
Secure Delivery of
Program Properties through Optimizing Compilation

Son Tuan Vu
Sorbonne Université

CNRS, LIP6
France

Karine Heydemann
Sorbonne Université

CNRS, LIP6
France

Arnaud de Grandmaison
Arm
France

Albert Cohen
Google
France

Abstract
Annotations and assertions capturing static program prop-
erties are ubiquitous, from robust software engineering to
safety-critical or secure code. Thesemay be functional or non-
functional properties of control and data flow, memory usage,
I/O and real time. We propose an approach to encode, trans-
late, and preserve the semantics of both functional and non-
functional properties along theoptimizing compilationofC to
machine code. The approach involves (1) capturing and trans-
lating source-level properties through lowering passes and
intermediate representations, such that data and control flow
optimizations will preserve their consistency with the trans-
formed program, and (2) carrying properties and their transla-
tion as debug information down to machine code. Our exper-
iments using LLVM validate the soundness, expressiveness
and efficiency of the approach, considering a reference suite
of functional properties aswell as established security proper-
ties and applications hardened against side-channel attacks.
CCS Concepts. • Software and its engineering → Com-
pilers.
Keywords. Annotation, Security, Compiler, Optimization,
LLVM

ACMReference Format:
Son Tuan Vu, Karine Heydemann, Arnaud de Grandmaison, and Al-
bert Cohen. 2020. Secure Delivery of Program Properties through
Optimizing Compilation. In Proceedings of the 29th International
Conference on Compiler Construction (CC ’20), February 22–23, 2020,
San Diego, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3377555.3377897

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CC ’20, February 22–23, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7120-9/20/02.
https://doi.org/10.1145/3377555.3377897

1 Introduction
Research in software engineering and computer security has
led to new kinds of tools for analyzing code for bugs and se-
curity vulnerabilities. A widely used approach is to perform
static analysis on source code in order to determine whether
the program can reach a bad state. One common class of
source-level analysis consists in annotating the source code
with logic properties then checking the program against its
specification [20, 26, 39]. Logic property annotations provide
a powerful way of expressing the program specification, i.e.,
assumptions about the soundness of the program and its ex-
ecution; we refer to these as functional properties.
However, source-code analyses is not sufficient for sev-

eral reasons. The main one is the lack of full abstraction in
languages and compilers. It manifests practically as theWYS-
INWYX phenomenon [10] in software engineering, program
verification and testing: the observablemismatchbetween the
behavior intended by the programmer (the source code) and
what is actually executed by the processor (the executable)
due to compiler optimizations. In addition, analyzingmachine
code is sometimes mandatory due to the essential role played
bymachine-level details such asmemory layout, registermap-
ping, code placement, etc.

As a result, binary analysis and verification tools have been
proposed to assess the properties of machine code. These
properties may be inserted manually at binary level [15, 32],
which is tedious and error-prone. Moreover, relying on code
instrumentation evaluating functional properties at run-time
[29] is only acceptable for evaluation and test. It would be
most beneficial to have an automatic way to provide binary
analysis toolswith direct access to the source-level properties.
One natural direction is to annotate the source program

with functional properties, but more issues arise: preserving
these through the compilation flow, their consistency with
the code undergoing transformations and optimizations, and
their embedding into the compiled binary without interfer-
ing with the executable code itself. Unfortunately compilers
only care about functional correctness and I/O (viewed as
an opaque functional effect). Compilers have no notion of the
link between the extra properties and the code they refer to;

https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1145/3377555.3377897


CC ’20, February 22–23, 2020, San Diego, CA, USA S. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen

they have no means to constrain transformations to preserve
this link or to update the properties to adjust to any code trans-
formation.Optimizing compilers tend to remove everything
that is not behaviorally observable. Source code annotations
implementing properties are obviously not supposed to mod-
ify the program logic, hence compilers do not know how to
maintain such information through the compilation flow [36].
Besides, variables referenced in annotations may also be af-
fected by compiler optimizations: e.g., anunusedvariablemay
be optimized out, invalidating the semantics of the functional
property. It follows thatwefirst have todefineanotionof func-
tional property preservation, capturing the logical property
itself, its linkwith theprogramsemantics, and its preservation
across transformations. To the best of our knowledge, there
is no optimizing compiler, taking as input a source program
annotated with functional properties, capable of preserving
these annotations through a range of agressive optimization
passes, and propagating them all the way to machine code.

Furthermore, many properties of interest are related to the
machine state: they are not naturally captured as logical ex-
pressions of the source programvariables.We refer to these as
non-functional since they cannot bedirectly expressed as func-
tions of source-level denotations or state. For example, in the
context of secure code countermeasures such as control flow
integrity [2], theproperties take the formof a careful encoding
of the machine code’s branching behavior as functional prop-
erties of the source program. In general, the link between such
smart functional encoding and the related assumptions on the
execution cannot bemade explict, given the semantic abstrac-
tion gap between source and machine code. These encodings
are also as diverse as the (approximate)models of themachine
state and transitions instrumented by control flow integrity
countermeasures [16]. We are thus looking for a generic so-
lution rather than property- or optimization-specific ones.

In brief, this paper makes the following scientific contribu-
tions: capturing non-functional security properties as func-
tionalpropertiesof the sourceprogram(Section6.3); propagat-
ing functional properties down tomachine codewithout ham-
pering compiler optimizations (Section 3 and Section 4); an
LLVM-based implementation with virtually no modification
of the optimization passes (Section 5); the end-to-end valida-
tiononbothgeneric andsecurecodeproperties (Section6).We
would like to emphasize that preserving properties through
the compilation flow has been a long-standing open issue in
security engineering. This explains the emphasis on security
in the following examples and experimental evaluation.

2 Context and RelatedWork
There is a large body of research and engineering on secure
compilation [1, 3, 4, 22, 31]. Program transformations are
meant to enforce some notion of behavioral equivalence with
respect to the capabilities of an attacker, from contextual
equivalence [3]—the compiler is then called fully abstract—to

more specific properties such as isolation and safety guaran-
teesenforcedby the thesource language’s typesystem[18,51],
and to hyperproperties not directly captured in terms of be-
havioral equivalence [5]. This major trend benefits from and
participates to the advances in formally verified compilation,
as illustrated by the CompCert project [43, 44]. It is comple-
mentary toours: thepropertieswecareaboutarefinergrained.
In the future, one may wish to extend one such mechanically
proven framework to express and preserve our properties in
a more principled fashion, with a higher level of confidence.

Besides, many program annotations are solely meant to be
exploited at source level for static analysis; see e.g. ANSI/ISO
C Specification Language (ACSL) and Framework for Modular
Analysis of C programs (Frama-C) for a survey and reference
[13, 20].We focus the rest of the discussion on properties that
are meant to be carried along the compilation flow.
Properties carried as program annotations may signifi-

cantly enhance the quality and the effectiveness of optimiza-
tion passes. Dynamic properties include information from
past executions to influence optimization heuristics, such as
profile-guided optimization. Static properties generally take
the form of logical invariants represented as boolean-valued
expressions. However, through the compilation process, the
program is transformed and lowered to intermediate repre-
sentations (IRs) on which optimizations operate. When the
property is functional and captured natively as a source lan-
guage expression—like the C assert—any correct compiler is
meant to preserve its consistency as a dynamically evaluated
expression. But when the static expression itself needs to be
carried to an IR for the purpose of conducting analysis or opti-
mizations, or when the expression is an annotations external
to the language such asACSL [13], the propertymust be taken
into account in program transformations as a semantic preser-
vation constraint, and also as a subject of transformations
itself to preserve its consistency with the transformed code.
For example, best-effort statisticalmethods have been devised
to carry control flow information through transformations
updating branch probabilities [34, 56], but these are limited to
run-time values and non-functional quantitative metrics. In
the caseof static properties, amethodologyhasbeenproposed
[50] toaugmenteachoptimizationpasswithawitness relation
between the source and the target programs, guaranteeing the
property is correctly propagated for that optimization. Com-
pared to our approach, this methodology is rather intrusive
and limited to the specific passes it enhances, as demonstrated
in a proof of concept LLVM-based implementation [30, 49, 62].
Instead of having to define a witness generator for each opti-
mization pass, we leverage one fundamental property already
enforced by every compiler transformation: the preservation
of reaching definitions, a.k.a. as use-def chains.
For hard real-time systems, it is not only crucial that the

software computes the correct result, but also that this hap-
pens in a timely manner. One needs to determine theWorst-
Case Execution Time (WCET) of critical software parts to get



