
Stabilizing Neural Search Ranking Models
Ruilin Li

1,2
, Zhen Qin

2
, Xuanhui Wang

2
, Suming J. Chen

2
, Donald Metzler

2

1
Georgia Institute of Technology, Atlanta, GA, USA

2
Google LLC, Mountain View, CA, USA

ruilin.li@gatech.edu,{zhenqin,xuanhui,suming,metzler}@google.com

ABSTRACT
Neural search ranking models, which have been actively studied

in the information retrieval community, have also been widely

adopted in real-world industrial applications. However, due to the

high non-convexity and stochastic nature of neural model formu-

lations, the obtained models are unstable in the sense that model

predictions can significantly vary across two models trained with

the same configuration. In practice, new features are continuously

introduced and new model architectures are explored to improve

model effectiveness. In these cases, the instability of neural models

leads to unnecessary document ranking changes for a large fraction

of queries. Such changes lead to an inconsistent user experience

and also adds noise to online experiment results, thus slowing down

the model development life-cycle. How to stabilize neural search

ranking models during model update is an important but largely

unexplored problem. Motivated by trigger analysis, we suggest bal-

ancing the trade-off between performance improvements and the

number of affected queries. We formulate this as an optimization

problem where the objective is to maximize the average effect over

the affected queries. We propose two heuristics and one theory-

guided method to solve the optimization problem. Our proposed

methods are evaluated on two of the world’s largest personal search

services: Gmail search and Google Drive search. Empirical results

show that our proposed methods are highly effective in optimizing

the proposed objective and are applicable to different model update

scenarios.

KEYWORDS
learning to rank, neural network, trigger analysis

ACM Reference Format:
Ruilin Li

1,2
, Zhen Qin

2
, Xuanhui Wang

2
, Suming J. Chen

2
, Donald Metzler

2
.

2020. Stabilizing Neural Search Ranking Models. In Proceedings of The Web
Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380030

1 INTRODUCTION
Ranking is an important problem in many real-world applications

such as web search [36], recommender systems [10], and personal

search [8]. Due to the recent success of deep learning, neural search

ranking models are not only being extensively studied in academic

research, but also deployed in many large-scale industrial applica-

tions [3, 23–27, 37].

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380030

To improve user engagement and achieve business goals like

revenue growth, it is common for practitioners to continuously

iterate on the quality of search ranking models. A typical workflow

for incremental model development is to first propose a quality

improvement idea, such as adding new informative features or

changing the model architecture, and then to train an updated

model. After validating the quality of the model offline, one runs

controlled online experiments (e.g. A/B testing) on real traffic and

conducts statistical analysis to evaluate the performance of the up-

dated model. Traditional controlled experiments can be noisy due

to various factors (e.g. systematic variance in user behavior) and

typically require weeks or longer to converge with statistically sig-

nificant results. Hence, trigger analysis [13, 14] has been proposed

and widely used in practice [46] to facilitate more efficient online

experimentation. In particular, trigger analysis only computes met-

rics for queries that trigger the treatment (i.e., experimental) model.

In the context of ranking, the treatment is triggered if the updated

model generates a different ranked list of results than the base

model. Trigger analysis allows performance changes to be isolated

to the set of affected queries, which results in a better signal-to-

noise ratio and makes it easier to achieve statistically significant

differences between the treatment and control. This helps acceler-

ate the development cycle and allows more accurate measurement

of the performance impact over affected queries.

Through repeated experimentation, we noticed that trigger anal-

ysis is not as useful for neural search rankingmodels as suchmodels

tend to introduce a significant amount of result set churn even if

trained over the same training data. This is because neural net-

works are known to be highly non-convex and hence admit a large

number of local minima. Moreover, the training of a neural network

involves randomness, such as random weights initialization and

stochastic gradients in training. These factors make it difficult to

effectively apply trigger analysis to neural ranking models.

To demonstrate this effect, we train ten identical neural ranking

models (i.e., using the same hyper-parameters and data set) on

Gmail search data. They perform comparably in terms of standard

ranking metrics such as mean reciprocal rank (MRR). However,

Figure 1 shows that the top-6 results returned for a vast majority

of queries differ across pairs of these models. We refer to this as

the instability issue in training neural search ranking models.

Given this observation, it should not be surprising that the

same phenomenon happens when updating neural ranking models.

Queries that are affected (more formally defined in subsection 3.2)

due to instability are undesirable since they significantly weaken

the power of trigger analysis. Also, significant churn in the result

set can lead to an inconsistent user experience [41]. For example,

a user may be accustomed to seeing one set of results for a given

query, but that order may change as a result of model instability

https://doi.org/10.1145/3366423.3380030
https://doi.org/10.1145/3366423.3380030

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li et al.

