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Abstract

In many practical problems, a learning agent may
want to learn the best action in hindsight without
ever taking a bad action, which is much worse
than a default production action. In general, this
is impossible because the agent has to explore
unknown actions, some of which can be bad, to
learn better actions. However, when the actions
are structured, this is possible if the unknown
action can be evaluated by interleaving it with
the default action. We formalize this concept as
learning in stochastic combinatorial semi-bandits
with exchangeable actions. We design efficient
learning algorithms for this problem, bound their
n-step regret, and evaluate them on both synthetic
and real-world problems. Our real-world experi-
ments show that our algorithms can learn to rec-
ommend K most attractive movies without ever
making disastrous recommendations, both overall
and subject to a diversity constraint.

1 Introduction

Recommender systems are an integral component of many
industries, with applications in content personalization, ad-
vertising, and page design (Resnick and Varian, 1997; Ado-
mavicius and Tuzhilin, 2015; Broder, 2008). Multi-armed
bandit algorithms provide adaptive techniques for content
recommendation. However, although they are theoretically
well-understood, they have not been widely adopted in pro-
duction systems (Cremonesi et al., 2011; Schnabel et al.,
2018). This is primarily due to concerns that the output of
the bandit algorithm can be suboptimal or even disastrous,
especially when the algorithm explores suboptimal arms. To
address this issue, most industries have a default recommen-
dation engine in production that has been well-optimized
and tested for many years, and a promising new policy is
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often evaluated using A/B testing (Siroker and Koomen,
2013), which allocates a small α fraction of the traffic to the
new policy. When the utilities of actions are independent,
this is a reasonable solution that allows the new policy to be
evaluated conservatively.

Many recommendation problems involve structured actions,
such as sets of recommended movies. In these problems,
the total utility of the action can be decomposed into the
utilities of individual items in it, such as movies. Therefore,
it is conceivable that the new policy could be evaluated in
a controlled and principled fashion by interleaving items
in the new and default actions, instead of dividing the traf-
fic as in A/B testing. As a concrete example, consider the
problem of recommending top-K movies to a new visitor
(Deshpande and Karypis, 2004). A company may have a
default policy that recommends a fixed set of K movies
that performs well, but intends to test a new algorithm that
promises to learn better movies. The A/B testing method
would show the recommendations of the new algorithm to
a visitor with probability α. In the initial stages, the new
algorithm is expected to explore a lot to learn, and may hurt
engagement with the visitor who is shown a disastrous set
of movies, just to learn that these movies are not good. An
arguably better approach, which does not hurt any visitor’s
engagement as much and gathers the same feedback on av-
erage, is to show the default well-tested movies interleaved
with α fraction of new recommendations. A recent study by
Schnabel et al. (2018) concluded that this latter approach is
in fact better,

“These findings indicate that for improving rec-
ommendation systems in practice, it is preferable
to mix a limited amount of exploration into every
impression – as opposed to having a few impres-
sions that do pure exploration.”

In this paper, we formalize the above idea and study the
general case where actions are exchangeable, which is a
mathematical formulation of the notion of interleaving. In
particular, we study learning variants of maximizing an un-
known linear function on an exchangeable action set subject
to a conservative constraint.

In our motivating recommendation example, we require that
any recommendation is always above a certain baseline qual-
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ity. The question that we want to answer is what is the price
for being this conservative? In this work, we answer this
question and make five contributions. First, we introduce
the idea of conservative multi-armed bandits in combinato-
rial action spaces, and formulate a conservative constraint
that addresses the issues raised in Schnabel et al. (2018).
Existing conservative constraints for multi-armed bandit
problems do not address this issue, as discussed in Section 6.
Second, we propose interleaving as a solution, and show
how it naturally leads to the idea of exchangeable action
spaces. We precisely formulate conservative interleaving
bandits, a constrained online learning problem in exchange-
able action spaces. Third, we present Interleaving Upper
Confidence Bound (iUCB), a computationally and sample-
efficient algorithm for solving our problem. The algorithm
satisfies our conservative constraint by design. Fourth, we
prove gap-dependent upper bounds on its expected n-step
regret. The bounds are logarithmic in the number of steps
n, linear in the number of items L, and increase with the
level of conservatism. Finally, we evaluate iUCB on both
synthetic and real-world problems. In synthetic experiments,
we validate an extra factor in our regret bounds, which is
the price for being conservative. In real-world experiments,
we formulate and solve two top-K recommendation prob-
lems. To the best of our knowledge, this is the first work that
studies conservatism in combinatorial bandit problems.

2 Setting

We formulate our online learning problem as a stochastic
combinatorial semi-bandit (Kveton et al., 2015b; Gai et al.,
2012; Chen et al., 2013), which we review in Section 2.1.
In Section 2.2, we define our notion of conservativeness. In
Section 2.3, we suggest interleaving as a solution and for-
mulate it mathematically using the notion of exchangeable
action spaces. Finally, in Section 2.4, we introduce our on-
line learning problem of conservative interleaving bandits.
To simplify exposition, we write all random variables in
bold. We denote {1, . . . ,K} by [K].

2.1 Stochastic Combinatorial Semi-Bandits

A stochastic combinatorial semi-bandit (Gai et al., 2012;
Chen et al., 2013; Kveton et al., 2015b) is a tuple (E,B, P ),
where E = [L] is a finite set of L items; B ⊆ ΠK(E) is a
set of feasible actions, which is a subset of all sets of size
K from E, ΠK(E); and P is a probability distribution over
a unit cube [0, 1]E .