Secure Delivery of Program Properties CC ’20, February 22–23, 2020, San Diego, CA, USA

an embedded system certified. WCET estimation takes place
on machine code, where the processor micro-architecture
can be modeled. Detailed control flow information, typically
loop trip counts, infeasible paths, program points that are
mutually exclusive during the same run, is needed to calcu-
lateWCET as accurately as possible; this information takes
the form of source code annotations [7, 11]. Preserving these
annotations’ consistency with the code being compiled is
a correctness requirement. For this purpose, CompCert in-
troduces a builtin function modeled as a call to an external
function producing an observable event, without emitting it
as machine code [57].While CompCert events capture values
and memory locations individually, we address the preserva-
tion of (variable,value) and (memory_location,value) pairs
and their association with a specific program point. We take
up the additional challenge of embedding such mechanisms
in a widely deployed compiler with minimal changes. Other
work encode flow information using inline assembly [24]
outside the IR [27, 54], or using IR extensions and external
transformations to update loop trip count information [46].
These approaches incur significant changes to optimization
passes: they all come with a set of rules to transform control
flow information along code transformations.
Finally, some security properties do not fall in the func-

tional category listed at the beginning of this section. This is
the case of properties associated with software protections:
the effectiveness of these protections relies on the implicit
consistency of their functional expression with assumptions
of the underlying control flow or machine state. For example,
control flow integrity protects secure code from branch or
call hijacking in compromised software or in the presence
of physical attacks [2]. Such protections take many forms,
including duplicated execution or tracking the effective flow
in auxiliary counters, taint detection variables, trackers, etc.
[16]. Compiler optimizations transform the control flowwith-
out any knowledge of the implicit link between the protection
code and what underlying mechanisms it is meant to track.
One key motivation for our work is to make this link explicit
throughprogramproperties andmakingsure transformations
preserve this link. In addition, there is a growingneed for tools
to insert such protections at compilation-time [36, 48, 55], but
these techniques all face the problem of protecting their hard-
ening instrumentation fromdownstream transformations. As
a result, the current practice is that security engineers have to
analyze the compilation pipeline and disable the optimization
passes harming the protections [36, 55]. Obviously, the prob-
lemmight be avoided by applying countermeasures as lately
as possible in the compilation pipeline [12, 21], but this is
not always desirable or even possible, since optimizations in
the compilation pipeline might remove essential information
needed for crafting the protection code itself. Our approach al-
lows to express and propagate the properties of the protection
code down to the binary.

3 Problem Statement and Definitions
Let us start with themotivating example in Listing 1.Masking
is one of themostwidespread countermeasures against power
analysis attacks on cryptographic algorithms [8, 17, 33, 37].
The idea is to mask the intermediate computations with ran-
dom noise and to unmask the result at the end. To main-
tain the statistical independence of intermediate values from
the secret, some re-masking can be necessary at some point
[35]. This is illustrated in Listing 1.a. A secret key, mk, already
maskedwithmask m, is re-maskedwith a randomvalue r (line
7), so that previous mask m can safely be removed from mk

(line 9). Re-masking must take place before the removal of
the previous mask to avoid exposing the unmasked secret
key value. In this case, the wanted property can be expressed
with a boolean expression over programvariables at a specific
point (line 8). Although this property holds at the source level,
compiler optimizations can produce an unsafe, semantically
equivalent program illustrated at source-level in Listing 1.b:
the unmasking operation now takes place before re-masking,
making the program vulnerable to power analysis attacks.
The property tmp == mk ^ r does not hold anymore: the vari-
able tmp is optimized out, and mkdoes not contain the expected
value it had on line 8 of the original program. The compiler
could also reorder instructions, anticipating the erasure of
the random value from line 12 to line 8, which would also
invalidate the expected value of r in the property.

1 / / / a . Original program .
2 int r, tmp , mk /* masked key */, m /* mask */;
3 r = rand ();
4 ... // do something
5
6 r = rand (); // new random value
7 tmp = mk ^ r;
8 PROPERTY(tmp == mk ^ r)
9 mk = tmp ^ m;
10 ... // do more things
11
12 r = 0; // new definition used in follow -up code

1 / / / b . After ins t ruc t ion combining
2 ...
3 r = rand (); // new random value
4 mk = mk ^ m ^ r;
5 PROPERTY(tmp == mk ^ r) // invalid property

Listing 1.Motivating example.

This example illustrates the difficulty of preserving and
propagating program properties down to executablemachine
code, especially in the presence of compiler optimizations.
Our solution involves defining a notion of partial state asso-
ciated with a program property, from which we derive the
notion of functional property preservation.

Weuse the informal semanticsofC (ISO/IEC9899:2011 [38])
as a reference. As a simplifying assumption, we only consider
deterministic, sequential C programswithwell defined behav-
ior, avoiding cases where the compiler may take advantage of
undefined behavior to trigger optimizations. This assumption



CC ’20, February 22–23, 2020, San Diego, CA, USA S. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen

is consistent with widespread coding standards for secure
code. Given our interest in the compilation and its effects on
program properties, we also need to agree on the semantics of
every Intermediate Representation (IR) in the flow.We focus on
the clang/LLVM framework and select a semantics of LLVM
IR that is friendly to aggressive optimizations [42]. By doing
so, we do not limit ourselves to the optimizations currently
available in LLVM or any C compiler, but rely on the more
fundamental assumption that optimizations rely on static
data-flow properties to validate the correctness of a given
program transformation. We believe our problem statement
and solutions could be adapted to other source languages and
compilers with only minor modifications. In the following,
the program may refer to any step of the compilation flow:
source, IR or machine code level.

Definition 1 (Program state). A program state is defined by

• a distinguished value of the program counter π denoting
a program point;
• a finite set V of (variable,value) pairs for all program-
defined variables at π ;
• a large but finite setM of (memory_location,value) pairs
stored in main memory at π .

Definition 2 (Program partial state). A program partial state
is a subset of a (complete) program state. It is defined by a
program counter π , a set V ′ ⊆ V and a set M ′ ⊆ M . A pro-
gram partial state holds the (variable,value) pairs inV ′ and the
(memory_location,value) pairs inM ′, both at π .

Definition 3 (Functional property). A functional property
specifies the program behavior by exclusively referencing its
variables and memory locations. It takes the form of a pair
(Formula,ObsPt), where Formula is a propositional logic for-
mula expressing the behavioral properties of the program;ObsPt
denotes the program point called observation point at which
property Formula is expected to hold.

Givena functionalproperty (Formula,ObsPt),wecallObsVar
and ObsMem the sets of all observed variables and observed
memory locations occurring in Formula. The functional prop-
erty defines a partial state containing the (variable,value)
pairs and (memory_location,value) pairs of all observed vari-
ables and observed memory locations at observation point
ObsPt.
Considering Listing 1.a again, at line 8 the complete pro-

gram state would include a pair for variables r, tmp, mk, and
m; whereas the program partial state defined by the property
tmp == mk ^ r does not contain a pair for m.

A functional property acts as a barrier at ObsPt for all mem-
ory accesses to locations inObsMem and definitions of variables
inObsVar : no definition of a variable and no access to a mem-
ory location observed by Formulamaybemoved acrossObsPt
through program transformations.

It is worth noting that Definition 3 generalizes to invariant
properties of a control flow region: the latter may be consid-
ered as a set of functional properties (Formula,ObsPti ) for all
program pointsObsPti belonging to the region.

Definition 4 (Observation trace). Given a finite set of func-
tional properties FP, an observation trace is a finite sequence
of program partial states defined by the properties in FP.1

Definition 5 (Functional property preservation). Given a
program P and a transformation τ that applies to P producing
a semantically equivalent program P ′—i.e. with the same I/O
behavior—τ is said to preserve all functional properties in P if
the observation traces produced by P and P ′, given the same in-
put, are equal—i.e. theyhave the samesequenceofpartial states.2

Note that Definition 5 does not define a notion of pro-
gram point preservation. Only pairs (Formula,ObsPt) are pre-
served, as defined by the associated partial states in the ob-
servation traces of the original and transformed programs.
Still, a program transformation τ maps functional proper-
ties (Formulai ,ObsPti ) in a program P into functional prop-
erties (Formula′j ,ObsPt

′
j ) in a program P ′. One logic formula

Formulai in P may correspond to one or more formulas in P ′
(for instance, whenObsPti is inside a loop and transformation
τ is loop unrolling, which would duplicate the loop body)
up to the renaming of its variables and the rearrangement
of its memory locations, as long as evaluating the formula
at observation point ObsPt ′j results in the same value at the
same position in the trace. This applies to all levels of program
representation, from source to machine code. For example,
a source variable may be renamed into several SSA variants
according to the control and data flow of the variable, and a
variable may be promoted to a register later in the backend
compilation flow.

