a validated model is something
operators are no longer able to afford. Third, recent research have
proposed several approaches to measure subscriber QoE at an appli-
cation aggregate level or 3GPP interface level, which will not capture
specific subscriber flows, and conceptual frameworks to detect sub-
scriber QoE issues and a QoE manager but do not address how the
operator will realistically resolve the offending network issues without
expensive manual, time consuming efforts.

For these reasons network operators are struggling to find in-
novative ways to maximize user experience and simultaneously mini-
mize operational costs in order to differentiate themselves and win in a
competitive marketplace. There is a gap that links User Experience to
Network Metrics to Root cause that can be automated to reduce manual
efforts and costs which improve the resilience of the network and ul-
timately user experience.

In this paper we propose a general framework that detects anoma-
lies and associated root causes by dynamically selecting the most sui-
table machine learning approach indexed by the network data char-
acteristics or features computed in time windows before, during and
after network disturbances. We found network telemetry data char-
acteristics or features such as linearity, stationarity, normality and la-
tent variables vary widely between steady state and episodes of net-
work disturbances. We further propose a method on how to connect the
user experience(i.e. deviations from expected levels of service by de-
tecting anomalies of the service level) to direct actionable network root
causes(determined by dynamically selecting the most suitable machine
learning algorithm) by defining quantified models for user experience
and network resiliency and a model that connects them, which can then
be optimized and automated using machine learning methods. The key
contribution of this paper is that we propose a method that can be
automated to materially reduce the time and effort it takes the operator
to take corrective action in the network in direct response to detecting
drops in user experience using dynamically optimal selected Machine
Learning algorithms based on the network data characteristics.
Network telemetry data is wildy dynamic and machine learning algo-
rithms vary in assumption of the data. By characteristing the network
data dynamically we can select the most appropriate machine learning
algorithm, hence yielding most accurate results. We introduce connecting
user experience with network resiliency by defining Key Performance
Indicators(KPI)s that abstract metrics of the network that directly impact the
user experience. Once we have these metrics, we can construct an opti-
mized model and dynamic selection of the most suitable machine
learning algorithm for the given data in the processing window at that
time, which can be automated that has the most impact amongst all
alarms that are causing a drop in user experience, hence we auto-
matically correlate and prioritize alarms as well as determine root
cause. We build on the definition of "System Resilience" [1] which dis-
cussed the quantification of the performance of a system before and
after a disruption, as "Network Resiliency" being defined as the capacity
of the network to maintain adequate levels of service to its users by
withstanding or recovering promptly to network disturbances that
materially impact user experience as quantified by key network

performance indicators with target service level objectives(SLO). The
KPIs are defined as metrics that abstract key aspects of the network as
service, which is composed of subservices. The deeper we can define
these subservices, the more detailed we can identify root causes. For
instance, in order for a user to access and use a particular network, they
must first be authenticated by the network onboarding process and then
access the internet by traversing the transport network of the provider
which is, itself composed of several segments spanning user to internet.
The availability aspect of the network will be composed of metrics
pertaining to the network being up and working at all layers required to
transport user packets. The performance of the network will be com-
posed of metrics pertaining to the degree of congestion at various lo-
cations in the network. The research then describes models that link
user experience with network resilience and the optimization function.

The remainder of this paper is organized as follows: In Section 2 we
review prior art in the area of user experience in wireless operator
networks, network resiliency and machine learning which we will use
to automate the identification of network disturbances and root causes.
In Section 3 we formally define the Network User Experience Model,
including the important KPIs that link and quantify the user experience
to network measurements. In Section 4 we build on Section 3 by for-
mally defining the Network Causal Model, that organizes and links the
most relevant network measurements to user experience but whose
structure can be exploited to identify root cause in an automated
manner. In Section 5 we formally define the Network Resilience Model
which allows us to connect user experience, to relevant network mea-
surements in such a way we can now see what needs to be optimized. In
Section 6 we tie everything together to formally define the Network
User Experience and Resilience Optimization function that considers all
aspects of the network and user experience. Section 7 describes results
from an example prototype implementation of the proposed approach
that show improved user experience and improved network resilience
by automating the detection and dynamically selecting the optimal
machine learning algorithm based on the network data characteristics.
Finally we conclude on the findings of our proposed approach including
limitations which require further research.

