Matching Cross Network for Learning to Rank in
Personal Search

Zhen Qin, Zhongliang Li, Michael Bendersky, Donald Metzler
Google LLC, Mountain View, CA, USA
{zhenqin,lzl,bemike, metzler}@google.com

ABSTRACT

Recent neural ranking algorithms focus on learning semantic match-
ing between query and document terms. However, practical learn-
ing to rank systems typically rely on a wide range of side infor-
mation beyond query and document textual features, like location,
user context, etc. It is common practice to concatenate all of these
features and rely on deep models to learn a complex representation.

We study how to effectively and efficiently combine textual
information from queries and documents with other useful but
less prominent side information for learning to rank. We conduct
synthetic experiments to show that: 1) neural networks are ineffi-
cient at learning the interaction between two prominent features
(e.g., query and document embedding features) in the presence of
other less prominent features; 2) direct application of a state-of-art
method for higher-order feature generation is also inefficient.

Based on the above observations, we propose a simple but effec-
tive matching cross network (MCN) method for learning to rank
with side information. MCN conducts an element-wise multiplica-
tion matching of query and document embeddings and leverages
a technique called latent cross to effectively learn the interaction
between matching output and all side information. The approach
is easy to implement, and adds minimal parameters and latency
overhead to standard neural ranking architectures.

We conduct extensive experiments using two of the world’s
largest personal search engines, Gmail and Google Drive search,
and show that each proposed component adds meaningful gains
against a strong production baseline with minimal latency overhead,
thereby demonstrating the practical effectiveness and efficiency of
the proposed approach.

CCS CONCEPTS

« Information systems — Information retrieval.

KEYWORDS

neural networks, learning to rank, embeddings

ACM Reference Format:

Zhen Qin, Zhongliang Li, Michael Bendersky, Donald Metzler. 2020. Match-
ing Cross Network for Learning to Rank in Personal Search. In Proceedings
of The Web Conference 2020 (WWW °20), April 20-24, 2020, Taipei, Taiwan.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3366423.3380046

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °20, April 20-24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380046

1 INTRODUCTION

Neural ranking methods are commonly used today in a variety of
information retrieval tasks. Most existing methods focus on seman-
tic matching between query and documents using distributional
representations learned from large amounts of data [16].

However, in addition to the query and document content, modern
search engines leverage a variety of side information to improve
their ranking performance. These features may not be as prominent
as the content features, but can still boost performance if used
appropriately. One example is situational context [30], such as
location, platform (desktop vs phone), and time of the day, which are
query and document independent. Another example is user-specific
features, such as demographics and historical preferences, which are
crucial for personalized search experiences [11]. How to effectively
and efficiently combine all of this available side information is an
important but not well explored problem.

Leveraging side information is especially important in the per-
sonal search setting, where users only have access to their own
private documents (e.g., emails). Therefore the amount of training
data available for each user is quite limited [3]. As a result, user
and context features take on extra importance. For example, if a
user searches “receipt” at an airport, it is more likely that she is
looking for flight ticket receipts over other types of receipts.

A common practice for utilizing side information is concate-
nating all the features and relying on a deep model to learn the
complex interactions between the features [30]. However, stan-
dard deep learning approaches are inefficient at learning complex
representations from data [4] as they typically require both large
amounts of data and large models. In practical large-scale applica-
tions, large amounts of high quality labeled data is often difficult
to come by and large models can be a concern for latency-sensitive
user-facing products. In this work, we study how to both effectively
and efficiently combine textual information from queries and docu-
ments with side information. We begin with an empirical analysis
of the conventional feed-forward network and a state-of-art feature
interaction learning framework called latent cross [4]. We demon-
strate that both are inefficient at capturing the interactions of two
prominent features when other less prominent features exist. This
finding is particularly relevant to information retrieval tasks where
it is often the case that two prominent features (i.e., queries and
documents) exist alongside other side information.