4 Functional Properties and Optimizations
Optimizations are free to remove variables, reorder or remove
instructions as long as they do not change the observable
behavior (cf. Section 1 and Listing 1). Preserving functional
properties according to Definition 5 implies (1) preventing
the compiler from removing any observed variable or mem-
ory location, (2) maintaining the correspondence between
the observed variables or memory locations and their values
at the above observation points, and (3) blocking the move-
ment of memory accesses and all variable definitions across
the functional property observing them (the barrier effect of
functional properties). This section describes our solution.
Production compilers such as gcc [59] or LLVM [41] gen-

erally have an IR in Static Single Assignment (SSA) form, and
we first describe our solution tailored for the SSA properties.
1Again, we restrict ourselves to sequential, deterministic programs.
2This is a rather conservative definition as it does not allow any reordering
of partial states.We consider relaxing it in the future, but prefer a simpler def-
inition for now, emphasizing the difference with related notions of semantics
preservationproposed in securecompilationanddebug-friendlycompilation.



Secure Delivery of Program Properties CC ’20, February 22–23, 2020, San Diego, CA, USA

The SSA form ensures that any program point has an
unique reaching definition for live SSA variables. As a result,
a source variablev is represented by multiple SSA variables
V = {v1,...,vn}. Note that multiple SSA variables correspond-
ing to thesamesourcevariablemaybealiveat agivenprogram
point.

A natural approach to propagate program functional prop-
erties consists in tracking reaching definitions of all observed
variables across IRs. This would imply finding, after each
program transformation, an observation point at which all
reaching definitions of the observed variables exist. However,
the existence of such program point is not always guaranteed
by compiler optimizations, and worse, a given reaching def-
inition might be optimized away, as illustrated in Listing 1.b.
Hence we propose an approach that propagates by construc-
tion those defined in the source program or any IR.

At a given observation point, we need to ensure the correct
values of the observed variables and the values stored at the
observed memory locations. For memory locations, one may
enforce these constraints by inserting a compiler fence, i.e. an
inline assembly instructionwith amemory side-effect, see e.g.
Listing 2.e. Enforcing the same constraints for the observed
variables implies preserving the reaching definitions of ev-
ery observed variable for the observation point: we have to
make sure that these definitions exist and take place before
the observation point. This is generally not guaranteed by op-
timizing compilers since optimizations such as code motion
do not know about such a property-specific constraint.
As an example, consider the property tmp == mk ^ r from

Listing1.a.We illustrate theconcern inFigure1a,whichshows
the code example in SSA form: the source variable r is trans-
lated into 3 different SSA variables %r1, %r2 and %r3, where
%r2 is the reaching definition of r for the observation point of
the property. Similarly, variable mk from the source program is
represented by 2 different SSA variables %mk1 and %mk2, while
tmp is now %tmp1. Variables in the property have also been
renamed accordingly into %tmp1, %mk1 and %r2. Compiler op-
timizations can remove the definition %tmp1 or move down
the observed variable definitions according to any one of the
arrows, corrupting the program partial state defined by the
property.
The key idea is to tie together the reaching definitions of

observed variables and the order of memory accesses. We
achieve this by inserting a compiler fence and also new artifi-
cial definitions around the observation point. These artificial
definitions must be declared as opaque, side-effecting func-
tions that the compiler cannot analyze, such that their relative
ordering w.r.t. the compiler fence cannot be altered by the
compiler. Such artificial definitions split the live ranges of a
variable across the compiler fence. As a result, program trans-
formations respecting reaching definitions cannot move the
live range of any observed variable across the compiler fence.
It guarantees the presence and the correct value of observed
variables at a given observation point.

%r2 = rand()

Observation point
%tmp1 == %mk1 ^ %r2

%r1 = rand()

%r3 = cst 0

%tmp1 = %mk1 ^ %r2

%mk2 = %tmp1 ^ %m1

compiler fence

opaque instruction
with side-effects

...

...

(a) Problem

%r2 = rand()

Observation point
%tmp1' == %mk1' ^ %r2'

%r1 = rand()

%mk2 = %tmp1' ^ %m1

%mk1' = artificial_def (%mk1)

%r3 = cst 0

%tmp1 = %mk1 ^ %r2

%tmp1' = artificial_def (%tmp1)

...

%r2' = artificial_def (%r2)

...

(b) Solution

Figure 1. Preserving program partial state in SSA

Algorithm 1. Artificial definitions in SSA
input : Properties, list of functional properties

1 for (Formula,ObsPt) ∈ Properties do
2 ObsVar←variables of Formula;
3 CF← compiler fence associated withObsPt;
4 forOV ∈ ObsVar do
5 RD← reaching definition ofOV forObsPt;
6 insertArtificialDefinition(RD,CF ,Before);

Algorithm 1 simply inserts artificial definitions before
the compiler fence for every element in the set ObsVar of
observed variables of the functional property. Function
insertArtificialDefinition(Dv , Inst, Before|After) creates an
artificial definition of SSA variablev ′ fromDv the definition
of an SSAvariablev , it inserts it before (resp. after) instruction
Inst and replaces all uses of v subsequent to the insertion
point by v ′. Applying the algorithm to Listing 1.a yields
the code in Figure 1b: all observed variables in the property
(%r2, %tmp1 and %mk1) have been renamed (respectively %r2',
%tmp1' and %mk1'). Artificial definitions opaquely define
new values for these observed variables. The compiler
cannot make assumptions about these values and is forced to
assign concrete locations to hold them. As a result, artificial
definitions do prevent the elimination of the observed
variables or their replacement by constants at the observation
point (they may still be optimized in the rest of the code).

5 Putting It ToWork
Let us now survey the implementation of functional proper-
ties preservation in a state of the art optimizing compiler.



CC ’20, February 22–23, 2020, San Diego, CA, USA S. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen

5.1 Functional Properties in Source Code
We capture functional properties as source program annota-
tions using the following attribute syntax:3

l: __attribute__((annotate("str")));

The label l denotes the observation point and the functional
property is expressed by a logical formula str. Logical formu-
las use the C language syntax for boolean expressions, which
is also a subset of the ACSL specification language [13].

5.2 Functional Properties inMachine Code
When attaching functional properties to machine code, one
needs to make sure binary analysis tools are capable of ex-
tracting the corresponding representation of the observed
variables and memory locations.

Debug information is generated by the compiler for the
purpose of communicating source location, type and variable
information to the debugger. It alreadyprovidesmachine code
with a detailed description of source-level variables as well
as of memory locations. It is thus very reasonable to extend
the debug information to represent functional properties in
the binary: the formulas expressing the functional properties
are propagated and emitted into the debug section of the bi-
nary, while the binary representations of observation points
and observed variables and memory locations are already
provided by the standard debug information. It is common
knowledge that debug information is a second-class citizen of
compiler validation, and may not be accurate in the presence
of aggressiveoptimization.A fortunate side-effect of inserting
artificial definitions is to prevent most optimization passes
from harming the observed variables’ debug information. We
still had to fix a few critical remaining bugs, and filed bug
reports for others (cf. Section 6.3.3). As an immediate benefit
of leveraging (accurate) debug information, compiler passes
do not have to worry about renaming variables observed in
functional properties: debug information takes care of track-
ing the mapping of source to IR variables, down to machine
code registers and stack locations.
We use the Debugging With Attributed Record Formats

(DWARF) [19] debug information format that provides an
easily extensible description of how a program is translated
into executable code. DWARF uses a series of descriptive en-
tities calledDebugging Information Entry (DIE) to capture the
low-level representation of a source program. ADIE has a tag,
which specifieswhat it represents anda list ofattributeswhich
fill in the tag-dependent information and further describes
the entity. Hence, a DIE, or a group of DIEs together, provide
a description of a corresponding entity in the source program,
be it a type, a function, a parameter, a variable or a label.

We introduce new tags and attributes to represent source-
level functional properties. A property is represented by aDIE

3This syntax is not part of ISO C but it is accepted by gcc-compatible
compilers, including LLVM. Labeled attributes are better semantically tied
to the IR control flow than pragmas.

which contains the formula, the machine code address corre-
sponding to the observation point and references to the DIEs
representing the observed variables and memory locations.

5.3 Multiple Definitions and Debug Information
So farwe only considered SSA form IR for pedagogical reason.
However, the source program, machine code and low level
IR are typically not in SSA. Our method operates on all these
representations. On non-SSA form programs, multiple defi-
nitions may exist for a given observed variable v. All of these
have to be considered in the algorithm. Furthermore, the algo-
rithmneeds toblockanyassignment tov thatdoesnot reach the
observation point from becoming the reaching definition of v.