2. Related work

At time of writing, there is no integrated published work on user
experience, reliability and remediation. Prior art in wireless network
user experience [2–5,15,17,39] centered on single aspects, significant
predictors, metrics but did not discuss corrective action on remediation.
Sun et al. [31–36] discuss network resilience in terms of network pro-
tocols, or domain specific aspects such as SDN, IP, Optical, DWDM,
multi layers, Telecom, BGP. Operators are now concerned by moving
away from silo approaches to network resiliency, that some parts of the
network may be over engineered and other parts under engineered as
these approaches are not tied directly to user experience. Marnerides
et al. [37] however discusses resilience in terms of users, applications,
network and systems but in terms of defense against malware. Bai et al.
[38] state that the resiliency of a network is correlated to recovery time,
however they do not discuss how to optimize the resilience function.
Typically the operator requires manual expertise to find root cause of
degraded user experience. Prior art in Network Reliability [6] only
focussed on devices, no discussion on how reliability is correlated to
user experience. Anomaly Detection [13] is concentrated identifying
outliers which don't distinguish features such as busy hour times or
congested cities vs rural areas. Resiliency Frameworks [7–10] lays the
foundation of this paper where we extend to include user experience
and corrective action to optimize user experience. Recent work [46–49]
propose methods to connect subscriber user experience to network
corrective action but, do not address network impairment root causes
that result in operator actions to materially improve customer experi-
ence. Ahmad et al. [46] describes the need for a standard interface
between ISPs and OTT, Liotou et al. [47] describes a theoretical QoE
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monitor and QoE Manager that upon detection of QoE, corrective ac-
tion is taken without any guidance on how the operator will actually
determine root cause in order to take corrective action. Baraković and
Skorin-Kapov [48] is limited to describing where to instrument data
collection in a service provider network, Aggarwal et al. [49] applies
machine learning techniques to train a model to correlate bad user
experience to associated network measurements but correlation does
not imply causation, so the operator will still need to manually de-
termine root cause. Prior art in Causality [11–14] describes algorithms
and approaches to find Root Cause and anomaly detection, based on
observational data and often requires interventions which is not prac-
tical in a live production network. There is no integrated approach
known to date, that ties all these concepts together end to end, from
user experience to root cause and optimizing network resiliency. Bao
et al. [16] describes an approach that uses logistic regression to identify
connect network parameters to network bandwidth, based on the pre-
sumption that bandwidth alone causes Mean Opinion Score or notion of
user experience and claim by tuning these parameters user experience
can be improved. The notion of correlation or association of features to
response variable is different from causation, which may be in fact due
to confounders not considered and application neutral analysis is
overlooked. Bao et al. [18] discusses the causal relationship is claimed,
not based on the core logistic regression algorithm but indirectly by
verifying user experience has improved or not after treatment effect.
The limitation of this approach is that by the time parameters have been
changed and measurements on the effect commence, network condi-
tions may have changed that contaminate the study. The causal re-
lationships should be determined from the outset, only then are we sure
that modification of the causal variables do in fact directly impact the
effect. The notion of user experience should consider not only network
bandwidth but other key quantifiable measures such as onboarding and
network availability which far outweigh network performance in many
cases.

3. Network user experience model

Intuitively, it is clear that the network user experience is directly
tied to the network as shown in Fig. 1. Traffic from the User Device on
the far left must traverse the Radio Access Network(RAN) then the
backhaul, metro, core and then to the Internet via Peering Router on-
wards. It is not obvious, however how to quantify or optimize the
network user experience. We propose a quantified model that captures
the end to end network user experience in terms of network resilience
and an approach to optimize this model.

3.1. Definitions

• Service Level Objective(SLO) - Target Level of promised service that
the service provider must meet or exceed. The Units depend on the
service under consideration. Availability is expressed as a percen-
tage such as 99.99%, latency is expressed in units of milliseconds or
seconds. The definition of the SLOs quantify user experience. If the
delivered service meets or exceeds SLO targets, then the customer
experience is labelled as good.

• Service Level Indicator(SLI) — The actual measured value re-
presenting the level of service actually delivered. This measurement
is usually compared against promised target SLOs to determine if the
service is compliant or not.