Motivated by these findings, we introduce a simple but effective
approach called Matching Cross Network (MCN), which takes advan-
tage of the dominance of query-document matching in information

The first two authors contributed equally.

https://doi.org/10.1145/3366423.3380046
https://doi.org/10.1145/3366423.3380046

WWW 20, April 20-24, 2020, Taipei, Taiwan

Art club X -

o
3.
<
o

art club

Q
O artclubinterest
New Q
Q

Artclub

My Drive
Art Club Interest Letter . Jun 22
3

Computers Olenna Mason

The Sewanee Review.docx 1157 AM
osa

12:02PM
Recent

=]

Shared with me w ena G
=]
=]

Starred

% Ok OB+

- [= IO Inttan

Figure 1: Google Drive “search-as-you-type” feature.

retrieval tasks. MCN performs an early query and document match-
ing, then uses the latent cross idea to learn the interaction between
the matching output and the additional side information. Through
a rigorous ablation study on two large-scale personal search en-
gines, GMail search and Google Drive search, we show that 1) early
query-document matching is extremely useful, 2) though latent
cross fails when used naively, it provides substantial benefits when
combined with early matching.

The proposed MCN method is easy to implement, adds minimal
parameter and latency overhead to standard neural ranking archi-
tectures, and can be efficiently trained over large-scale datasets.
This makes the approach easy to integrate into existing systems.
For example, MCN is currently deployed by Google Drive’s “search-
as-you-type” feature (see Figure 1) as it provided significant quality
wins with minimal latency overhead and negligible added system
complexity.

The remainder of this paper is organized as follows. We start by
describing related work in Section 2. To motivate our work, Section
3 shows the inefficiencies of neural networks when two prominent
features exist in the data alongside other side information. Sections
4 and 5 introduce our proposed matching cross network (MCN)
technique. In Section 6 we verify the effectiveness of MCN on
two of the world’s largest personal search datasets through (a) a
rigorous offline evaluation and (b) a large-scale online experiment.
We conclude the paper in Section 7.

2 RELATED WORK

Neural ranking models have become popular in the information re-
trieval community. Most existing work focuses on semantic match-
ing between queries and documents [23, 25, 28, 31]. For instance,
the DUET model [17] considers local exact text matching combined
with semantic embeddings. This architecture introduces consid-
erable overhead with term matching matrix and Convolutional
Neural Network (CNN) modules. [18] first builds a matching ma-
trix between two texts, then treats the matrix as an image and
uses CNNs for feature extraction. [6] explores CNNs and kernel
pooling for soft matching between query and document n-grams.
The Deep Semantic Similarity Model [12] uses Siamese networks
to learn embeddings for matching. [20] focuses on social media
search with small amounts of context. [31] tries to match query
with multiple fields of the document, including document title and
body. [19] explores the idea of probabilistic word embedding (PWE)
for query and document matching, but found PWE is in general

Zhen Qin et al.

difficult to use and train due to the large amount of parameters. A
recent survey on neural search can be found at [16]. Most prior
work typically does not consider the rich side information available
in practice. Our work demonstrates the importance of early match-
ing for learning to rank when side information is available. Our
proposed framework has a general query and document matching
module where existing work can easily be leveraged.

On the other hand, large-scale search systems usually leverage
efficient query-document matching [10] then re-rank top candi-
dates with rich side information [29] to further boost performance.
A common practice is to concatenate all features in a simple feed-
forward architecture and rely on deep models to learn complex
representations [2, 7, 14, 30]. Some recent work demonstrated it
is inefficient for standard deep models to learn effective represen-
tations from data in the information retrieval domain. [22] tries
to incorporate query clusters as a feature, but could not get any
performance gain with concatenation. They thus design a multi-
task objective to use query cluster prediction as an auxiliary task
to guide the representation learning. Our work also tries to address
the limitations of standard neural architectures for search rank-
ing problems, with an emphasis on effectiveness, efficiency, and
simplicity.

Side information, especially contextual features, are extensively
explored in recommender systems research since such information
is critical for making high quality recommendations. [24] directly
feeds contextual information into a Recurrent Neural Network
(RNN) for session-based recommendations. [32] multiplicatively
incorporated temporal information into a long short-term memory
(LSTM) model for better sequential recommendation. The recent
work of latent cross [4] describes a simple technique to efficiently
learn high-order feature interactions, such as the platform (mobile
vs desktop) in Youtube video recommendation. Our work applies
this state-of-art idea to learn the interaction between textual infor-
mation and side information in search ranking.

3 MODELING MOTIVATION

We begin by demonstrating the limitations of standard feed-forward
networks and latent cross [4] using a synthetic dataset that is meant
to mimic typical search ranking problems.