Yet this is not the end of the story. As it stands today, debug
information can only provide a single value for every source
variable at a given line of code. When multiple live ranges
corresponding to the same source variable overlap, only the
most recent one is stored in the corresponding DIE. In the
same spirit, when multiple live ranges get permuted, debug
information only refers to the last definition, irrespectively
of the initial program order. Such behavior may be observed
after variable renaming and live range splitting, followed by
code motion. This simplification is consistent with the com-
mon usage of debug information in debuggers, but it conflicts
with our application to functional property preservation. This
is the second reason why we have to forbid any transforma-
tion from reordering definitions of different occurrences of the
same source variable, as soon as one of these occurrences is
observed by a functional property.

%r2 = rand()

Obs pt: tmp == mk ^ r

%r1 = rand()

%r3 = cst 0

%tmp1 = %mk1 ^ %r2

%mk2 = %tmp1 ^ %m1

compiler fence

opaque instruction
with side-effects

...

...

(a) Problem

%r2 = rand()

Obs pt: tmp == mk ^ r

%r1 = rand()

%mk2 = %tmp1'' ^ %m1'

%r1' = artificial_def (%r1)

%m1' = artificial_def (%m1)

%r3 = %0

%tmp1 = %mk1 ^ %r2

%tmp1' = artificial_def (%tmp1)

%0 = artificial_def (cst 0)

...

%r2' = artificial_def (%r2)

%tmp1'' = artificial_def (%tmp1')

...

%mk1' = artificial_def (%mk1)

(b) Solution

Figure 2. Property preservation and debug information



Secure Delivery of Program Properties CC ’20, February 22–23, 2020, San Diego, CA, USA

As illustrated in Figure 2a, two SSA variables %r1 and %r2

stemming from the same source variable r and defined be-
fore the functional property will have to remain there (before
the observation point); conversely, SSA variables like %r3

corresponding to later live ranges of r can only be defined
after the functional property. As a sufficient condition to en-
force this additional constraint, as soon as one variable is
observed by the property, the algorithm preserves the rela-
tive order of “sibling” variable definitions stemming from the
same source variable,4 as illustrated in Figure 2b. This may
sound as overkill but it is currently necessary to prevent non-
reaching definitions from clobbering the variable observed
by the functional property. On the bright side, one advantage
of this solution is that variables in functional properties do not
need to be renamed along the compilation flow; this removes
the burden of modifying many compilation passes and also
helps the interpretation of program binary analysis.

Algorithm 2. Artificial definitions from debug info
input : Properties, list of functional properties

1 for (Formula,ObsPt) ∈ Properties do
2 ObsVar← variables of Formula;
3 CF← compiler fence associated withObsPt;
4 forOV ∈ ObsVar do
5 ReachDefs← set of reaching definitions ofOV for
6 ObsPt;
7 PriorDefs← set of definitions ofOV preceding any
8 reaching definition in ReachDefs in program order;
9 for PD ∈ PriorDefs do
10 insertArtificialDefinition(PD,PD,After);
11 for RD ∈ ReachDefs do
12 insertArtificialDefinition(RD,CF ,Before);
13 NextDefs← set of definitions ofOV following
14 ObsPt in program order;
15 for SD ∈ NextDefs do
16 forO ∈ operands of SD do
17 insertArtificialDefinition(O,SD,Before);

These additional precautions, including the extension to
non-SSA programs, are implemented in Algorithm 2. This
time, all definitions of “sibling” variables are considered,
through the iteration over all definitions stemming from a
given source variable in the functional property via renaming
and live range splitting. Notice the “program order” require-
ment (lines 6 and 13) that prevents reordering of live ranges.

Applying the revisedalgorithmtoListing1.ayields thecode
in Figure 2b. Let us illustrate our approach on the observed
variable r from the source program.We use debug informa-
tion to retrieve all definitions of r in the IR, with %r2 being its
reaching definition for the observation point. To prevent any

4This is related to the programdependenceweb in classical compiler texts [6].

preceding definition (i.e. %r1) from being moved after %r2’s
definition, Algorithm 2 inserts artificial definition (of %r1')
right after the definition of %r1 (line 6), then artificial defini-
tionof %r2' is inserted right before theobservationpoint.%r2'
also ensures that the reaching definition of the observed vari-
able (%r2) cannot be optimized out (line 8). Similarly, artificial
definitions are inserted to prevent all succeeding definitions
of the observed variable from being moved up before the ob-
servation point (line 12): e.g. %0’s definition is placed right
before %r3. According to the use-def property, and as the rel-
ative order of artificial definition (e.g. %r1', %r2', %0) and the
observation point cannot be altered (a property of artificial
definitions and observation points), it is guaranteed that the
correct value of the observed variable r will always reach
the observation point (via the variable %r2'). Helper function
insertArtificialDefinitionwas described with Algorithm 1; it
is extended here to operate either on instruction operand or
definition of a variable, be it SSA variable or not.

5.4 Implementation in LLVM

Fr
on

t-
en

d

A
n
n
o
ta

ti
o
n
 m

e
ta

d
a
ta

e
m

is
si

o
n

p
ro
p
e
rt
y
_o
b
s
e
rv
a
ti
o
n

e
m

is
si

o
n

M
id

d
le

-e
n
d

a
ri
ti
fi
c
ia
l_
d
e
fi
n
it
io
n

e
m

is
si

o
n

B
ac

ke
n
d

A
n
n
o
ta

ti
o
n
 D

W
A

R
F

D
IE

s 
e
m

is
si

o
n

Source
Code

Binary
CodeIR IR IR

A
n
n
o
ta

ti
o
n

in
tr

in
si

cs
lo

w
e
ri

n
g

Property checking
 (can be turned off)

Figure 3.Overview of the compilation
flow extensions. Grey boxes represent new components.

Let us now introduce our modifications to LLVM to sup-
port property preservation. Figure 3 gives an overview of the
augmented framework. All developments took place in the
latest, continually updated version of clang and LLVM.
The LLVM IR allows metadata to be attached to instruc-

tions, to convey additional information to optimizers and
code generators [28]. In particular, LLVM debug information
is implemented as metadata. It is generally maintained and
updated by optimization passes. Since we want to emit func-
tional properties as DWARF DIEs in the binary, we opted for
using debug information metadata to represent properties
in the IR. We introduce a new type of metadata containing
the formula, to which we attach classical debug metadata
representing the observed variables and memory locations.
A subtle point about metadata is that while optimizations

strive to maintain it—debug information in particular, it is
always safe to discard it without affecting correctness. When
it comes to transmitting functional properties, we need to
ensure the metadata presence and its correctness even at the
cost of losing some optimizations. We have to make sure that



CC ’20, February 22–23, 2020, San Diego, CA, USA S. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen

no optimization removes metadata representing functional
properties, observed variables or memory locations.
We added new intrinsics to the IR: property_observation

for observation points—to which the property metadata
is attached, as well as artificial_definition which acts
as a live range splitting mechanism constraining optimiza-
tions across a compiler fence. As explained in Section 4,
property_observation embeds a compiler fence to guarantee
the correctness and ordering of the values stored in the
observed memory locations. In addition, both intrinsics are
declared as having side-effects to preserve the relative order
among artificial definitions and with the observation point.
Later in the LLVM back-end, these intrinsics are lowered
into pseudo-instructions with side-effects; they do not emit
any machine instruction. Moreover, the artificial definition
pseudo-instructions use the same source and destination
register so that they can trivially be removed at instruction
emission.

We created an LLVM library that parses the property string
tobuilda listofobservedvariablesandmemory locations.This
library is used by an extension of clang to generate, from the
GNU annotation attributes, the appropriate property meta-
data along with property_observation intrinsics.
We implemented Algorithm 2 as an IR pass that is run

before any optimizations. It works on LLVM IR produced
by clang, which is not in SSA form yet. This is because the
LLVM SSA construction pass mem2reg is run only after a few
other optimizations, atwhich point the pristine partial state at
the observation point defined by the source-level annotation
may already be compromised. We also modified the compiler
back-end so that property DIEs are built from the property
metadata, and emitted into the object file’s debug section.
Moreover, we modified LLVM’s DWARF reader library to
support evaluating properties in binary analysis tools.
Finally, we implemented a mechanism to verify the pres-

ence and sanity of functional properties throughout the com-
pilation flow. Before performing any optimization, we insert
a LLVM pass that registers all properties within the program
into the metadata section. Then, after each optimization pass,
we insert a verification pass checking the presence of the
metadata representing the property, its observed variables
and memory locations. A warning informs the programmer
if any verification pass fails; she may react by annotating
the program differently, or disabling the optimization. This
optional mechanism is only used for validation purposes.

6 Experimental Validation
We now present the experimental methodology, followed by
functional validation and applications to security properties.