The learning agent interacts with this problem as follows.
Let (wt)

n
t=1 be a sequence of n i.i.d. weights drawn from P ,

where wt(e) is the weight of item e ∈ E at time t. At time
t, the agent takes actionAt ∈ B, which is a set of K items
from E. The reward for taking the action is f(At,wt),
where f(A,w) =

∑
e∈A w(e) is the sum of the weights of

all items in A. After taking action At, the agent observes

the weight wt(e) of each item e ∈ At.

The expected weights of items are defined as w̄ = E[w].
The learning agent is evaluated by its expected n-step regret
R(n) =

∑n
t=1 E[f(A∗, w̄)] −

∑n
t=1 E[f(At, w̄]), where

A∗ = arg max A∈B f(A, w̄) is the best action in hindsight.

Stochastic combinatorial semi-bandits can be used to model
top-K recommendation problems as follows. The ground
set E is the set of all items that can be recommended, such
as movies. The action A ∈ B is any set of K movies that
can be recommended jointly to the user. The weight of item
e at time t, wt(e), is an indicator of the click on item e at
time t. This interaction model is known as the document
click model (Chuklin et al., 2015).

2.2 Conservative Constraint

To avoid disastrous actions, which may contain a large num-
ber of bad items, we impose a constraint on the actions of
the learning agent. This constraint is stated formally below.

Let K denote the number of items in all actions. Let B0 be
the default baseline action. Our constraint requires that at
any time t, the action At of the learning agent should be
comparable to or better than the baseline action B0, in the
sense that most items in At should be at least as good as
those in B0. More formally, we require that there exists a
bijection ρAt,B0

: At → B0 such that∑
e∈At

1(w̄(e) ≥ w̄(ρAt,B0
(e))) ≥ (1− α)K (1)

holds with a high probability at any time t ∈ [n], where α is
a problem-specific risk tolerance parameter. In other words,
the items inAt and B0 can be matched such that at most α
fraction of the items inAt has a lower expected reward than
the matched items in B0. We compare (1) to other notions
of conservatism in the literature in Section 6.

2.3 Exchangeable Actions

Given an algorithm that explores and suggests new actions
that could potentially be disastrous, a natural way to satisfy
(1) is to interleave most items from the default action B0

with a few items from the new action. This is possible if the
set of feasible actions B ⊆ ΠK(E) is exchangeable.

Definition 1 (Exchangeable set). Given a set E, a set B ⊆
ΠK(E) is exchangeable if for any two actions A1, A2 ∈ B,
there exists a bijection ρA1,A2

: A1 → A2 such that

∀G ⊆ A1 : A1 \G ∪ {ρA1,A2
(e) : e ∈ G} ∈ B . (2)

From now on, we assume that all sets of feasible actions B
are exchangeable. We give examples of two exchangeable
sets below.
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Our first example are top-K movie recommendations from
Section 1. In this example, E is the set of movies and the
exchangeable set B are all subsets of size K from E. The
bijection ρA1,A2

between two actions A1, A2 ∈ B can be
any bijection subject to the constraint that common items
in A1 and A2 are mapped to each other. Formally, ρA1,A2

is any bijection A1 → A2 such that ρA1,A2(e) = e for any
e ∈ A1 ∩A2. The set B in this example is also known as a
uniform matroid of rank K.

Our second example are diverse movie recommendations.
Let E be the set of movies and P1, . . . ,PK be a partition of
E, where each Pi represents a movie genre. Then we define
the exchangeable set as

B = {A ∈ ΠK(E) : a1 ∈ P1, . . . , aK ∈ PK} , (3)

where A = {a1, . . . , aK}. Based on the above definition,
any action A ∈ B contains one movie from each genre, and
hence is diverse. The bijection ρA1,A2

between two actions
A1, A2 ∈ B maps e ∈ A1 ∩ Pi to e′ ∈ A2 ∩ Pi for all
i ∈ [K]. The set B in this example is known as a partition
matroid of rank K.

We briefly explain how exchangeability leads to interleav-
ing of items and allows conservative exploration. In both
movie recommendation examples, we can set A1 to be the
default baseline action and A2 to be a newly evaluated ac-
tion. A natural approach to exploring A2 without violating
the conservative constraint in (1) is through interleaving, all
items in the new action A2 are explored in S = 1/α steps
by taking S interleaved actions. Each interleaved action
substitutes αK unique items in A1 for the matched items in
A2. Any such action is feasible by Definition 1.

For simplicity of exposition, we make two assumptions on α.
First, 1/K ≤ α ≤ 1/2. This boundary condition says that
we do not consider extreme non-conservative cases, where
the learning agent can explore more than a half of items in
a new action A2; and extreme conservative cases, where the
learning agent cannot explore safely at least one item in A2.
Second, we assume that αK ∈ N. This means that all items
in A2 can be observed once in exactly S = 1/α interleaved
actions. If this latter assumption is violated, we suggest that
α is set to the maximum value of α′ < α that satisfies the
assumption. This setting is clearly more conservative and
satisfies both of our assumptions.

2.4 Conservative Interleaving Bandits

A conservative interleaving bandit is variant of a stochastic
combinatorial semi-bandit (Section 2.1) for conservative ex-
ploration. Formally, it is a tuple (E,B, P,B0, α), where E,
B, and P are defined as in Section 2.1; B is an exchangeable
set (Definition 1), B0 ∈ B is a default baseline action, and
α ∈ [0, 1] is the risk tolerance parameter in (1). We assume
that the learning agent knows E, B, B0, and α; and that the
distribution P is unknown.