• Resilience - defined as the point in time when the system is not
providing a level of service as promised(SLO) to the point in time
the system recovered and is meeting or exceeded the promised level
of service. We extend the definition of resilience to include metrics:
Onboarding, Network Availability, Network Performance(Latency,
Bandwidth, Packet Loss Rate etc.). In particular, resilience is defined
as the time taken to recover from a noncompliant state to compliant
state

The network user experience can be modelled and estimated by the
following 3 wireless network service Key Performance Indicators:

1 Availability - How often is the network service available and
working.

2 Network performance- How well does the network transport perform.
The network transport can be characterized by the composite me-
trics:
a Latency - Average end to end network delay experienced by users.
b Bandwidth - Average network bandwidth provided to user traffic.
c Packet Loss Rates - Average end to end packet drops experience by
users.

3 Onboarding - How well does the network service perform the on-
boarding process. The network onboarding process can be char-
acterized by the following composite metrics:
a AP Association - How long does it take for the User Device to
associate with the WiFi Access Point(AP)

b DHCP latency - How long does it take for user device to obtain IP
address and other Dynamic Host Control Protocol configuration
information from the network

c DNS - How long does it take for the network to resolve a canonical
host name to a network IP address.

Fig. 1. Network user experience is directly correlated to network resilience of network and segments: Radio Access Network(RAN), backhaul, metro, core and
internet. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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d Captive Portal - How long does it take for the network to au-
thenticate a user in order to gain internet access to the network.

e Transport - Latencies in the network during the onboarding pro-
cess

Fig. 2 below shows the network user experience model and how
user experience is composed of a composite score that capture the main
components of the network service that impact user experience based
on Network Key Performance Indicators: Onboarding, Availability and
Network Performance. Availability is based on the network transport
being up and functioning, from the physical layer to IP layer. Network
Performance is based on the capacity and load of the network. In cases
where the load exceeds the capacity of the network, there is congestion,
the network will be available, but traffic will be delayed due to buf-
fering up to a point, beyond that packet will be dropped if queue buffers
are filled beyond capacity. The user experience depends on onboarding,
availability and network performance, where each component will be
used to compute a composite score that enables the quantification of
the overall user experience.

4. Network causal model

The diagram in Fig. 1 described a typical wireless service provider
network architecture which consists of separate segments that can be
owned and managed by the same or other partner service provider
companies. User Data sends and receives data from a server, the

network transports this data end to end, for an example application -
youtube where data from youtube servers in the Internet are streamed
towards a user traversing Core, Metro, Backhaul then finally to the
Radio Access Network(RAN) segment to User. The service provider sees
thousands of network disturbances in the network each day, but does
not know which ones materially impact user experience, further which
segment in the network is causing this disturbance. Identifying dis-
turbances that materially impact user experience and root cause is time
and resource consuming for the operator. Most operators typically focus
on device outage as highest priority without any consideration to fac-
tors such as the network having redundant routers that can easily ab-
sorb all rerouted traffic, hence negligible impact on user experience. On
the other hand, user impacting events may get ignored, for instance
there may be an AP that is intermittently congested, impacting hun-
dreds of users' experiences throughout the day each day. Our approach
will address this gap.

Fig. 2 below describes an example Network Causal Graph(NCG)
model that captures the structural relationships between user experi-
ence and network characteristics: Onboarding, Availability and Net-
work Performance. These characteristics directly impact the user ex-
perience from a network operators perspective. Each one of these
characteristics can be broken down further into subcomponents which
are shown to have a causal relationship. For instance, for wifi users
initially trying to access the network, there is an onboarding process,
that first starts with the user device connecting with the wifi access
point, which is then followed by a DHCP process to be allocated a

Fig. 2. Network causal model for each metric: availability, network performance and onboarding and causal structural relationships between user experience and
root causes of non compliant metric performance. Fig. 3 below describes example metric measurements of Availability and the importance of time scales and
measurement points. Station B and Station A are being measured individually for availability, such as synthetic pings for reachability, and we see that with granular
measurements, we can identify exactly when a particular location is not performing as promised by meeting the target SLO, in this case 99% availability. Station A is
chronically below SLO whereas Station B momentarily falls below the 99% threshold.