6.1 Methodology
Property preservation is defined as the equality of observa-
tion traces. Our validation approach is based on comparing,

for given input data, the observation trace produced when
executing the binary compiled with our property-compliant
compiler against a reference observation trace. For this pur-
pose, we assume -O0 preserves the partial state of the ISO
C abstract machine [38] containing the properties’ observed
variables and memory locations.5

All traces are obtained using the debugger gdb version 8.3.
For the reference trace, we compile the original programwith-
out properties. We insert a C label instead and set a breakpoint
for it in the debugger. Wemirror all the variables and mem-
ory locations that should be observed into specially-named
variables and dump their values using the debugger. Since the
reference is compiled with -O0 these mirrored variables are
not optimized out. For all other observation traces, we use the
modifiedDWARF reader to retrieve the addresses of the obser-
vation points, as well as the binary representation (constant
value, register number or memory address) of the observed
variables and memory locations. The binary is executed and
the values of the observed variables and memory locations
at the different observation points are retrieved using the de-
bugger. Note that instrumentation mirroring is only used for
functional validation; it is not activated in any performance
or compilation time measurement.

6.2 Functional Validation
We validate our implementation on the test suite of Frama-C,
a reference source code analysis platform for C. Properties
are written in ACSL as program annotations. The test suite is
designed to validate different Frama-C analyses on a range of
small C programs representative of the language semantics.
We restrict ourselves to boolean expressions as functional
properties, ignoring test cases referring to more advanced
ACSL built-in constructs. This results in 30 applicable test
cases featuring 558 functional properties. Most of these prop-
erties verify the expected values of different variables at a
given program point. These test cases are not meant to be
evaluated as performance benchmarks, we only use them to
validate the correctness of our implementation.

The validation platform is a quad-core 2.5 GHz Intel Core
i5-7200U CPUwith 16 GB of RAM.We target the x86-64 in-
struction set and compile each of these test cases at 5 opti-
mization levels -O1, -O2, -O3, -Os, -Oz. We verified that all 558
properties have been correctly propagated to the binaries and
produce identical observation traces to the reference one, for
all 5 optimization levels considered.

5This is not the case in general, as C does not fully specify the ordering of
commutative and associative operations, evaluation of function arguments,
etc. We mitigate these ambiguities when generating the reference obser-
vation trace by linearizing the expressions involved in functional properties
to three-address form. Defining one single observed variable at a time is
sufficient to fix the order of the partial states.



Secure Delivery of Program Properties CC ’20, February 22–23, 2020, San Diego, CA, USA

6.3 Security Properties
Let us now study real-world examples of security properties
that would benefit from property preservation. Applications
are commonly secured by inserting protections at the source
code level. However, compilers may not understand the pro-
grammers’ intentions, missing the implicit link between se-
cure code protections and the control flowormachine state as-
sumptions underlying its function, optimizing the protection
away as a result. As aworkaround, security engineers attempt
to confuse the compiler by resorting to compiler-dependent
coding tricks. This is obviously error-prone, dangerous, and
not future-proof as compilers are getting better at removing
“unnecessary” code [58].

Instead, following our approach, programmers would have
the ability to instruct compilers to preserve the protections
and enforce the associated security properties. These proper-
ties are non-functional: they refer to machine state unaccessi-
ble to the sourceprogramsemantics.More specifically,wewill
consider 4 use cases covering the following non-functional
properties necessary to the effectiveness of the countermea-
sures:

• proper erasure of sensitive data in memory;
• proper instruction ordering in masked secret key op-
erations;
• proper fine-grained interleaving of functional and pro-
tection code;
• presence of redundant code to detect fault injections.

To make our case,we thus need to encode the implicit assump-
tions underlying code hardening techniques using functional
properties of the source program. For this purpose, we extend
the property language with a minimalistic predicate called
observe() to determine which are the observed variables and
memory locations at a given observation point. This predi-
cate does not encode any logical formula; it takes the variable
or memory location to be observed as argument and simply
includes it into the partial state defined by the property and
thus into the program observation trace.

In the following, for each security use-case, we present the
security issue, the associated source-level protection scheme
and security property, and how to encode the latter as a func-
tionalpropertyusing thepredicateobserve().Wealsoexplain,
when they exist, any alternate programming tricks to pre-
vent the compiler from invalidating the security property.We
check the security property preservation with our approach
by comparing traces for all optimization levels -O1, -O2, -O3,
-Os,-Oz.We thenanalyze the impactofpreserving source-code
protections on the program performance and compilation
time.We target the ARMv7-M instruction set (Cortex-M3 em-
bedded processor). For the trace generation, we emulate the
execution of the applications with the QEMU emulator ver-
sion 3.0.1. The performance results use ARM Fast Models [9].

6.3.1 Secret Erasure. Cryptographic applications need to
erase secret data after usage [53]. For example in Listing 2.a,
the sensitive buffer on the stack must be zeroed with a call
to memset to avoid leaking confidential information; however,
most compilers will spot that the buffer is not accessible after
the function returns, removing the call to memset as part of
“dead store elimination”.

mbedTLS [52] tries to trick the compiler as shown in List-
ing2.b, usingavolatile functionpointer to the standardmemset.
However, a compilermay still load memset_func into a register,
comparing it to memset, and perform the function call only if
they differ [53].
Instead, we insert a property right after zeroing, as illus-

trated in Listing 2.c. Considering mbedTLS’s RSA encryption
and decryption, called rsa-encrypt and rsa-decrypt in the
following, at all the optimization levels, the observe property
forces the effective zeroing of all secret buffers even with op-
timizations enabled. This is a simple example of combining
hardening code anda functional property to enforce a security
property (leakage prevention).
Note that this countermeasure deals with leakage from

sensitive data in memory only. Leakage from data in registers
is not supported; it incurs erasing any possible register where
sensitive values may have resided in a secure function, which
is not easily expressed as a source or IR-level property [58].
This is left for future work.

6.3.2 Computation Order. Respecting the computation
order of associative operations, as written in the source code,
is hard with an optimizing compiler. The C language is de-
fined in terms of an abstractmachine producing an observable
behavior. A compiler can optimize a conforming program, as
long as the generated observable behavior matches the one
from theC language abstractmachine; it is thus free to reorder
associative operations, even with proper parenthesizing. To
make things worse, this is independent of the optimization
level, and programmers usually have no control over it.

This becomes an issue, when for example bitmasking with
xor operators as a countermeasure against side-channel at-
tacks [37]. It has been reported that the C statement in List-
ing 2.d has been compiled as k[0]ˆ(mpt[0]ˆm), which alto-
gether defeats the countermeasure [25].

A frequent mitigation trick is to insert volatile keywords
and compiler fences, as in Listing 2.e. This may lead to slower
code or may be optimized in the future [58].
Instead, we use the functional property observe(tmp), as

shown in Listing 2.f, to preserve computation order on a
masked implementation of Advanced Encryption Standard
(AES) [35], named aes-herbst in the following.We verified at
all optimization levels that the temporaryvariable at theobser-
vation point did hold the expected value, as found in the refer-
ence observation trace generated from the Listing 2.e version.

6.3.3 Step Counter Incrementation. Fault attacks are a
growing threat for secure devices such as smart cards. Such



CC ’20, February 22–23, 2020, San Diego, CA, USA S. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen

1 / / / a . attempt to zero a buffer
2 void process_sensitive(void) {
3 uint8_t secret [32];
4 ...
5 memset(secret , 0, sizeof(secret ));
6 }

1 / / / b . hidden erasure implementation for mbedTLS
2 static void *(* const volatile memset_func)
3 (void*, int , size_t) = memset;
4 void mbedtls_zeroize(void *buf , size_t len) {
5 memset_func(buf , 0, len);
6 }

1 / / / c . zero a buffer using an annotation
2 void process_sensitive(void) {
3 uint8_t secret [32];
4 ...
5 memset(secret , 0, sizeof(secret ));
6 // Property: observe(secret)
7 }

1 / / / d . bitmasking example
2 round_key [0] = (k[0] ^ mpt [0]) ^ m;

1 / / / e . bitmasking with compiler fence
2 volatile uint8_t tmp = k[0] ^ mpt [0];
3 __asm__ __volatile__("":::"memory");
4 round_key [0] = tmp ^ m;

1 / / / f . bitmasking using an annotation
2 uint8_t tmp = k[0] ^ mpt [0];
3 // Property: observe(tmp)
4 round_key [0] = tmp ^ m;

1 / / / g . memcpy using an annotation
2 void secure_memcpy(char *s, char *d, size_t n) {
3 size_t i, j, size = n;
4 for (i = 0, j = 0; i < n; ++i, ++j) {
5 // Property: observe(i); observe(j)
6 if (j >= n) fault_detected ();
7 d[i] = s[i];
8 }
9 if (j < n) fault_detected ();
10 // Property: observe(n); observe(size)
11 if (n != size) fault_detected ();
12 }

Listing 2. Secure code examples.

attacks can alter the system’s correct behavior via physical
injection means [61]. For example, it has been shown that
fault attacks can induce unexpected jumps to any location in
the program [14, 47]. One source-level scheme to enhance the
resilience against such fault attacks consists in defining a step
counter at each control construct, and stepping the counter
of the immediately enclosing control construct after every C
statement of the original source [40]. Counters are checked
against their expected values before any incrementation, call-
ing an exception handler when it fails. We refer to this tech-
niqueasStepCounter Incrementation (SCI); itmaybeseenasa
very fine-grained form of Control Flow Integrity (CFI) [2, 16].