3 Algorithm

Learning in conservative interleaving bandits is non-trivial.
For instance, we cannot simply take optimistic actions of ex-
isting non-conservative algorithms for combinatorial semi-
bandits (Kveton et al., 2014; Talebi and Proutiere, 2016)
and interleave them with 1− α fraction of items from the
default baseline action B0. The regret of this policy would
be linear because its actions never converge to the optimal
action A∗, unless all items in B0 are optimal. If this was the
case, we would not have a learning problem to start with.

In this section, we introduce our Interleaving Upper Con-
fidence Bound (iUCB) algorithm, which achieves sublinear
regret by continuously improving the default baseline action
B0 with a high probability. We present two variants of the
algorithm, iUCB1 and iUCB2. In iUCB1, the agent knows
the expected rewards of all items in B0, {w̄(e) : e ∈ B0}.
In practice, these rewards could be known if the baseline
policy B0 was executed before. In iUCB1, the agent does
not know the expected rewards of items in B0. We refer to
the common aspects of both algorithms as iUCB.

The pseudocode of both algorithms is in Algorithm 1. We
highlight their differences in comments. Recall that K is
the number of items in all actions. iUCB operates in rounds,
which are indexed by t, and takes S interleaved actions in
each round. We assume that iUCB has access to an oracle
OPT that returns the most rewarding action for any weight
vector w ∈ [0, 1]E . When B are bases of a matroid, as in
our examples in Section 2.3, OPT is a greedy algorithm for
finding the maximum weight basis of a matroid and can be
implemented to run in O(L logL) time (Edmonds, 1971).

In each round, iUCB has three stages. In the first stage (lines
9–10), iUCB computes high-probability upper confidence
bounds (UCBs) Ut ∈ (R+)E and lower confidence bounds
(LCBs) Lt ∈ (R+)E on the expected rewards of all items.
For any item e ∈ E,

Ut(e) = ŵTt−1(e)(e) + cn,Tt−1(e) ,

Lt(e) = max{ŵTt−1(e)(e)− cn,Tt−1(e), 0} ,
(4)

where ŵs(e) is the average of the first s observed weights of
item e, Tt(e) is the number of times that item e is observed
in the first t steps, and

cn,s =
√

1.5 log(n)/s (5)

is the width of a high-probability confidence interval around
ŵs(e), such that w̄(e) ∈ [ŵs(e)−cn,s, ŵs(e)+cn,s] holds
with a high probability. Note that this is a UCB1 confidence
interval (Auer et al., 2002). It is trivial to modify our algo-
rithm to use tighter KL-UCB confidence intervals (Garivier
and Cappé, 2011). However, our analysis in Section 4 does
not generalize straightforwardly to this setting.

In line 12, iUCB chooses decision set Dt, which is the opti-
mal action with respect to weightsUt, an optimistic estimate
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Algorithm 1 iUCB for conservative interleaving bandits.
1: Input: Baseline action B0 ∈ B, risk tolerance α
2:
3: S ← 1/α ∈ N
4: Observe w0 ∼ P
5: ∀e ∈ E : T0(e)← 1, ŵ1(e)← w0(e)
6:
7: for t = 1, 2, . . . do
8: for all e ∈ E do { // Compute UCBs and LCBs}
9: Ut(e) = ŵTt−1(e)(e) + cn,Tt−1(e)

10: Lt(e) = max{ŵTt−1(e)(e)− cn,Tt−1(e), 0}
11:
12: Dt ← OPT(Ut) // Compute decision set
13: for all e ∈ B0 do { // Compute baseline set}
14: if w̄(e) is known then { // iUCB1}
15: vt(e)← w̄(e)
16: else { // iUCB2}
17: vt(e)← Ut(e)
18: for all e ∈ E \B0 do
19: vt(e)← Lt(e)
20: Bt ← OPT(vt)
21:
22: // Take S combined actions and update statistics
23: Let {Bs

t }Ss=1 be a partition of Bt such that |Bs
t | =

αK for all s ∈ [S]
24: Let ρt : Bt →Dt be the bijection in Definition 1
25: ∀e ∈ E : Tt(e)← Tt−1(e)
26: for s = 1, . . . , S do
27: Take actionAt = Bt \Bs

t ∪ {ρt(e) : e ∈ Bs
t }

28: Observe {wt(e) : e ∈ At}, where wt ∼ P
29: for all e ∈ At do

30: ŵTt(e)+1(e)←
Tt(e)ŵTt(e)(e) +wt(e)

Tt(e) + 1
31: Tt(e)← Tt(e) + 1

of w̄. The same approach was used in Optimistic Matroid
Maximization (OMM) of Kveton et al. (2014). However, un-
like OMM, iUCB cannot take Dt because it may not satisfy
our conservative constraint in (1). We refer toDt as a set to
distinguish it from the actions of iUCB.

In the second stage (lines 13–20), iUCB computes baseline
set Bt, which is the optimal action with respect to weights
vt. We refer toBt as a set to distinguish it from the actions
of iUCB. The weights vt are set as follows. If e ∈ B0, we
set vt(e) = w̄(e) if w̄(e) is known, and set vt(e) = Ut(e)
when it is not. If e ∈ E \ B0, we set vt(e) = Lt(e). This
setting guarantees that if any item e ∈ E \ B0 is chosen
toBt over any item e′ ∈ B0, its expected reward is higher
than that of item e′ with a high probability. As a result, the
baseline is improved.

In the last stage (lines 22–31), iUCB takes S = 1/α com-
bined actions ofDt andBt, which are guaranteed to be in
B by Definition 1. In particular, let ρt : Bt → Dt be the

bijection in Definition 1 and {Bs
t }Ss=1 be a partition ofBt

into S sets such that |Bs
t | = αK for all s ∈ [S]. Then we

take actionsAt = Bt \Bs
t ∪ {ρt(e) : e ∈ Bs

t } for s ∈ [S]
sequentially. SinceAt contains at least (1− α)K baseline
items, all of which improve over their matched items in B0

with a high probability, the conservative constraint in (1) is
satisfied.