D. Kakadia and D.J.E. Ramirez-Marquez Reliability Engineering and System Safety 193 (2020) 106606

4



temporary IP address and then DNS resolution to resolve the IP address
of the captive portal where the user must log in and get authenticated.
This 5 onboarding sub processes can be abstracted by an onboarding
Key Performance Indicator that simply measures the success rate and
time to users to start the AP association to the final Captive Portal grant
after successful authentication. The KPI can detect poor onboarding
experience when the onboarding KPI sees a high failure rate or delayed
onboarding time to drill down which subcomponent is the root cause.
The transport abstracts all onboarding interconnection from IP layer
and below. Similarly Availability and Network Performance have as-
sociated KPIs that measure how well the network is performance in
terms of availability or speed and associated causal segments of the
network are modeled to be able to identify root causes for non-
compliance. The structural component relationships for each metric
which will be used to identify root cause when a particular Infra-
structure sub Service(Onboarding, Availability, Network Performance) is
out of compliance. The availability NCG can be cross referenced with
Fig. 1 where each segment directly impacts the transportation of user
packets. In this paper, we will show, if a service is unavailable, we will
use machine learning to automate the workflow and processes to
identify the root cause, which the operator will then know what repairs
are required in order to stabilize the system, saving costly resource
intensive manual detection and diagnostic phases. The small nodes in
blue prefixed by the letter "U" denote unknown, or noise.

Wireless Operators are struggling with finding methods to predict,
identify, and diagnose failures in the network, in an effort to restore
services to subscribers. Rafique et al. [40–44] describe various ap-
proaches to solving this problem, including using granger causality,
optical hierarchical methods, Bayesian, and others [45] describes an
approach to estimate root cause of faults by manually constructing a
model using managed objects to represent the physical network ele-
ments, with relationships between layers of the network, organized in
hierarchies. The root cause is determined by invoking methods in the
managed objects using the pre programmed relationships. This ap-
proach cannot scale on large networks where new objects are being
added and removed, and more importantly it is not practical to pro-
grammatically capture all rules for all possible scenarios. Each ap-
proach has different characteristics, complexities and time to recovery.
For the purposes of this paper, the details of the optimal algorithm is
beyond the scope of this paper however, we will use the fact that there
are a finite set of different approaches to formulate our model for op-
timization.

5. Model: user experience and network resilience

We now extend Resilience Frameworks [7–10] to [19–30] model
user experience and network resilience which will be correlated with
the Network Causal Model.

Fig. 3. Availability measurements: actual vs SLO target on a per location basis allows for root cause identification of components that are impacting user experience.
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5.1. Model definitions

R(t) - Resilience of system at time t- ratio of recovery at time t to loss
suffered by system at some previous point in time td
R(t)= Recovery(t) / Loss(td)

Value of RF(tr|ej) corresponds to a specific Figure of Merit F(tr|ej)
evaluated at time trwhere tr∈ (td,tf) under disruptive event ej is com-
puted as:

=
−

−
∈R

F F
F F

(t |e )
(t |e ) (t |e )
(t ) (t |e )

, e DF r j
r j d j

0j d j
j

(1)

From Dessavre and Ramirez-Marquez [10] we have the following
definitions:

System S is subjected to a disruptive event ej D is the set of all
Disruptive events that materially impact the network such that user
experience is impacted. The total elapsed time from start to re-
covery= τ with the following breakdown:

1 Reliable time frame τ1 (S, ej)= [t0, te).
2 Vulnerable time frame τ2 (S, ej)= [te, td).
3 Disrupted time frame τ3 (S, ej)= [td, ts).
4 Recovery time frame τ4 (S, ej)= [ts, tf).

From Fig. 4, we see that the net effect of the Optimized System as

compared to the Original System is the difference between the down-
times between systems −τ τoriginal optimized. We formalize the System
Downtime time difference on each subcomponent timeframe as en-
umerated above as follows:

∑ − ∈ ∈

∈

τ τ τ( (S, e ) (S , e )) for i {2, 3, 4}, e D, S

{S , S , ..S }

difference i i j i c j j c

c1 c2 cn (2)

, where τdifference denotes difference in overall system downtime using a
particular Causal System Sc, which is an element from the set of all
available causal systems {Sc1, Sc2,.. Scn} compared to the original system
S overall system downtime. Again, Sc denotes a system equipped with
proactive monitoring and root cause analysis functions for all events ej .
Note we only compute time frames τ2, τ3, τ4, that fall in the time frames
when the system is down Sf and Sr. If the value of τdifference negative
then we are better off with the original system. This value must be
positive in order to improve the system resiliency as a result of proac-
tive monitoring and causal inference that reduces system downtime.