However, as fault attacks are not modeled in compilers,
optimizations will remove any counter checks—their condi-
tions are trivially true. Counter incrementations might also
be removed or grouped into a single block of code. As a re-
sult, practitioners making use of this source-level hardening
scheme have to disable compiler optimizations. Instead, we

protect counter incrementations and checks using functional
properties:weobserve thecountervaluebeforeeverycheckor
incrementation. Furthermore, toguarantee that the functional
and countermeasure instructions are correctly interlaced, we
observe before each incrementation all other program vari-
ables and memory locations containing valid values.

We validated this approach on twowell-known smart-card
benchmarks: PIN authentication [23] and AES encryption
[45], called pin-sci and aes-sci in the following. For the for-
mer, all values are correct w.r.t. values from the reference
observation trace. For the latter, the debugger was unable to
retrieve some values, always less than 0.2% (e.g. 9907 out of
8353591 at -O2 and -O3). All retrieved valueswere correct. The
unavailable values are due to LLVM’s back-end generating,
for the corresponding observed variables, incorrect location
information in the debug information.Wedidmanually verify
thepresenceof theobservedvariables for all theseunavailable
values: while they do have their expected values stored in a
register or inmemory, gdb does not know about it and reports
the variables as optimized out (a bug report has been filed).

6.3.4 ControlandDataFlowRedundancy. Loops insen-
sitive code are important targets of fault attacks. For example,
it has been shown that corrupting memcpy during the initializa-
tion of an embedded systemmay allow an attacker to escalate
privileges and execute arbitrary code [60]. Other work also
highlighted the need to protect the iteration count of PIN
authentication [23].
There has been recent work to harden sensitive loops at

compilation time, by duplicating termination conditions and
the computations involved in the evaluation of such condi-
tions [55]. While the original algorithm operates on the IR
and takes care of positioning it with respect to downstream
and upstream passes, we attempt to make the approach more
generic by implementing it at source level. However, since the
approach relies on redundant computations, the difficulty lies
in preserving the protection from optimizations: redundant
operations do not impact the observable semantics and are
ideal candidates to be optimized away by the compiler [36].
Given the memcpy loop shown in Listing 2.g, we duplicate

the loop counter i and the computation of the exit condition
at every iteration of the loop (line 6), as well as at the loop
exit (line 9). We also duplicate loop-independent variables
that are used in the loop body, and verify that their values at
loop exit are correct with respect to their original values (line
11). To prevent optimizations from altering this protection,
we observe both the original and duplicate variables right
before the redundant computations, to make sure that their
values are always available for use. We implemented the loop
hardening scheme on the memcpy function above, and on a
memcmp-like function for PIN authentication [23]; both are in-
cluded loop-redundant in the following. We then validated
the preservation of the protections down to machine code.



Secure Delivery of Program Properties CC ’20, February 22–23, 2020, San Diego, CA, USA

6.3.5 Performance andCompilationOverhead. Let us
now analyze the run-time performance and compilation over-
head for all security applications. We compare our versions
with binaries generated with (1) no optimizations at all, (2)
with the common-practice (unreliable) programming tricks
to prevent the compiler from removing source-code protec-
tions and (3) to set an upper bound on the achievable per-
formance, with the unsafe binaries compiled without any
property preservation mechanism.

Performance. Wemeasure the program performance in
terms of number of instructions executed in the main pro-
gram, using ARM Fast Models [9]. This is the most consistent
choice given the Cortex-M3’s very simple pipeline; it is more
relevant than execution time given the wide diversity of the
processor silicon implementations in real devices. For each ap-
plication, Figure 4 presents the performance ratio of different
versions compiled at different optimization levels w.r.t. the
original program compiled at -O0, which serves as a baseline.
The first version corresponds to the original code without
anymodification, the second includes programming tricks de-
scribed per security use-case in previous subsections, and the
last one has source-code annotations inserted, also described
in previous subsections. These three versions are referred as
Unsafe, Tricks and Annotations respectively in Figure 4. It is
worth noting that there are no programming tricks to reliably
preserve source-level step counter incrementation and loop
protection redundancy. Results show that (1) the unsafe ver-
sions yield to the fastest but non-secure executables, since pro-
tections are modified or removedwith optimizations enabled;
(2) compared to existing fragile programming tricks, our com-
piler preserves the source-level protectionswith similar, if not
better performance; (3) when no trick exists (loop-redundant,
pin-sci and aes-sci), our compiler provides consistent per-
formance improvement over programs compiled at -O0while
preserving the source-level protection. The higher cost of
preserving the protection of pin-sci compared to the one of
aes-sci can be traced back to the functional/protection code
ratio for these 2 programs. Indeed, pin-sci features about 4
times more protection code than functional code, with the
functional code being too trivial to be optimized within the
boundaries of the protection statements; while aes-sci con-
tains only twice more protection code than functional code.
Moreover, the functional code of aes-sci is more complex,
leaving potential for classical optimizations. Finally, note that
performance is not the primarymotivation in these examples:
anything better than O0 is beneficial to security engineers.

Compilation Time. Figure 5 shows the compilation-time
overhead for all applications, compared to the original pro-
gram(withoutannotations), compiledwith the sameoptimiza-
tion flag on the same Intel platform described in Section 6.2.
RSA encryption and decryption algorithms are not compiled
separately, we thus measured the compilation-time of the

rsa-encrypt
rsa-decrypt

aes-herbst
loop-redundant

pin-sci
aes-sci

0

0.2

0.4

0.6

0.8

1

ex
ec
u
te
d
in
st
r.

ra
ti
o

Unsafe Tricks Annotations

Figure 4. Executed instructions w.r.t. -O0
baseline, ordered by optimization level -O1, -O2, -O3, -Os, -Oz

mbed-crypto
aes-herbst

loop-redundant
pin-sci

aes-sci

1

2

3

4

co
m
p
il
at
io
n
-t
im

e
ra
ti
o -O1 -O2 -O3 -Os -Oz

Figure 5. Compilation-time w.r.t.
original programwithout functional property annotations

whole Mbed cryptography library. In general, the compila-
tion overhead is under 5%, though it can sometimes be really
important, when complete (and not partial) program state is
constantly observed. For pin-sci and aes-sci, the protection
scheme introducesat leastoneannotation forevery functional
C statement, and the complete program state is observed: this
is really aworst case scenario. In fact, overhead depends on in-
tended protections. Moreover, our prototype is not yet tuned
and optimized and we believe that compilation-time can be
reduced with additional algorithmic and engineering effort.

7 Conclusion
We motivated and proposed an approach to encode, trans-
late, and preserve the semantics of both functional and non-
functional properties, across all program representations
through theoptimizing compilationofC tomachine code. The
approach relies on a notion of functional property preserva-
tion, and its implementation in a compiler such that data and
control flow optimizations will preserve the consistency of
these properties across transformations. We validated our ap-
proach in the LLVM framework, with no changes to existing
optimization passes beyond bug fixes related to the propaga-
tion of debug information. While the problem we consider
may have general applications in software engineering, our
proposal specifically addresses a fundamental open issue in
security engineering.



CC ’20, February 22–23, 2020, San Diego, CA, USA S. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen

References
[1] Martín Abadi. 1998. Protection in programming-language translations.

InAutomata, Languages and Programming (ICALP) (LNCS), Vol. 1443.
Springer.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
2005. Control-flow Integrity. In Proceedings of the 12th ACM
Conference on Computer and Communications Security (Alexan-
dria, VA, USA) (CCS ’05). ACM, New York, NY, USA, 340–353.
https://doi.org/10.1145/1102120.1102165

[3] Martín Abadi and Gordon D. Plotkin. 2012. On protection by layout
randomization. ACMTrans. on Information System Security 15, 2 (2012).