After each action, iUCB updates its sufficient statistics (lines
29–31), which are used to estimate the UCBs and LCBs in
the next round.

4 Analysis

This section has three subsections. In Section 4.1, we prove
that iUCB1 is conservative and bound its regret. The main
challenge in our analysis is that we cannot directly apply a
UCB-like argument, because the baseline set Bt is chosen
based on lower confidence bounds. In Section 4.2, we prove
analogous claims for iUCB2. In Section 4.3, we discuss our
theoretical results.

We adopt the following conventions in our analysis. Without
loss of generality, we assume that items in E are ordered
such that w̄(1) ≥ · · · ≥ w̄(L). The optimal action is A∗,
the decision set at time t isDt, and the baseline set at time
t isBt. Note that A∗,Dt, andBt belong to exchangeable
action set B, which is defined in Definition 1. At any time
t, let πt : A∗ → Dt and σt : Dt → Bt be the bijections
in Definition 1, which are guaranteed to exist. The bijec-
tions simplify our analysis, and allow us to decompose the
improvements inDt andBt into items in them.

For any items e and e′ such that w̄(e′) ≥ w̄(e), we define
the gap as ∆e,e′ = w̄(e′)− w̄(e). We also define a “good”
event at time t as

Et = {∀ e ∈ E : |w̄(e)− ŵTt−1(e)(e)| ≤ cn,Tt−1(e)} , (6)

which is the event that w̄(e) is in the high-probability con-
fidence interval around ŵTt−1(e)(e) for all items e at the
beginning of time t.

4.1 iUCB1: Known Baseline Mean Rewards

First, we show that iUCB1 is conservative. The proof of this
claim is in Appendix.

Theorem 1. iUCB1 satisfies (1) jointly at all times t ∈ [n]
with probability of at least 1− 2L/(Sn).

Then we prove a gap-dependent upper bound on the regret
of iUCB1. The bound involves two kinds of gaps. For any
suboptimal item e, we define its gap from the closest better
optimal item,

∆e,min = mine∗∈A∗:∆e,e∗>0 ∆e,e∗ . (7)
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In addition, for any optimal item e∗, we define its gap from
the closest worse suboptimal item,

∆∗e∗,min = mine∈E\A∗:∆e,e∗>0 ∆e,e∗ . (8)

Our regret bound is stated below.
Theorem 2 (Regret of iUCB1). The expected n-step regret
of iUCB1 is bounded as

(S − 1)

 ∑
e∈E\A∗

24

∆e,min
+
∑

e∗∈A∗

12

∆∗e∗,min

 log n+

∑
e∈E\A∗

12

∆e,min
log n+ c ,

where S = 1/α; ∆e,min and ∆∗e∗,min are defined in (7) and
(8), respectively; and c = O(SL

√
log n).

Proof. Let Ē =
n/S⋃
t=1
Ēt be the event that at least one event

Et in (6) does not occur; and E be its complement, the event
that all events Et in (6) occur. LetRt the stochastic regret
at time t.

We decompose the expected n-step regret into those under
events E and Ē as

R(n) = E

1(Ē) n/S∑
t=1

Rt

+ E

1(E)

n/S∑
t=1

Rt

 . (9)

The regret due to the first term in (9) is low. In particular,
since P (Ē) ≤ 2LS−1n−1 (Lemma 1 in Appendix) and the
maximum n-step regret is Kn, the maximum contribution
due to the first term is 2LK/S.

In the rest of the proof, we analyze the second term in (9)
under event E . The key observation is that the expected
regret at time t decomposes as

E[Rt] = S
∑

e∗∈A∗
w̄(e∗)− (S − 1)

∑
e′∈Bt

w̄(e′)−
∑
e∈Dt

w̄(e)

= S

( ∑
e∗∈A∗

w̄(e∗)−
∑
e∈Dt

w̄(e)

)
+ (10)

(S − 1)

(∑
e∈Dt

w̄(e)−
∑

e′∈Bt

w̄(e′)

)
,

where the first term reflects the regret due to the decision set
and the second term reflects the regret due to interleaving
with the baseline set.

The first term in (10) can be bounded as follows. Since the
decision setDt is chosen optimistically, the UCBs of items
in Dt are at least as high as those of the matched items in
A∗. Thus, we have that∑

e∗∈A∗
w̄(e∗)−

∑
e∈Dt

w̄(e) ≤
∑

e∈Dt\A∗
2cn,Tt−1(e) (11)

at any time t under event E , by Lemma 3 in Appendix. Now
we sum up the above bound for all t and get

n/S∑
t=1

∑
e∈Dt\A∗

2cn,Tt−1(e)

≤
∑

e∈E\A∗

n/S∑
t=1

√
6 log n

Tt−1(e)
1(e ∈Dt)

≤
∑

e∈E\A∗

√
6 log n

(
1 + 2

√
6 log n

∆2
e,min

)

=
∑

e∈E\A∗

12

∆e,min
log n+ L

√
6 log n . (12)

The first inequality is from the definition of our confidence
intervals. The second inequality is from two observations.
First, when item e is chosen, the counter Tt(e) increases by
one. Second, this event occurs at most m = 6∆−2

e,min log n
times (Lemma 4 in Appendix A.1). Finally, we apply

m∑
s=1

1√
s
≤ 1 + 2

√
m. (13)

The last equality is an algebraic manipulation.