Each example in the dataset consists of three 20-dimensional
features {f1, f2, f3}. Each feature value is initialized from a uniform
distribution between -1 and 1. The label for each example is gener-
ated by only using information from f; and f; as

1, ifcos(fi,fy) >0
y= {O, otherwise,

where cos(-) is the cosine similarity. This dataset imitates com-
mon search scenarios, with f; and f; being akin to query and docu-
ment features. Three datasets are generated for training, validation,
and test purposes, each consisting of 1,000 samples.

Three different model architectures are evaluated: 1) Concatena-
tion of all features. 2) Using f; as the latent cross with other features
(i.e., element-wise multiplication between f; and the output of deep
layers using f; and f3 as inputs, see more details in Section 5.2. 3)
Conducting element-wise multiplication between f; and £, first,
then concatenating the output with f3. All models use three hidden

Matching Cross Network for Learning to Rank

layers. We use cross entropy loss and Adagrad [9] optimizer for
training. We use different hidden layer widths to see the model’s
efficiency for modeling the data, similar to [4]. For each experiment,
we pick the checkpoint with highest validation accuracy.

1.0) 1 1 1 1 1 _
|\ R S
0.9 - -
0.8 - -
30.7- -
e
3
3 06 _/f’// -
<
0.5~ -
— Concat
0.4 - Latent Cross -
— Multiplication First
0.3+ !

1 1 1 1 r
50 100 150 200 250 300
Hidden Layer Width

o

Figure 2: Simple feature concatenation and using latent
cross are both inefficient at learning the cosine similarity.

The results on the test data are shown in Figure 2. We observe
that concatenation in feed-forward network and naively applying
latent cross are inefficient at modeling this seemingly simple syn-
thetic dataset since the performance increases slowly with more
hidden units. Our hypothesis of the failure of directly applying
latent cross is, f1 and f; are too separated in the model architecture
so their interactions are difficult to learn. On the other hand, an
early matching of two prominent features makes learning much
easier - approach 3 serves as a sanity check and shows the dataset
is learnable.

Note that the goal here is to simply illustrate a fundamental
limitation of standard deep learning architectures on a dataset
with two prominent features, similar to common search ranking
settings. Our new model, which is motivated by these findings, will
be verified on real-world search datasets in Section 6.

4 MODELING PRELIMINARIES

Suppose we have a set of queries Q = {qi}fll. Each query g; is
associated with a set of documents d; = {d; 1,d;2, ..., din; } Wwhere
n; is the total number of documents corresponding to g;. Let x; i
denote the training features for the query-document pair {g;, d;).
Each query-document pair {g;, d;) is associated with a label y;
that denotes the level of relevance for the pair. Typically, for click-
through data, y; ;. (k € [n;]) is a binary indicator of whether the
user clicked document d; f.. The learning-to-rank problem is to learn
a function f that takes x; ;. as input and outputs a relevance score
between ¢; and d; ;. to optimize a predefined ranking objective

1Q]
1 n;
max — » m (Ui f(xig) }re (1)
g ({0 b)

where the metric m(-) is an evaluation metric like NDCG [5]. Di-
rectly optimizing the above objective is difficult because the metric
m(-) is not smooth. Typical learning-to-rank algorithms use smooth

WWW ’20, April 20-24, 2020, Taipei, Taiwan

surrogate objectives such as logistic or hinge loss [15] that are easier
to optimize. Doing so converts (1) into the following minimization
problem.

Q|
_ 1 n;
min £ & — E Wi f(xig) 1y (2
7 |Q| & ({ k k }k 1)

where £(-) is the loss function that can be pointwise, pairwise, or
listwise [15].

5 METHODS

In this section, we describe the Matching Cross Network (MCN)
model.

5.1 Embedding Features Matching

We use embeddings to represent query and document textual fea-
tures, which is common in neural learning-to-rank systems [16, 17,
22]. For simplicity, we assume query and document terms use the
same dictionary and embedding lookup table (so they also have
the same embedding dimension), which reduces the number of
model parameters. Query and document term embeddings are ag-
gregated using the average word embedding (or average pooling)
to represent queries and documents, which is a common practice
[16].