Fig. 4 The effect of Causal system with reduced overall system
downtime as compared with the original system by reducing individual
component times:

t0 - system stable time
te - time of disruptive event
td - time system in disruptive state

Fig. 4. Below shows the effect of optimizing the original system as described in [7–10].
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ts - time system goes into recovery
tf - time at which system has recovered

From Dessavre and Ramirez-Marquez [10] we see that one of the
most important factors of a resilient system is the reduction in overall
cumulative system downtime and from (2) we want to maximize
τdifference. However there are many different optimized systems Sc or
Causal Inference approaches to choose from, examples are described in
[40–44] and illustrated in Fig. 5 below.

• T1: Reliable time frame τ1.

• T2: Vulnerable time frame τ2

• T3: Disrupted time frame τ3

• T4: Recovery time frame τ4

From Fig. 5 above illustrates that the network has dynamic network
characters(Right) and the differences in performance between algo-
rithms in terms of accuracy based on the data being analyzed from the
network. As an illustration, we see that Causal System Scs0, denoted as
CS0, has the overall fastest cumulative recovery time, hence this system
will be selected in the optimal configuration to maximize user experi-
ence. Each potential Causal System has different characteristics with
different times to resolve, (as each causal system was constructed based on
different characteristics of the network and trained with different data and
algorithms, explained briefly later in this paper) with cumulative sum of all
time components being the most important. Further each system will
have different characteristics potentially by disruptive event ej, char-
acterizing that particular approach for a particular disruptive event ej
and hence corresponding cumulative recovery time. To find the best
possible Causal System, a distribution must be considered not only
across the 4 component times mentioned above, but also across likely
disruptive events ej, potential to occur against the system under con-
sideration. This is the reason why we do not write: Sc∈min{Sc1, Sc2,
.. Scn}. We don't simply blindly choose the minimum Sc from the set
because that does not consider how the various causal system

implementations behave under different events. The next section will
build on these models to formulate an optimization objective function.

6. Optimize user experience & network resilience

In this section we combine the models for User Experience and
Network Resilience to formulate the Network User Experience
Resilience Model Optimization objective. Fig. 6 shows the updated
model of the subsystems of the Network which Network User Experi-
ence depends on.

The Network has been decomposed into separate subsystems, each
with its own resiliency function. We show generic users, as opposed to a
single user. If any on the subsystems are not functioning, then users will
be directly impacted. The user experience is directly related to the
amount of time of any of the sub systems being down or in the Sd state.
We first describe the optimization function from a single network KPI
perspective, which in 6.1 describes in general, how to choose the best
causal system for a particular objective KPI and disruptive event ej.
Section 6.2 then extends the general optimization function obtained
from 6.1 to all user experience related network KPIs and across all event
types ej.

6.1. Network resilience optimization function

∑

∈ ∈

∈

−

τ

τ τ τ

S S S

set of all potential causal systems

Argmax{ (S , e )}

for i { , , }, e D,

S { , . ., }c c cn

difference c j

2 3 4 j

c 1 2,

Since the original system S Reliability, Vulnerability, Disruption and
Recovery times are relatively constant, the optimization function sim-
plifies to minimizing the Vulnerability, Disruption and Recovery times
of Sc∈ {Sc1, Sc2, .. Scn}, we then get the following:

Fig. 5. Right: shows different network data distributions: latent variables, Gaussian distribution, linearity, stationarity. Left: cumulative recovery time (vertical axis) vs
network time(horizontal axis), different causal systems Scs0, Scs1, Scs2, Scs3, Scs4, Scs5 each with a different approach to anomaly detection and root cause analysis with
different cumulative recovery times and sub components:.

D. Kakadia and D.J.E. Ramirez-Marquez Reliability Engineering and System Safety 193 (2020) 106606

7



∑

∈ ∈ ∈

τ
τ τ τ

Argmin{ (S , e )}
for i { , , }, e D, S {S , S . .,S }

i c j

2 3 4 j c c1 c2, cn (3)

From Dessavre and Ramirez-Marquez [10] Theorem 3, the solution to
the optimization of the partial problem is equivalent to the solution of
the general optimization problem

In order to use the above models in a wireless network, the network
has vastly different characteristics, from different network traffic parts
in different regions such as rural vs congested cities, different network
functions such as simple layer 2 wirespeed switches to proxies that
terminate socket connections. Different data distributions and re-
lationships between dependent and independent variables, examples
include linear, non-linear, Gaussian, non-Gaussian, stationary and non-
stationary. These all require different algorithms and training data and
models for both anomaly detection and root causal discovery. This is
the motivation for different Causal Systems Sci. In this paper we define a
Causal System as the combination of anomaly detection algorithm,
machine learning algorithm and related components to detect network
disturbances and identify probable root cause. The construction of the
different causal systems are beyond the scope of this paper, but will be
described with sufficient details, as needed later in this paper. The main
point is that no single generic system is optimal for different data and
network characteristics. Different causal systems that incorporate
anomaly detection and root cause discovery based on a particular set of
data will yield optimal results trained and tuned for that classification
of data characteristics.