The second term in (10) is bounded as follows. Since the
baseline setBt is chosen based on LCBs, the LCBs of items
in Bt are at least as high as those of the matched items in
Dt. Thus, we have that∑

e∈Dt

w̄(e)−
∑

e′∈Bt

w̄(e′) ≤
∑

e∈Dt\Bt

2cn,Tt−1(e) (14)

at any time t under event E , by Lemma 5 in Appendix. Now
we sum up the above bound for all t and get

n/S∑
t=1

∑
e∈Dt\Bt

2cn,Tt−1(e) ≤

∑
e∈E\A∗

n/S∑
t=1

√
6 log n

Tt−1(e)
1(e ∈Dt) + (15)

∑
e∗∈A∗

n/S∑
t=1

√
6 log n

Tt−1(e∗)
1(e∗ ∈Dt \Bt) ,

where the inequality is from the definition of our confidence
intervals.

The first term in (15) is bounded as in (12). The second term
is bounded similarly, where the only difference is in the def-
inition of the gap. In particular, if an optimal item e∗ is cho-
sen Ω((∆∗e∗,min)−2 log n) times (Lemma 6 in Appendix), it
must be in the baseline setBt and the corresponding regret
is zero. Therefore, the regret due to both terms in (15) is
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bounded from above by∑
e∈E\A∗

12

∆e,min
log n+ L

√
6 log n+ (16)

∑
e∗∈A∗

12

∆∗e∗,min

log n+ L
√

6 log n .

Finally, we add S times the upper bound in (12) and S − 1
times the upper bound in (16), and get our claim.

4.2 iUCB2: Unknown Baseline Mean Rewards

First, we show that iUCB2 is conservative. The proof of this
claim is in Appendix.

Theorem 3. iUCB2 satisfies (1) jointly at all times t ∈ [n]
with probability of at least 1− 2L/(Sn).

Now we prove a gap-dependent upper bound on the regret
of iUCB2.

Theorem 4 (Regret of iUCB2). The expected n-step regret
of iUCB2 is bounded as

(S − 1)

 ∑
e∈E\A∗

48

∆e,min
+
∑

e∗∈A∗

36

∆∗e∗,min

 log n+

∑
e∈E\A∗

12

∆e,min
log n+ c ,

where S = 1/α; ∆e,min and ∆∗e∗,min are defined in (7) and
(8), respectively; and c = O(SL

√
log n).

Proof. The proof is similar to that of Theorem 2. The only
major difference is that items in the default baseline action
B0 are chosen toBt based on their UCBs, while the other
items are selected based on their LCBs.

The regret at time t decomposes as in (10), and the first term
in (10) is bounded exactly as in (12). To bound the second
term, we decompose the regret based on whether the item
inBt is in B0 or not, and get that∑
e∈Dt

w̄(e)−
∑

e′∈Bt

w̄(e′)

=
∑

e∈Dt:σt(e)/∈B0

w̄(e)−
∑

e′∈Bt\B0

w̄(e′) +
∑

e∈Dt:σt(e)∈B0

w̄(e)−
∑

e′∈Bt∩B0

w̄(e′)

≤
∑

e∈Dt:σt(e)/∈B0

2cn,Tt−1(e) +
∑

e∈Dt:σt(e)∈B0

4cn,Tt−1(e) ,

where σt(e) is the matched item inBt to item e inDt. The
last step follows from two observations. When σt(e) /∈ B0,
we follow the same proof as in (14) and get the same upper
bound as in (16). When σt(e) ∈ B0, we apply Lemma 7 in
Appendix A.2. This lemma relies on the observation that
any item inBt∩B0 is chosen at least as often as its matched

item inDt up to any time t, which holds for any α ≤ 1/2.
The final upper bound is the same as in (16), except that all
terms are multiplied by 2.

Finally, we add up the contributions of all terms, which is S
times the upper bound in (12) and 3(S − 1) times the upper
bound in (16), and get our claim.

4.3 Discussion

Our regret bounds in Theorems 2 and 4 depend on two gaps.
The first gap, ∆e,min in (7), measures the distance of subop-
timal item e from the closest better optimal item. This gap
is standard in stochastic combinatorial semi-bandits with
matroid constraints (Kveton et al., 2014), which we refer to
as matroid bandits. Matroid constraints are a weaker notion
of exchangeability than that in this paper. The second gap,
∆∗e∗,min in (8), measures the distance of optimal item e∗

from the closest worse suboptimal item. Similar gaps appear
in top-K best-arm identification problems (Kalyanakrishnan
et al., 2012). If we let

∆ = min{ min
e∈E\A∗

∆e,min, min
e∗∈A∗

∆∗e∗,min} ,

the bounds in Theorems 2 and 4 become O(SL∆−1 log n),
where L is the number of items and S = 1/α is the number
of interleaved actions in iUCB to observe each item in the
decision set once. We validate this scaling empirically in
Section 5.1.

When compared to matroid bandits (Kveton et al., 2014;
Talebi and Proutiere, 2016), our regret bounds contain an
extra factor of S. This is the price for being conservative.
Specifically, since iUCB takes S interleaved actions to ob-
serve each item in the decision set Dt once, its regret is
S times higher than that of the algorithm that can explore
Dt in a single action. Note that whenever α = Ω(1), as at
α = 1/2, the extra factor of S = 1/α is independent of K
and our bounds scale as those in matroid bandits (Kveton
et al., 2014; Talebi and Proutiere, 2016).