Motivated by the synthetic experiments, we advocate the early
matching of queries and documents before feeding them into deep
architectures. We propose to use a simple matching between query
and document embeddings as

fmatching = equery © €document,

where O is the element-wise multiplication operator. Note that more
complex existing semantic matching methods [16] might also be
used here. We find that a direct matching function via multiplication
is simple to implement, adds minimal overhead to training time,
model size, and inference latency. Also, using a shared embedding
dictionary for queries and documents incorporates some of the
textual matching ideas from DUET [17] (i.e., if the embeddings of
queries and documents are the same, the output score will be high
due to element-wise multiplication). We will show in experiments
that this simple idea brings immediate performance gains over
a well-tuned neural network that concatenates features. We also
empirically show that several more complex matching functions
do not provide significant extra gains.

5.2 Latent Cross

Latent Cross is a recent technique deployed in Youtube recommen-
dation systems [4]. It feeds certain features into a separate shortcut
and allows for more efficient higher order feature interaction learn-
ing. For example, in recommendation systems, it makes sense to
implicitly generate feature interactions between user type and other
item features.
feross = (1 + Wiatent) © houts

where Wigten 1s the embedding for context or latent features such
as user type and platform, and Ayt is the output of the final hidden
layer of other features. In the context of search ranking, the latent
cross attempts to generate feature interactions between queries

WWW 20, April 20-24, 2020, Taipei, Taiwan

and other features. However, as we will show in the experimental
evaluation section, this naive application of latent cross does not
work well in practice.

5.3 Matching Cross Network

The general architecture of MCN is shown in Figure 3. MCN has
two major components that combines the ideas from previous sec-
tions: 1) the early matching of query embeddings and document
embeddings through a simple element-wise multiplication. 2) the
matching output is used as latent cross features to facilitate the
learning of its interactions with the additional side information.

The overall MCN architecture adds a negligible number of pa-
rameters as well as almost no additional latency compared with
more basic architectures since the added operations are simply mul-
tiplications and no new features are introduced. The changes do
not require any infrastructure changes (e.g. making some new fea-
tures available or adding support for a new operator) in real-world
serving systems, so it can be easily deployed and tested.

MCN may be easily extendable by treating it as the composition
of a matching component that much of the neural ranking research
has been focusing on [16] (though complexity and latency should
be considered in practice), and a regular deep component where
general learning-to-rank ideas [15] can be applied.

logit/score

Concatenation

Context Locale Other
Feature Feature Features

Figure 3: Diagram of the Matching Cross Network.

6 EXPERIMENTS

In this section, we first describe the data and the features used in
the experiments; we then present the evaluation setup and metrics.
Finally, we explore both the offline and the online experimental
results using two of the world’s largest personal search engines.

6.1 Data

Our experiments use the click-through data from Google Gmail and
Drive, which we refer to as GMail and Drive for simplicity in the
remainder of this section. For offline model training and evaluation,
we collect GMail and Drive search logs between Aug. and Dec. 2018,
resulting in hundreds of millions of queries with clicks. Among all
the queries, 80% are used for training, 10% are used for validation
and parameter tuning, and the remaining 10% are used for testing.
All queries in the development set are issued strictly later than all

Zhen Qin et al.

queries in the training set, and all queries in the testing set are
issued strictly later than all queries in the development (validation)
set. On average, each GMail query has six candidate documents
and each Drive query has five candidate documents based on their
respective search interfaces.

To preserve user privacy, we only use frequent word and charac-
ter n-grams that occur across multiple users to represent queries
and documents and feed them into embedding layers. The n-gram
embedding lookup table is randomly initialized since we have a
large amount of data. The dataset also contains a rich set of side
information, including situational features (e.g. time of the day),
user features (e.g. user’s previous click behavior), and non-textual
document attributes (e.g. document age). As is common in personal
search [3, 26, 30], we use click data as labels to learn and evaluate
our proposed ranking models offline. Furthermore, we apply po-
sition bias correction techniques [26] during training to mitigate
label bias from click data.

6.2 Experimental Setup and Metrics

We describe both offline and online metrics that will be used.
Offline metrics. We use weighted mean reciprocal rank (WMRR)

as our primary metric offline, since it has been found to be pre-

dictive of online gains in prior work [26]. WMRR is calculated as

follows:
N

1 1
WMRR = . i R 3
RPN ®

i=1

where w; denotes the bias correction weight, which is inversely
proportional to the probability of observing a click at the clicked
position. The weights are set using methods described in [26] and
the same set of weights are used for all models. N denotes the size
of the evaluation set. rank; denotes the rank position of the clicked
document for the i-th query in the evaluation set. Higher WMRR
numbers indicates the better model performance.