6.2. User experience network resilience optimization function

In order to optimize Network User Experience, we minimize the
time in Sd state for each subsystem(Onboarding, Availability, Network
Performance). This is equivalent to maximizing the positive time dif-
ference between original and optimized times in State Sd of Eq. (3) for
each subsystem of Onboarding, Availability and Network Performance.

From Eq. (3) we expand for each parameter Onboarding, Avail-
ability and Network Performance:

= ∑

∈ ∈ ∈

∑

∈ ∈ ∈

∑

∈ ∈ ∈

= ∑

∈ ∈ ∈

∈

τ

τ τ τ
τ

τ τ τ
τ
τ τ τ

τ

τ τ τ

for e D

for e D

for e D

for e D

j Onboarding Availability NetworkPerformance

Optimized Ux
Argmin

Argmin

Argmin

{ (S , e )} *

i { , , }, , S {S , S , ...,S }
{ (S , e )} *

i { , , }, , S {S , S , ...,S }
{ (S , e )} *

i { , , }, , S {S , S , ...,S }
Π { (S , e )}

i { , , }, , S {S , S S },

{ , , }

j

j

j

j

i c j Onboarding

2 3 4 c c1 c2 cn

i c j Availability

2 3 4 c c1 c2 cn

i c j NetworkPerformance

2 3 4 c c1 c2 cn

Argmin i c j

2 3 4 c c1 c2 cn

(4)

Each component Network Onboarding, Availability and
Performance is contributing to the user experience and is considered
equally important(or weighted) in a serial manner the same way prob-
ability of failures are multiplied if there is no alternate path. Hence we
multiply since the user experience is composed of each one of these
components. From Eq. (4), we see that the Network User Experience
Optimization Function maximizes the spread of time between the

Fig. 6. Extended network user experience resilience model where events represents points in time where SLOs are violated and we have decomposed the system into
subsystems, each with its own resilience model. Top portion shows individual Sub SLOs having its own resiliency state model for each KPI and bottom portion
showing 3 different causal systems, Sc1 with t1, Sc2 with t2, Sc3 with t3, clearly Sc1 is the fastest to recover.
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original down time for each subsystem S and the new optimized sub-
systems Sc. The means Sc must be minimized as much as possible ap-
proaching zero. Fig. 6 below describes our extended model, the top
figure shows individual sub SLO which in composite result in the
overall composite SLO shown in the lower half, which consists of 3
different causal systems Sc1, Sc2, and Sc3 each with corresponding time
to recover t1, t2, t3 and the best one is Sc1, with the fastest recovery time
t1 < t2 < t3 .

In this example we can see as availability drops to 50%, the per-
formance and onboarding KPIS are severely reduced and not meeting
min SLO thresholds, which is modeled as Disrupted State using the
Resilience Model Framework [7–9].

We propose to minimize Sd time, based on the lowest Sc found in
comparison to all other causal systems and to drive Sd to as close to zero
as possible by reducing the time to detect and diagnose eventsj for each
of the sub states or reduce ts(time the system starts recovery, see Fig. 4), as
close to te(time disruptive event occurred, see Fig. 4) as possible: ts - te < ε,
where ε is max threshold tolerable time between the event ej and time
to start restoration efforts, at which point operators know root cause
and know what is required to repair outage. Current industry practice is
that network operations wait for catastrophic events or customer
calling in to complain, and lack the tools to proactively detect network
eventsj. We propose leveraging streaming data analysis and machine
learning to achieve this at a relatively low cost with reasonable per-
formance.