Finally, by a standard gap-dependent to gap-free reduction,
where the gaps are divided in into those that are larger than
ε and smaller than ε, and then ε is tuned, we have a gap-free
regret bound of O(S

√
KLn log n). This bound is again at

most S times higher than that in matroid bandits (Kveton
et al., 2014).

5 Experiments

We conduct two experiments. In Section 5.1, we validate
that the regret of iUCB1 grows as suggested by our upper
bound in Theorem 2. In Section 5.2, we apply iUCB to two
recommendation problems. We also compare it to a non-
conservative algorithm OMM (Kveton et al., 2014), which
can learn optimal actions in our problems; but also severely
violates the conservative constraint in (1).
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Figure 1: a. The n-step regret of iUCB1 in the synthetic problem in Section 5.1 as a function of K. b. The regret of iUCB1,
iUCB2, and OMM in the top-K recommendation problem in Section 5.2. c. The regret of iUCB1, iUCB2, and OMM in the
diverse top-K recommendation problem in Section 5.2.

5.1 Regret Scaling

The first experiment validates that the regret of iUCB1 scales
as suggested by our gap-dependent upper bound in Theo-
rem 2. The ground set is E = [K2] for parameter K > 0
and the action set is B = ΠK(E). The i-th entry of weight
vectorwt,wt(i), is an independent Bernoulli random vari-
able with mean

w̄(i) = 0.5(1−∆1(i > K))

for ∆ ∈ (0, 1). From the definition of w̄, the optimal action
is A∗ = [K]. The default baseline action are the last K
items in E, B0 = [K2] \ [K2 − K]. In this problem, we
expect the regret of iUCB1 to scale as SK2∆−1.

We vary K, ∆, and S; and report the n-step regret of iUCB1
in 100k steps in Figure 1a. The regret is shown in log-log
plots as a function ofK for three values of ∆ and two values
of S. We observe two major trends. First, the regret grows
as S and K increase, and ∆ decreases. This is consistent
with our theoretical analysis. Second, the growth rate is as
predicted. In particular, when S = K and one decision item
is interleaved with K − 1 baseline items, the slopes of the
plots are close to 3. This confirms the cubic dependence on
K when S = K. When S = 2 and K/2 decision items are
interleaved with K/2 baseline items, the slopes of the plots
are close to 2. This confirms the quadratic dependence on
K when S = 2.

5.2 Recommender System Experiments

In the second experiment, we apply iUCB to our motivating
problems in Section 2.4. In both problems, we recommend
K movies out of L. The attraction of movies is estimated
from the MovieLens 1M dataset (Lam and Herlocker, 2016),
where 6 thousand users give one million ratings to 4 thou-
sand movies.

Our learning problems are formulated as follows. The set
E are 200 movies from the MovieLens dataset. The set is
partitioned as E =

⋃10
i=1Ei, where Ei are 20 most popular

movies in the i-th most popular MovieLens movie genre
that are not in E1, . . . , Ei−1. The weight of item e at time
t, wt(e) ∈ {0, 1}, indicates that item e attracts the user at
time t. We set it as wt(e) = 1 if and only if the user rated
item e in our dataset. This indicates that the user watched
movie e before, perhaps because the movie was attractive.
The user at time t is drawn randomly from all MovieLens
users. The objective of the learning agent is to learn a set of
items with the highest expected attraction over all users.

We study two recommendation problems. The first problem
is top-K recommendation in Section 2.4, where K = 10.
The exchangeable action set is B = ΠK(E), all sets of size
K from E. The optimal action A∗ are 10 most attractive
movies. The default baseline action B0 are the 11th to the
20th most attractive movies. We choose B0 in this way
because existing baseline policies tend to perform well.

The second problem is diverse top-K recommendation in
Section 2.4, where K = 10. The exchangeable action set is
defined as in (3), where each Pi is associated with movie
groupEi. The optimal actionA∗ is the set of most attractive
movies from all Ei. The default baseline action B0 is the
set of second most attractive movies from all Ei. Again, we
choose B0 in this way because existing baseline policies
tend to perform well.

Our results are reported in Figures 1b and 1c. We observe
several trends across both problems. First, the regret of all
algorithms is concave, which shows that they learn better
policies over time. Second, the regret of iUCB2 is higher
than that of iUCB1. This is because iUCB2 does not know
the values of default baseline items B0, while iUCB1 does.
Since iUCB2 has to estimate these values, it is more conser-
vative and learns slower. Second, the regret increases with
S. For instance, in Figure 1b, the regret at S = K is almost
twice as high as that at S = 2. This is expected since the
former setting is more conservative. In particular, at S = K,
one decision item is interleaved with K − 1 baseline items;
while at S = 2, andK/2 decision items are interleaved with
K/2 baseline items.
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Finally, we note that OMM achieves the lowest regret. But it
also violates our conservative constraints. For instance, at
S = K, iUCB1 and iUCB2 violate none of the constraints in
(1). On the other hand, OMM violates more than 16k and 158k
constraints in Figures 1b and 1c, respectively, on average
in 500k steps. This is one violated constraint in every three
actions in the latter problem. We also note that at S = 2, the
regret of iUCB1 approaches that of OMM. This indicates that
reasonably conservative constraints, such as that one half
of the recommended items are at least as good as default
baseline items, can be satisfied without a major impact on
regret.

6 Related Work

The idea of controlled exploration in multi-armed bandits
is not new. Wu et al. (2016) studied conservatism in multi-
armed bandits, where the cumulative reward of the learning
agent is constrained to be at least 1− α fraction of that of
the default action. In our setting, this means that the agent
can take a disastrous action, with many suboptimal items,
every 1/α steps. In contrast, our per-step constraint in (1)
prohibits this design and such disastrous actions. However,
note that our setting and algorithms are less general, as they
only apply to combinatorial action spaces.