Online metrics. We track several metrics during user-facing
online experiments. One key online metric is Click-Through Rate
(CTR), measuring the percentage of search sessions during which
users click a shown result. We also track a ranking-focused metric,
the average clicked position (ACP) of the clicked results as

)
ACP = —) rank;, (4)
M i=1

where M denotes the number of clicked sessions. Note that a lower
ACP number indicates better performance. An ideal ranking model
should increase CTR (so users click more) and decrease ACP (the
clicked document is ranked higher). We also report additional user-
facing metrics that focus on user search experience.

6.3 Offline Experimental Results

We compare the following models, where all the hyper-parameters
are chosen via proper tuning on the condition that each model
is trained and evaluated independently over the datasets. All the
neural models are implemented using the Tensorflow toolkit [1]
and trained with mini-batch stochastic gradient descent.

(1) Baseline. The baseline model is the concatenation model.
All the features including query and document embeddings

Matching Cross Network for Learning to Rank

are concatenated before being fed into deep layers. This is
similar to the approach described by Zamani et al. [30]. The
model has three fully-connected hidden layers. The number
of neurons in these layers vary from 128 to 512 and the rec-
tifiers are all ReLUs. All other models are compared against
this baseline model.
Decision tree (DT) is a popular technique used for search
ranking, especially prior to neural ranking approaches. The
DT model is an in-house implementation based on Lamb-
daMART [27] with WMRR as the metric to compute the
lambda gradient [8]. The final number of leaves across all
trees is 1000. Note that DT is not a neural approach so it
does not use embedding-based representations for queries
and documents. Thus, the query and document embedding
components are replaced with a BM25-based [21] matching
score. All other features are fed into DT.

(3) Convolutional Neural Network (CNN) is a popular fea-
ture extractor for NLP tasks [13] that has also been explored
for search tasks [17]. Similar to [17], we use CNN modules
to extract features from query and document embeddings
then concatenate them with other features before feeding
them into the fully connected layers. Hyperparameters tuned
include filter size, number of CNN layers, and stride size.

(4) Latent Cross This is a direct application of latent cross [4].
The model treats the query as a latent feature and naively
applies latent cross to the output of a deep module with all
other features.

(5) Multiplication First, which first gets the element-wise mul-
tiplication output of query and document embeddings then
concatenates it with other features and feeds them into fully
connected layers. In other words, this is MCN without latent
Cross.

(6) MCN. The proposed architecture, as shown in Figure 3.

(7) Kernel MCN. We also experimented with a straightforward
extension of MCN by increasing its model capacity. Instead
of an element-wise multiplication between query and docu-
ment embedding as in Sec 5.1, we can use a linear projection
matrix between them:

@

~

fmatching = €query - P - egocuments

which allows interactions between embedding dimensions.
This model reduces to MCN when P is the identity matrix.
We also tried more complex interaction operators but the
results were similar so we omit them.

The offline experiment results are shown in Table 1. It should be
noted that in large commercial search systems, an approach with
an improvement around 0.1% over a large-scale evaluation data set
is fairly significant [26].

From Table 1, we can make the following observations.

(1) DT models do not work well without learning embedding
features, which is also observed in some other work [14].
This verifies the strength of semantic matching reported in
the recent literature.

(2) We were unable to achieve good results using CNN after
extensive tuning. This shows the limited advantage of CNN
over standard text embeddings in the evaluated dataset. More

WWW ’20, April 20-24, 2020, Taipei, Taiwan

Table 1: Relative improvements compared to the baseline
model. Bold numbers denote statistically significant differ-
ences versus the baseline (at the p < 0.05 level using a two-
tailed t-test). T denote statistically significant improvement
over Multiplication First. Note that DT does not include
query and document embedding features (see text).

Model Drive WMRR | GMail WMRR
DT -1.19% -0.77%

CNN +0.07% +0.01%

Latent Cross Query | -0.07% -0.08%
Multiplication First | +0.28% +0.27%

MCN +0.47%" +0.31%
Kernel MCN +0.49%" +0.30%

importantly, the training time is significantly longer than
standard neural architectures. MCN, on the other hand, adds
minimal training overhead due to the simple operations
involved.