7. Case study

In this section, we present a specific case study of the general pro-
posed framework, with an example prototype system that we im-
plemented for an actual wireless deployment, for illustrative purposes
only. For comparison, we show a typical network operations dash-
boards, illustrating the limitations in that it is practically impossible for
a human to proactively scan all metrics to detect anomalies and identify
potential causes due to velocity and volume of data. We then show how
the proposed prototype, using the proposed approach materially im-
proved user experience by detecting anomalies or deviations from ex-
pected service levels, then focussing on network issues that are directly
causal to user experience disturbances. Causal Inference for time series
data is beyond the scope of this paper. However, in our results we show
how we used existing machine learning algorithms that worked best
and noted the network data distributions to validate our claims that
best algorithms work when then assumptions are valid. Our prototype
first detect anomalies, using thresholds or existing algorithms that
statistically compute outliers. Characteristics or Features: Stationarity,
Linearity, Normality and of the predictors are computed in chunks of
time frames before, during and after the network disturbance that
caused the anomaly. We then dynamically select the optimal machine
learning approach based on the characteristics of the predictors to de-
termine root causes. Machine learning algorithms are designed for
prediction, classification and not specifically for identifying causal re-
lationships. We attempted to estimate root cause during periods of
disturbances using different machine learning approaches and techni-
ques particular to that algorithm. We first reduce the set possible

Fig. 7. Network user experience resilience optimization implementation to proactively predict network events and diagnose root cause using ensemble of statistical
machine learning approaches.
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candidate root causes using correlation then we intersect with results
from the machine learning approaches, that try to find the covariates
that explain the dependent variable the most by permuting one cov-
ariate at a time. We found that Linear Regression and Random Forest
had built in variable importance measurements which was used to find
most probable root causes by permuting covariates, computing the drop
in F-test and p-values. In Random Forest importance variables are used
to identify which covariate contributes most to the reduction in residual
squared errors. Support Vector Machines and Simple neural network
have little or no interpretability and an indirect method must be used to
find potential root causes. Generally we found that linear regression did
not perform well for non-linear data whereas support vector machines
did better, but interpretability required another library that measured
change in explanation of variance, by modifying one covariate, keeping
others constant and ranking the covariates. These are estimates only for
illustrative purposes. The example demonstrates the novelty of the
paper in the sense we propose an approach where we can show the
feasibility of a data pipeline that can continuously monitor user ex-
perience and once there is a drop, and dynamically select the optimal
machine algorithm based on data characteristics to determine the most
probable root cause. The different causal systems based on the different
machine learning algorithms perform differently based on the data
distributions and characteristics such as stationarity, Gaussian dis-
tribution, latent variables, and linearity.

7.1. Practical realization

We implemented a prototype system that collected actual WiFi
operators network data, processed the data using Google Compute
Platform, performed analysis using machine learning techniques to
detect anomalies to User Experience Network SLOs and identify the root
cause, the basic flow is shown in Fig. 7 below:

7.2. Current tools to address network resiliency - Manual, time consuming,
scalability limitations

In this section we illustrate how network operators actually address
Mean Time to Recovery(MTTR). From Fig. 4, in the context of this
paper, MTTR is the time from when the operator knows a system is
down, assigns a network engineer to diagnose the fault, determine root
cause and take corrective action to the point in time the system has
recovered. Mean Time to Repair is often confused with Mean Time to
Recovery which is slightly different as the former spans the time to
perform repairs, after diagnosis of the fault. The diagram below, Fig. 8
shows a typical network telemetry dashboard, where operators are in a
reactive mode requiring constant human monitoring and expert diag-
nosis. Network operators must manually look at alarms that are prior-
itized based on device criticality, not user impact and then the operator
must use experience and sift through datasets to deduce root cause. The
problem with this approach is that the alarm being addressed may not
matter to user experience, the alarms that do matter may be hidden the
massive list of alarms and the operator is spending manual efforts in
diagnosing the issue, resulting in a long Mean Time to Recovery
(MTTR), reducing system resilience.

7.3. Example causal systems

We now describe some hypothetical practical realizations of ex-
ample causal systems. Fig. 9 below describes a typical system that in-
gest Network Telemetry data for Network Performance, Availability
and Onboarding, each signal has potentially different distributions. The
diagram shows 3 example Causal Systems, with different algorithms to
detect anomalies, diagnose root causes and optimized for different
traffic distributions. We see some systems are able to detect and diag-
nose at different rates. For traffic distribution A, Causal System 1 was
best, For another traffic distribution another causal system using

different algorithms will be best, some other ones may not even work
correctly. The actual construction of the different causal systems is
beyond the scope of this paper, however a brief explanation will be
provided in the next section.