A/B testing (Siroker and Koomen, 2013) can also solve con-
strained exploration problems. When the new and default
actions are chosen randomly with probabilities α and 1−α,
respectively, the expected reward is no worse than 1 − α
fraction of that of the default action. Since this constraint
is in expectation, A/B testing can take disastrous actions
occasionally. In comparison, we satisfy our constraint in
(1) with a high-probability at all times, and strictly avoid
disastrous actions.

Online learning with matroids was introduced by Kveton
et al. (2014) and later studied by Talebi and Proutiere (2016).
These works do not consider any notion of conservatism.
A naive generalization of these works to conservatism is
problematic, as discussed at the beginning in Section 3.

Kazerouni et al. (2017) studied conservatism in linear ban-
dits. Similarly to Wu et al. (2016), their constraint is cu-
mulative. Furthermore, the time complexity of their algo-
rithm increases with time when the expected reward of the
baseline policy is unknown. In comparison, iUCB is both
computationally and sample efficient.

Bastani et al. (2017) studied contextual bandits and proposed
diversity assumptions on the environment. Intuitively, if the
context varies a lot over time, the environment explores on
behalf of the learning agent, and the agent does not have to
explore. In comparison, we actively explore in a constrained
fashion.

Radlinski and Joachims (2006) proposed randomizing the
order of presented items to estimate their relevance in the

presence of item and position biases. Their algorithm guar-
antees that the quality of the presented items is affected
minimally. But it does not learn a better policy. The idea of
interleaving has been used to evaluate information retrieval
systems and Chapelle et al. (2012) validated its efficacy.
Chapelle et al. (2012) did not study the problem of learning
a better policy. iUCB learns a better policy. While we do not
consider item and position biases in this work, we hope to
do so in future work.

7 Conclusions

In this paper, we study controlled exploration in combinato-
rial action spaces using interleaving, and precisely formulate
the learning problem in the space of exchangeable actions.
Our conservative formulation is more suitable for combi-
natorial spaces than existing notions of conservatism. We
propose an algorithm for solving our problem, iUCB, and
prove gap-dependent upper bounds on its regret. iUCB ex-
ploits the idea of interleaving and can evaluate a disastrous
action without ever taking it.

We leave open several questions of interest. First, how large
is the class of exchangeable action spaces? We provide two
examples of such spaces in Section 2.3 in relation to top-K
and diverse top-K recommendations. A fairly large class
of exchangeable action spaces is the class of strongly base-
orderable matroids. The action spaces in top-K and diverse
top-K recommendation problems belong to this class.

The clicks are typically biased due to the position of the
item and other recommended items (Chuklin et al., 2015).
Therefore, in general, it seems hard to compute unbiased
estimates of item relevances with interleaving. This may be
possible in some models. For instance, in the cascade model,
existing algorithms for online learning to rank compute
unbiased estimates of item relevances from biased clicks
(Kveton et al., 2015a; Combes et al., 2015; Katariya et al.,
2016; Zong et al., 2016; Li et al., 2016). It also may be
possible to compute biased estimators with the right bias,
that a more relevant item never appears to be less relevant
than a less relevant item (Zoghi et al., 2017; Lattimore et al.,
2018). We leave this for future work.

Third, we not only require the action space to be exchange-
able, but also need to construct the bijection in Definition 1.
The construction is straightforward in uniform and partition
matroids in our experiments.

We also leave open the question of a lower bound. Finally,
we wish to highlight that new ideas in our analysis of iUCB
can be used to greatly simplify the original analysis of OMM
in Kveton et al. (2014).
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A Appendix

Lemma 1. Let Et be the good event in (6). Then

P

n/S⋃
t=1

Ēt

 ≤ n/S∑
t=1

E
[
1
(
Ēt
)]
≤ 2L

Sn
.

Proof. From the definition of our confidence intervals and Hoeffding’s inequality (Boucheron et al., 2013),

P(|w̄(e)− ŵs(e)| ≥ cn,s) ≤ 2 exp[−3 log n]

for any e ∈ E, s ∈ [n], and t ∈ [n]. Therefore,

P

n/S⋃
t=1

Ēt

 ≤ n/S∑
t=1

P(Ēt) ≤
n/S∑
t=1

∑
e∈E

tS∑
s=1

P(|w̄(e)− ŵs(e)| ≥ cn,s) ≤ 2
∑
e∈E

1

Sn
.

This concludes our proof.

Lemma 2. Let A be the maximum weight action with respect to weights w. Let B be any action and let ρ : A→ B be the
bijection in Definition 1. Then

∀a ∈ A : w(a) ≥ w(ρ(a)) .

Proof. Fix a ∈ A and let b = ρ(a). By Definition 1, Aa
b = A \ {a} ∪ {b} ∈ B. Now note that A is the maximum weight

action with respect to w. Therefore,

w(a)− w(b) =
∑
e∈A

w(e)−
∑
e∈Aa

b

w(e) ≥ 0 .

This concludes our proof.

A.1 iUCB1: Known Baseline Means

Theorem 1. iUCB1 satisfies (1) jointly at all times t ∈ [n] with probability of at least 1− 2L/(Sn).

Proof. At time t, the baseline setBt is the maximum weight action with respect to vt. Therefore, by Lemma 2, there exists
a bijection ρ : Bt → B0 such that

∀b ∈ Bt : vt(b) ≥ vt(ρ(b)) .

From the definition of vt, vt(ρ(b)) = w̄(ρ(b)) for any b ∈ Bt, and thus

∀b ∈ Bt : vt(b) ≥ w̄(ρ(b)) .