[4] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco
Patrignani, and Jérémy Thibault. 2018. Exploring Robust Property
Preservation for Secure Compilation. CoRR abs/1807.04603 (2018).
arXiv:1807.04603 http://arxiv.org/abs/1807.04603

[5] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco
Patrignani, and JérémyThibault. 2019. JourneyBeyondFullAbstraction:
ExploringRobustPropertyPreservation forSecureCompilation. In32nd
IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019. 256–271. https://doi.org/10.1109/CSF.2019.00025

[6] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
2006. Compilers: Principles, Techniques, and Tools (2Nd Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[7] aiT [n.d.]. aiT. https://www.absint.com/ait/index.htm. Accessed 19
May 2018.

[8] Mehdi-Laurent Akkar and Christophe Giraud. 2001. An Implemen-
tation of DES and AES, Secure Against Some Attacks. In Proceedings
of the Third International Workshop on Cryptographic Hardware and
Embedded Systems (CHES ’01). Springer-Verlag, London, UK, UK,
309–318. http://dl.acm.org/citation.cfm?id=648254.752562

[9] ARM. 2019. ARM Fast Models. https://developer.arm.com/tools-and-
software/simulation-models/fast-models

[10] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX:What You
See is NotWhat You eXecute. ACMTrans. Program. Lang. Syst. 32, 6, Ar-
ticle 23 (Aug. 2010), 84 pages. https://doi.org/10.1145/1749608.1749612

[11] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal
Sainrat. 2010. OTAWA: An Open Toolbox for Adaptive WCET
Analysis. In Software Technologies for Embedded andUbiquitous Systems,
Sang Lyul Min, Robert Pettit, Peter Puschner, and Theo Ungerer (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 35–46.

[12] Thierno Barry, Damien Couroussé, and Bruno Robisson. 2016.
Compilation of a Countermeasure Against Instruction-Skip Fault
Attacks. In Proceedings of the Third Workshop on Cryptography and
Security in Computing Systems (Prague, Czech Republic) (CS2 ’16). ACM,
New York, NY, USA, 1–6. https://doi.org/10.1145/2858930.2858931

[13] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude
Marché, Benjamin Monate, Yannick Moy, and Virgile Prevosto.
2008. ACSL: ANSI/ISO C Specification Language Version 1.4.
https://frama-c.com/download/acsl.pdf

[14] Pascal Berthomé, Karine Heydemann, Xavier Kauffmann-
Tourkestansky, and Jean-François Lalande. 2012. High level
model of control flow attacks for smart card functional security.
In 7th International Conference on Availability, Reliability and Se-
curity. IEEE Computer Society, Prague, Czech Republic, 224–229.
https://doi.org/10.1109/ARES.2012.79

[15] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encre-
naz, Quentin Meunier, and Son Tuan Vu. 2019. Fault attack
vulnerability assessment of binary code. In 6th Workshop on Cryp-
tography and Security in Computing Systems (CS2). Valencia, Italy.
https://doi.org/10.1145/3304080.3304083

[16] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity:
Precision, Security, and Performance. ACM Comput. Surv. 50, 1, Article
16 (April 2017), 33 pages. https://doi.org/10.1145/3054924

[17] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
1999. Towards Sound Approaches to Counteract Power-Analysis
Attacks. In Advances in Cryptology — CRYPTO’ 99, Michael Wiener
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 398–412.

[18] Adam Chlipala. 2007. A Certified Type-preserving Compiler from
Lambda Calculus to Assembly Language. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Diego, California, USA) (PLDI ’07). ACM, New
York, NY, USA, 54–65. https://doi.org/10.1145/1250734.1250742

[19] DWARF Debugging Information Format Commitee. 2017.
DWARF Debugging Information Format Version 5. https:
//dwarfstd.org/doc/DWARF5.pdf

[20] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. 2012. Frama-C: A Software
Analysis Perspective. In 10th International Conference on Software
Engineering and Formal Methods (Thessaloniki, Greece). 233–247.
https://doi.org/10.1007/978-3-642-33826-7_16

[21] Ronald De Keulenaer, Jonas Maebe, Koen De Bosschere, and Bjorn
De Sutter. 2016. Link-time smart card code hardening. Interna-
tional Journal of Information Security 15, 2 (01 Apr 2016), 111–130.
https://doi.org/10.1007/s10207-015-0282-0

[22] Dominique Devriese, Marco Patrignani, and Frank Piessens. 2016.
Fully-Abstract Compilation by Approximate Back-Translation. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA,
164–177. https://doi.org/10.1145/2837614.2837618

[23] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-
Ha Le, Aude Crohen, and Philippe de Choudens. 2016. FISSC:
A Fault Injection and Simulation Secure Collection. 3–11.
https://doi.org/10.1007/978-3-319-45477-1_1

[24] Kerstin Eder, John P. Gallagher, Pedro López-García, Henk Muller,
Zorana Banković, Kyriakos Georgiou, Rémy Haemmerlé, Manuel V.
Hermenegildo, Bishoksan Kafle, Steve Kerrison, Maja Kirkeby,
Maximiliano Klemen, Xueliang Li, Umer Liqat, JeremyMorse, Morten
Rhiger, andMads Rosendahl. 2016. ENTRA. Microprocess. Microsyst. 47,
PB (Nov. 2016), 278–286. https://doi.org/10.1016/j.micpro.2016.07.003

[25] Hassan Eldib and Chao Wang. 2014. Synthesis of Masking
Countermeasures Against Side Channel Attacks. In Proceedings
of the 16th International Conference on Computer Aided Verifica-
tion - Volume 8559. Springer-Verlag, Berlin, Heidelberg, 114–130.
https://doi.org/10.1007/978-3-319-08867-9_8

[26] David Evans. 1996. Static Detection of Dynamic Memory Er-
rors. In Proceedings of the ACM SIGPLAN 1996 Conference on
Programming Language Design and Implementation (Philadelphia,
Pennsylvania, USA) (PLDI ’96). ACM, New York, NY, USA, 44–53.
https://doi.org/10.1145/231379.231389

[27] Heiko Falk and Paul Lokuciejewski. 2010. A compiler framework for
the reduction of worst-case execution times. Real-Time Systems 46,
2 (01 Oct 2010), 251–300. https://doi.org/10.1007/s11241-010-9101-x

[28] LLVM Foundation. 2019. LLVM Language Reference Manual.
https://llvm.org/docs/LangRef.html#metadata

[29] Thomas Given-Wilson, Nisrine Jafri, Jean-Louis Lanet, and
Axel Legay. 2017. An Automated Formal Process for Detect-
ing Fault Injection Vulnerabilities in Binaries and Case Study
on PRESENT. In 2017 IEEE Trustcom/BigDataSE/ICESS. 293–300.
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.250

[30] Rigel Gjomemo, Kedar S. Namjoshi, Phu H. Phung, V. N. Venkatakr-
ishnan, and Lenore D. Zuck. 2015. From Verification to Optimizations.
In Verification, Model Checking, and Abstract Interpretation, Deepak
D’Souza, Akash Lal, and Kim Guldstrand Larsen (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 300–317.

https://doi.org/10.1145/1102120.1102165
http://arxiv.org/abs/1807.04603
http://arxiv.org/abs/1807.04603
https://doi.org/10.1109/CSF.2019.00025
https://www.absint.com/ait/index.htm
http://dl.acm.org/citation.cfm?id=648254.752562
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/2858930.2858931
https://frama-c.com/download/acsl.pdf
https://doi.org/10.1109/ARES.2012.79
https://doi.org/10.1145/3304080.3304083
https://doi.org/10.1145/3054924
https://doi.org/10.1145/1250734.1250742
https://dwarfstd.org/doc/DWARF5.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/s10207-015-0282-0
https://doi.org/10.1145/2837614.2837618
https://doi.org/10.1007/978-3-319-45477-1_1
https://doi.org/10.1016/j.micpro.2016.07.003
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1145/231379.231389
https://doi.org/10.1007/s11241-010-9101-x
https://llvm.org/docs/LangRef.html#metadata
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.250


Secure Delivery of Program Properties CC ’20, February 22–23, 2020, San Diego, CA, USA

[31] Daniele Gorla andUweNestmann. 2016. Full abstraction for expressive-
ness: history, myths and facts. Mathematical Structures in Computer Sci-
ence 26, 4 (2016), 639–654. https://doi.org/10.1017/S0960129514000279

[32] Lucien Goubet, Karine Heydemann, Emmanuelle Encrenaz, and
Ronald De Keulenaer. 2015. Efficient Design and Evaluation of
Countermeasures against Fault Attack with Formal Verification. In
14th International conference Smart Card Research and Advanced
Applications (CARDIS) (Lecture Notes in Computer Science), Vol. 9514.
Springer International Publishing, Bochum, Germany, 177–192.
https://doi.org/10.1007/978-3-319-31271-2_11

[33] Louis Goubin and Jacques Patarin. 1999. DES and Differential Power
Analysis The “Duplication” Method. In Cryptographic Hardware and
Embedded Systems, Çetin K. Koç and Christof Paar (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 158–172.