7.4. Causal systems - Brief Explanation

The actual construction of the optimal causal system is beyond the
scope of this paper, hower we will provide a brief explanation. The
construction of causal system involves 2 phases:

(1) Classifier - This phase uses the network telemetry training data as
predictors and accuracy of the machine learning approach as the
labels. This classifier finds the best machine learning approach for
the given network telemetry data characteristics.

(2) Forwarder - This phase takes in the real time network telemetry
data in windows: before, during and after the anomaly is detected.
Using the network characteristics computed in the window(during
the network disturbance, immediately after the anomaly is de-
tected), we can use the classifier in real time to identify the most
accurate probable root causes.

For different parts of the network, there may for example different
levels of congestion. For example in rural networks, the utilization is
typically always low, and for a congested city, during rush hours, the
network traffic along main streets is usually high. Due to differences in
network characteristics: Stationarity, Linearity, Normality, or Latent
Variables different models with different training data will be con-
structed and the classification will be based on the performance of
different models with different predictors i.e. network telemetry data
features or characteristics. These different data characteristics are the
key reason different algorithms and different causal systems produce
different results due to the foundational assumptions of the underlying
algorithms. In Fig. 9, we basically see different causal systems produ-
cing different results because of the way the different causal systems
were constructed on different training data, with different hyper
parameters and assumptions.

Our proof of concept implementation systems tried a variety of
approaches, using linear regression, random forests, support vector
machines, simple neural networks against different network traffic
distributions of varying degrees of Normality, Stationarity, Latent
Variables and Linearity, all producing different results, i.e. that support
vector machines and simple neural networks was more accurate(using
ROC) for highly non-linear data distributions, whereas linear regression
and random forests produced better results on linear, Gaussian, sta-
tionary data with no latent variables.

8. Conclusions and further work

In this paper, we addressed a gap in network operations for Network
Service Providers where user experience is disconnected from network
operations, by proposing a model to link the two domains and for-
malized an optimization model which is achievable by selecting the
most appropriate machine learning approach based on the network
data characteristics. The model showed the optimization function is
achieved by minimizing the time between when a network event occurs
and when recovery completes. This optimization was achieved by a
proposed generalized automated framework that detects anomalies or
deviations from acceptable service levels and finding associated causes.
We developed a model to incorporate reducing the Time to Recover to
include proactive prediction and detection of network faults and iden-
tifying root cause which enables operations to immediately jump
straight to the repair process. We presented a case study including an
example prototype implementation validating the proposed approach
in a real wireless service provider which was composed of 3 services
being monitored and analyzed for anomalies and root causes: on-
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Fig. 8. Typical wireless network service providers network operations dashboard left: metrics time series graphs, right: raw uncorrelated alarms based on fixed
thresholds. Current network operations require manual reactive efforts and experience to understand raw metrics, correlate alarms to determine root cause, resulting
in longer MTTR and reduced resilience. By the time the customer calls in to support and complains, an assigned network engineer figures out the root cause elapsed
time is typically from Ө(hours) to Ө(days). Proposed approach shortens this time frame to Ө(minutes).

Fig. 9. Example practical realization of causal system selection. Optimal machine learning algorithm is dynamically selected based on past training that, based on the
network telemetry data features such as stationarity, linearity, normality the optimal algorithm is chosen that produces the most accurate results of variable
importance for that feature set or network telemetry data characteristics.
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boarding, availability and network performance. The proposed ap-
proach allows for automation which dramatically reduces the time to
recover, reduces operational costs and results in improved user ex-
perience. The proposed approach is being operationalized and changing
previous workflows which involved customers complaining to call
centers who file a ticket then notify operations to proactive monitoring
and detection of faults that impact user experience and prompt repair,
where in many cases users are prevented from impact. Further we used
a combination of statistical machine learning approaches, correlation
matrix, Linear Regression and Random Forest, Support Vector
Machines, Simple Neural Networks to infer root cause showing by dy-
namically selecting the most suitable approach based on the network
data characteristics yields promising results, but still require more re-
search.

In Conclusion we proposed and illustrated a promising approach to
optimize network customer user experience by increasing the resiliency
of network and subsystems extending the framework of [7–10]. Causal
Inference is beyond the scope of this paper however further research is
needed to further increase the accuracy of determining root causes.
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