Now suppose that event Et in (6) happens. Then w̄(e) ≥ Lt(e) for any e ∈ E, and it follows that

∀b ∈ Bt : w̄(b) ≥ w̄(ρ(b)) .

Since any action at time t contains K(1− α) items fromBt, the constraint in (1) is satisfied when event Et happens.

Finally, we prove that P(∪tĒt) ≤ 2L/(Sn) in Lemma 1. Therefore, P(∩tEt) ≥ 1−2L/(Sn). This concludes our proof.

Lemma 3. For any e∗ ∈ A∗ and e ∈Dt such that e = πt(e
∗),

∆e,e∗ ≤ 2cn,Tt−1(e) . (17)
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Proof. Since the decision setDt is chosen based on UCBs, we have that Ut(e) ≥ Ut(e
∗). This leads to

w̄(e) + 2cn,Tt−1(e) ≥ ŵt−1(e) + cn,Tt−1(e) = Ut(e) ≥ Ut(e
∗) ≥ w̄(e∗) ,

which is our claim.

Lemma 4. For any item e ∈Dt \A∗,

Tt−1(e) ≤ 6

∆2
e,min

log n,

where ∆e,min is defined in (7).

Proof. Since Lemma 3 holds for any e ∈ Dt and e∗ ∈ A∗ such that e∗ = πt(e), if we substitute the expression for
cn,Tt−1(e) from (5) in (17), we get that

∆e,min ≤ ∆e,e∗ ≤ 2

√
1.5 log n

Tt−1(e)
.

This equation after rearrangement proves the lemma.

Lemma 5. For any e ∈Dt and e′ ∈ Bt such that e′ = σt(e),

∆e′,e ≤ 2cn,Tt−1(e) . (18)

Proof. Since the baseline setBt is chosen based on LCBs, we have that Lt(e
′) ≥ Lt(e). This leads to

w̄(e′) ≥ Lt(e
′) ≥ Lt(e) ≥ w̄(e)− 2cn,Tt−1(e) ,

which is our claim.

Lemma 6. For any item e∗ ∈ A∗ ∩Dt \Bt,

Tt−1(e∗) ≤ 6

∆∗2e∗,min

log n,

where ∆∗e∗,min is defined in (8).

Proof. We first claim that for any e∗ ∈Dt, e∗ = πt(e
∗). Assume otherwise. Then A∗ \ {e∗} ∪ {πt(e

∗)} is an action (by
Definition 1) of size (K − 1), which contradicts the fact that all actions have the same cardinality K.

Lemma 5 holds for any e ∈Dt and e′ ∈ Bt such that e′ = σt(e). We now set e = e∗ and substitute cn,Tt−1(e) from (5) in
(18) to obtain that

∆∗e∗,min ≤ ∆e′,e∗ ≤ 2

√
1.5 log n

Tt−1(e∗)
.

This equation after rearrangement proves the lemma.

A.2 iUCB2: Unknown Baseline Means

Theorem 3. iUCB2 satisfies (1) jointly at all times t ∈ [n] with probability of at least 1− 2L/(Sn).

Proof. At time t, the baseline setBt is the maximum weight action with respect to vt. Therefore, by Lemma 2, there exists
a bijection ρ : Bt → B0 such that

∀b ∈ Bt : vt(b) ≥ vt(ρ(b)) .
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Now we consider two cases. First, suppose that b ∈ B0. Then by Lemma 2, b = ρ(b), and w̄(b) ≥ w̄(ρ(b)) from our
assumption. Second, suppose that b /∈ B0. Then from vt(b) = Lt(b) and vt(ρ(b)) = Ut(ρ(b)), and

w̄(b) ≥ Lt(b) ≥ Ut(ρ(b)) ≥ w̄(ρ(b))

under event Et. Since any action at time t contains K(1− α) items fromBt, the constraint in (1) is satisfied when event Et
happens.

Finally, we prove that P(∪tĒt) ≤ 2L/(Sn) in Lemma 1. Therefore, P(∩tEt) ≥ 1−2L/(Sn). This concludes our proof.

Lemma 7. For any e ∈Dt and e′ ∈ Bt ∩B0 such that e′ ∈ σt(e),

∆e′,e ≤ 4cn,Tt−1(e) . (19)

Proof. For items e′ ∈ Bt ∩B0, we have that Ut(e
′) ≥ Lt(e). This gives us

w̄(e′) + 2cn,Tt−1(e′) ≥ Ut(e
′) ≥ Lt(e) ≥ w̄(e)− 2cn,Tt−1(e)

This implies that

∆e′,e ≤ 2cn,Tt−1(e) + 2cn,Tt−1(e′). (20)

An item eliminated from the baseline setBt is never re-introduced in the baseline set. Since e′ ∈ Bt ∩B0, it must have
never been eliminated from the baseline set. The maximum number of times e can be played is by including it in every
decision setDt. In any round, since the baseline items are played (S − 1) times the decision set counterparts, and S ≥ 2,
we have that Tt−1(e′) ≥ (S − 1)Tt−1(e) ≥ Tt−1(e), which implies that

cn,Tt−1(e′) ≤ cn,Tt−1(e).

Substituting in (20),
∆e′,e ≤ 4cn,Tt−1(e).

Lemma 8. For any item e∗ ∈ A∗ ∩Dt \Bt,

Tt−1(e∗) ≤ 12

∆∗2e∗,min

log n,

where ∆∗e∗,min is defined in (8).

Proof. The proof is identical to the proof of Lemma 6, except for an extra factor of 2 that appears because (19) contains an
extra 2 as compared to (18).