(3) The positive results of Multiplication First shows that early
matching, while simple, provides meaningful performance
improvements over concatenation. This empirically verifies
our findings in Section 3 that the concatenation architecture
is inefficient in learning the query-document interactions.

(4) The insignificant results of Latent Cross shows that simply
treating the query as a latent feature does not work well.
Unlike in recommendation systems [4], we need to explicitly
model query-document matching to attain the best results
in search ranking.

(5) MCN and Kernel MCN work the best among all the mod-
els. The experiment numbers show that 1) early matching
matters, and 2) facilitating interaction between the output
of matching and side information is meaningful, as MCN
outperforms the Multiplication First method on both the
GMail and Drive datasets.

(6) The minor difference between kernel MCN and MCN shows
that simply increasing the capacity of the matching function
does not significantly increase performance. Early matching
itself, though simple, works sufficiently well on the large-
scale real-world datasets.

6.4 Online Experimental Result

We conducted large-scale online experiments to further verify the
effectiveness of the MCN method. We use Drive search for the ex-
periment, as MCN achieves the best improvement over the baseline
on this dataset offline. The experiments were run in a standard A/B
experiment setting for a subset of users for one month in March
2019, collecting metrics from 10 million search sessions. We allo-
cated a fraction of online traffic to the experiments, half of the traffic
uses existing production (Concatenation) model and half uses the
MCN model. Because MCN has minimal changes compared to the
production model, it easily met the latency requirements neces-
sary to support Drive’s “search-as-you-type” experience that serves
millions of users. Note that the baseline is trained using the same
training data as the experimental model. The results are shown in
Table 2.

WWW 20, April 20-24, 2020, Taipei, Taiwan

Table 2: Relative performance of MCN over the production
model (Concatenation), together with the confidence inter-
val (CI). Statistically significant results are bold. | indicates
that a lower value reflects better performance.

Metric Relative Performance | CI

CTR +1.90% +1.42%
ACP (|) -1.57% +0.64%
Abandon Rate (]) -0.74% +0.69%
Long Click per Session | +0.96% +1.54%
Time to Click (]) -0.62% +1.64%

We see a consistent 1.9% relative CTR (click through rate) im-
provement and 1.57% ACP (average click position) decrease com-
pared with the production baseline model. These improvements are
considered highly significant in the production setting. It shows
that MCN generalizes well beyond optimizing logged click data.

The other three metrics are session-level metrics. Abandon rate
is the percentage of users abandoning a search session without click-
ing any results. Long Click per Session is the number of long clicks
in every search session (dwelling on the clicked document for more
than five seconds). Time to Click is the time a user spends between
starting a search session and the first click. All these metrics are
significantly positive or trending positive, showing MCN helps to
improve the user’s search experience. MCN has been fully deployed
to serve all Drive search traffic due to these positive evaluation
results and the ease of deployment.

7 CONCLUSIONS

We studied how to utilize query and document embeddings more
effectively and efficiently in the presence of other side information
in learning to rank problems. We started by showing the limitation
of standard neural network architectures with synthetic data that
imitates search scenario. Motivated by the findings, we designed
the Matching Cross Network (MCN), a simple but effective model
architecture that results in significant search quality benefits in two
of the world’s largest personal search engines.

REFERENCES

[1] Martin Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning.
In USENIX Conference on Operating Systems Design and Implementation (OSDI).
265-283.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking refinement. In ACM Conference on Research

and Development in Information Retrieval (SIGIR). 135-144.

Michael Bendersky, Xuanhui Wang, Donald Metzler, and Marc Najork. 2017.

Learning from user interactions in personal search via attribute parameterization.

In International Conference on Web Search and Data Mining (WSDM). 791-799.

[4] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H
Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender
Systems. In International Conference on Web Search and Data Mining (WSDM).
46-54.

[5] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines:
Information retrieval in practice. Vol. 283.

[6] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
neural networks for soft-matching n-grams in ad-hoc search. In International
Conference on Web Search and Data Mining (WSDM).

[7] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural ranking models with weak supervision. In ACM Conference
on Research and Development in Information Retrieval (SIGIR). 65-74.