[34] Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. 2002. Profile
Guided Compiler Optimizations. The Compiler Design Hand-
book: Optimizations and Machine Code Generation (02 2002).
https://doi.org/10.1201/9781420040579.ch4

[35] ChristophHerbst, ElisabethOswald, and StefanMangard. 2006. AnAES
Smart Card Implementation Resistant to Power Analysis Attacks. In
Proceedings of the 4th International Conference on Applied Cryptography
and Network Security (Singapore) (ACNS’06). Springer-Verlag, Berlin,
Heidelberg, 239–252. https://doi.org/10.1007/11767480_16

[36] Christoph Hillebold. 2014. Compiler-Assisted Integrits against Fault
injection Attacks. Master’s thesis. University of Technology, Graz.
http://chille.at/articles/master-thesis

[37] Yuval Ishai, Amit Sahai, and David Wagner. 2003. Private Circuits:
Securing Hardware against Probing Attacks. InAdvances in Cryptology
- CRYPTO 2003, Dan Boneh (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 463–481.

[38] ISO. 2011. C11 Standard. /bib/iso/C11/n1570.pdf ISO/IEC 9899:2011.
[39] Daniel Jackson. 1995. Aspect: Detecting Bugs with Abstract Depen-

dences. ACM Trans. Softw. Eng. Methodol. 4, 2 (April 1995), 109–145.
https://doi.org/10.1145/210134.210135

[40] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. 2014.
Software countermeasures for control flow integrity of smart card C
codes. In ESORICS - 19th European Symposium on Research in Computer
Security (Lecture Notes in Computer Science), Miroslaw Kutylowski and
JaideepVaidya (Eds.), Vol. 8713. Springer International Publishing,Wro-
claw, Poland, 200–218. https://doi.org/10.1007/978-3-319-11212-1_12

[41] Chris Lattner and VikramAdve. 2004. LLVM: a compilation framework
for lifelong program analysis amp; transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
75–86. https://doi.org/10.1109/CGO.2004.1281665

[42] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr,
and Nuno P. Lopes. 2018. Reconciling High-level Optimizations and
Low-level Code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA,
Article 125 (Oct. 2018), 28 pages. https://doi.org/10.1145/3276495

[43] Xavier Leroy. 2006. Formal certification of a compiler back-end,
or: programming a compiler with a proof assistant. In POPL 2006:
33rd symposium Principles of Programming Languages. ACM, 42–54.
https://doi.org/10.1145/1111037.1111042

[44] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom
Reasoning 43, 363 (2009). https://doi.org/10.1007/s10817-009-9155-4.

[45] Ilya Levin. 2007. A byte-oriented AES-256 implementation.
http://www.literatecode.com/aes256

[46] Hanbing Li, Isabelle Puaut, and Erven Rohou. 2014. Traceability of Flow
Information: Reconciling Compiler Optimizations andWCET Estima-
tion. In Proceedings of the 22Nd International Conference on Real-Time
Networks and Systems (Versaille, France) (RTNS ’14). ACM, New York,
NY, USA, Article 97, 10 pages. https://doi.org/10.1145/2659787.2659805

[47] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Ro-
bisson, and Emmanuelle Encrenaz. 2013. Electromagnetic Fault
Injection: Towards a Fault Model on a 32-bit Microcontroller. In 2013

Workshop on Fault Diagnosis and Tolerance in Cryptography. 77–88.
https://doi.org/10.1109/FDTC.2013.9

[48] AndrewMoss, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2012.
Compiler Assisted Masking. In Cryptographic Hardware and Embedded
Systems – CHES 2012, Emmanuel Prouff and Patrick Schaumont (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 58–75.

[49] Kedar S. Namjoshi, Giacomo Tagliabue, and Lenore D. Zuck. 2013. A
Witnessing Compiler: A Proof of Concept. In Runtime Verification, Axel
Legay and Saddek Bensalem (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 340–345.

[50] KedarS.NamjoshiandLenoreD.Zuck.2013.WitnessingProgramTrans-
formations. InStaticAnalysis, FrancescoLogozzoandManuel Fähndrich
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 304–323.

[51] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave
Clarke, and Frank Piessens. 2015. Secure Compilation to Protected
Module Architectures. ACM Trans. Program. Lang. Syst. 37, 2, Article
6 (April 2015), 50 pages. https://doi.org/10.1145/2699503

[52] Paul Bakker, ARM. 2019. mbedTLS. tls.mbed.org
[53] Colin Percival. 2014. How to zero a buffer. http://www.daemonology.

net/blog/2014-09-04-how-to-zero-a-buffer.html
[54] Adrian Prantl, Markus Schordan, and Jens Knoop. 2008. TuBound -

A Conceptually New Tool for Worst-Case Execution Time Analysis.
In 8th International Workshop onWorst-Case Execution Time Analysis
(WCET’08) (OpenAccess Series in Informatics (OASIcs)), Raimund Kirner
(Ed.), Vol. 8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany. https://doi.org/10.4230/OASIcs.WCET.2008.1661
also published in print by Austrian Computer Society (OCG) with ISBN
978-3-85403-237-3.

[55] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
2017. Compiler-Assisted Loop Hardening Against Fault Attacks.
ACM Trans. Archit. Code Optim. 14, 4, Article 36 (Dec. 2017), 25 pages.
https://doi.org/10.1145/3141234

[56] G. Ramalingam. 1996. Data Flow Frequency Analysis. In Proceedings of
the ACM SIGPLAN 1996 Conference on Programming Language Design
and Implementation (Philadelphia, Pennsylvania, USA) (PLDI ’96). ACM,
New York, NY, USA, 267–277. https://doi.org/10.1145/231379.231433

[57] Bernhard Schommer, Christoph Cullmann, Gernot Gebhard, Xavier
Leroy,Michael Schmidt, and SimonWegener. 2018. Embedded Program
Annotations for WCET Analysis. In WCET 2018: 18th International
Workshop onWorst-Case Execution TimeAnalysis, Vol. 63. Dagstuhl Pub-
lishing, Barcelona, Spain. https://doi.org/10.4230/OASIcs.WCET.2018.8

[58] Laurent Simon, David Chisnall, and Ross Anderson. 2018. What You
Get isWhat You C: Controlling Side Effects inMainstreamCCompilers.
In 2018 IEEE European Symposium on Security and Privacy (EuroS&P).
1–15. https://doi.org/10.1109/EuroSP.2018.00009

[59] Richard M. Stallman and GCC DeveloperCommunity. 2009. Using
The Gnu Compiler Collection: A Gnu Manual For Gcc Version 4.3.3.
CreateSpace, Paramount, CA.

[60] Niek Timmers, Albert Spruyt, andMarcWitteman. 2016. Controlling
PC on ARMUsing Fault Injection. In 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA,
August 16, 2016. 25–35. https://doi.org/10.1109/FDTC.2016.18

[61] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. 2018. Fault
Attacks on Secure Embedded Software: Threats, Design, and Evalu-
ation. Journal of Hardware and Systems Security 2, 2 (2018), 111–130.
https://doi.org/10.1007/s41635-018-0038-1

[62] Niko Zarzani. 2013. Improving the Compilation process using Program
Annotations. Master’s thesis. Politecnico Di Milano.

https://doi.org/10.1017/S0960129514000279
https://doi.org/10.1007/978-3-319-31271-2_11
https://doi.org/10.1201/9781420040579.ch4
https://doi.org/10.1007/11767480_16
http://chille.at/articles/master-thesis
/bib/iso/C11/n1570.pdf
https://doi.org/10.1145/210134.210135
https://doi.org/10.1007/978-3-319-11212-1_12
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3276495
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/s10817-009-9155-4
http://www.literatecode.com/aes256
https://doi.org/10.1145/2659787.2659805
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1145/2699503
tls.mbed.org
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
https://doi.org/10.4230/OASIcs.WCET.2008.1661
https://doi.org/10.1145/3141234
https://doi.org/10.1145/231379.231433
https://doi.org/10.4230/OASIcs.WCET.2018.8
https://doi.org/10.1109/EuroSP.2018.00009
https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1007/s41635-018-0038-1

	Abstract
	1 Introduction
	2 Context and Related Work
	3 Problem Statement and Definitions
	4 Functional Properties and Optimizations
	5 Putting It To Work
	5.1 Functional Properties in Source Code
	5.2 Functional Properties in Machine Code
	5.3 Multiple Definitions and Debug Information
	5.4 Implementation in LLVM

	6 Experimental Validation
	6.1 Methodology
	6.2 Functional Validation
	6.3 Security Properties

	7 Conclusion
	References