[8] Pinar Donmez, Krysta M Svore, and Christopher JC Burges. 2009. On the local
optimality of LambdaRank. In ACM Conference on Research and Development in

(3

Zhen Qin et al.

Information Retrieval (SIGIR). 460-467.

[9] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research (JMLR) 12, Jul (2011), 2121-2159.

[10] Faezeh Ensan and Ebrahim Bagheri. 2017. Document Retrieval Model Through

Semantic Linking. In International Conference on Web Search and Data Mining

(WSDM). 181-190.

Mihajlo Grbovic. 2017. Search Ranking And Personalization at Airbnb. In ACM

Conference on Recommender Systems (RecSys). 339-340.

[12] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In Conference on Information and Knowledge Management
(CIKM). 2333-2338.

[13] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882 (2014).

Pan Li, Zhen Qin, Xuanhui Wang, and Donald Metzler. 2019. Combining Decision

Trees and Neural Networks for Learning-to-Rank in Personal Search. In Proceed-

ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining (KDD). 2032-2040.

Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and

Trends® in Information Retrieval 3, 3 (2009), 225-331.

Bhaskar Mitra and Nick Craswell. 2018. An Introduction to Neural Information

Retrieval. Foundations and Trends in Information Retrieval 13, 1 (2018), 1-126.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using

local and distributed representations of text for web search. In The World Wide

Web Conference (WWW). 1291-1299.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.

2016. Text Matching As Image Recognition. In AAAI Conference on Artificial

Intelligence (AAAI). 2793-2799.

Alberto Purpura, Marco Maggipinto, Gianmaria Silvello, and Gian Antonio Susto.

2019. Probabilistic Word Embeddings in Neural IR: A Promising Model That

Does Not Work as Expected (For Now). In International Conference on the Theory

of Information Retrieval (ICTIR).

Jinfeng Rao, Wei Yang, Yuhao Zhang, Ferhan Ture, and Jimmy Lin. 2019. Multi-

perspective relevance matching with hierarchical convnets for social media

search. In AAAI Conference on Artificial Intelligence (AAAI). 232-240.

Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25

Extension to Multiple Weighted Fields. In ACM International Conference on Infor-

mation and Knowledge Management (CIKM). 42-49.

Jiaming Shen, Maryam Karimzadehgan, Michael Bendersky, Zhen Qin, and Don-

ald Metzler. 2018. Multi-task learning for email search ranking with auxil-

iary query clustering. In Conference on Information and Knowledge Management

(CIKM). 2127-2135.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

Learning Semantic Representations Using Convolutional Neural Networks for

Web Search. In The World Wide Web Conference (WWW). 373-374.

BartTwardowski. 2016. Modelling Contextual Information in Session-Aware Rec-

ommender Systems with Neural Networks. In ACM Conference on Recommender

Systems (RecSys). 273-276.

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game for Unifying Generative

and Discriminative Information Retrieval Models. In ACM Conference on Research

and Development in Information Retrieval (SIGIR). 515-524.

[26] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to rank with selection bias in personal search. In ACM Conference on
Research and Development in Information Retrieval (SIGIR). 115-124.

[27] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Information Retrieval 13,
3 (2010), 254-270.

[28] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In ACM Conference on
Research and Development in Information Retrieval (SIGIR). 55-64.

[29] Dawei Yin et al. 2016. Ranking Relevance in Yahoo Search. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 323-332.

[30] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.
Situational context for ranking in personal search. In The World Wide Web Con-
ference (WWW). 1531-1540.

[31] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural Ranking Models with Multiple Document Fields. In International
Conference on Web Search and Data Mining (WSDM). 700-708.

[32] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai.
2017. What to Do Next: Modeling User Behaviors by time-LSTM. In International
Joint Conference on Artificial Intelligence (IJCAI). 3602-3608.

[11

[14

[15

[16

(17

=
&

[19

[20

[21

[22

[23

[24

[25

	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Motivation
	4 Modeling Preliminaries
	5 Methods
	5.1 Embedding Features Matching
	5.2 Latent Cross
	5.3 Matching Cross Network

	6 Experiments
	6.1 Data
	6.2 Experimental Setup and Metrics
	6.3 Offline Experimental Results
	6.4 Online Experimental Result

	7 Conclusions
	References