75.00% 75.50% 76.00%
Percentage of queries with different rankings

0

2

4

6

8

10

C
ou

nt

Figure 1: Histogram of percentage of affected queries with
different rankings. For the 10 independent runs, we com-
pare each pair of them, generating

(
10

2

)
= 45 data points. Each

query is associatedwith up to 6 documents. The sample stan-
dard deviation of MRR is minimal (0.001).

after the model is updated. As such, quality-neutral changes are

often undesirable.

A natural question to ask is: when a new ranking model that

improves ranking performance is trained and compared against a

baseline model, how many of the changed rankings actually con-

tribute to ranking metric improvements and how many are simply

due to the instability of the neural ranking model training? It is de-

sirable to keep only useful changes while suppressing unnecessary

changes. However, it is not straightforward to detect unnecessary

changes. As shown in Figure 2, while it is possible to detect and

filter individual-level instability (e.g., using counterfactual logging),

it is more challenging to do so for population-level instability.

In this paper, we propose three novel approaches to stabilize neu-

ral ranking models. The first two, additive boosting and latent cross,

center around the idea of boosting in machine learning [17, 18].

These two methods are mainly targeted for incremental feature ad-

ditions, which is very common in practice. The motivation for these

two approaches is to boost the base model with the newly added

features while avoiding training a new model from scratch. These

two methods differ in the extent to which they allow interactions

between new and existing features. The third approach, named

score regularization, trains a new neural model but uses scores

of the base model to regularize the loss function. Hence, it takes

into account the changes relative to the base model. We will show

that score regularization directly optimizes an approximation of

the objective function we care about in trigger analysis. Moreover,

score regularization is a unified approach that is suitable for both

feature additions and model architecture changes.

To summarize, our main contributions are:

• We identify the instability problem in neural search rank-

ing which has important real-world implications for more

precise trigger analysis and maintaining a consistent user

experience.

• We propose a single objective that is closely related to trigger

analysis, balancing performance gains and the percentage

of affected queries.

d1 d1

d2

d3 d2

d3

Before After

swap

clickedclicked

(a) Individual level

d2

d1

d3

Before After

clicked

d4

d5

d6

clicked

q1

…

q2 …

d1

d2

d3

clicked

d4

d5

d6

clicked

q1

…

q2 …

(b) Population Level

Figure 2: Two typical types of unnecessary ranking changes.
Figure 2a is at individual level and Figure 2b is at population
level. Both types of changes do not improve the overall rank-
ing metric (e.g., MRR). Blue represents clicked documents.

• We present three novel approaches to stabilize neural rank-

ing model training. In particular, we show score regulariza-

tion is a theoretically-grounded approach to optimize the

objective we care about.

• We conduct extensive experiments using two of the world’s

largest personal search data sets, Gmail search and Google

Drive search, to show the effectiveness of the proposed meth-

ods and to provide guidelines for practitioners.

2 RELATEDWORK
Our work is rooted in neural search ranking models and online

experimentation. There is an abundance of prior work in these

areas and we review them in this section.

2.1 Neural Search Ranking Models
Learning-to-rank (LTR) [30] is the most widely-used and successful

frameworks for developing ranking functions today. The frame-

work, which encompasses so-called pointwise, pairwise, and list-

wise approaches, typically uses supervised machine learning tech-

niques to learn parameterized ranking functions.

In some of the earliest work in the area, Burges proposed RankNet

[5] to leverage the power of neural networks to improve search

ranking models. RankNet is a pairwise model that was later ex-

tended to a listwise approach named ListNet [7]. The theoretical

properties of the listwise approach were studied in [49].

Stabilizing Neural Search Ranking Models WWW ’20, April 20–24, 2020, Taipei, Taiwan

Deep Structured Semantic Model (DSSM) [20] combines deep

learning with latent semantic models. Convolutional Deep Struc-

tured Semantic Models (C-DSSM) [40] extends DSSM by introduc-

ing a CNN with max-pooling. The architecture of C-DSSM can

extract the most salient local features from queries and documents

to enhance overall semantic representation effectiveness. Convo-

lutional Latent Semantic Model (CLSM) is built upon DSSM and

further captures contextual information via a series of projections

from one layer to another in a CNN architecture [39]. The dis-

tributed representation learned by DSSM and its variants can also

be used to re-rank documents based on in-session contextual infor-

mation [29]. Motivated by the dramatic progress in academia, there

is also a substantial increase in deploying neural search ranking

models in industry, e.g., LinkedIn[37], Microsoft[30], Walmart[3],

and Google[44].

For a more detailed review of neural search ranking models,

we refer readers to [19, 33, 35]. To the best of our knowledge, no

existing work has studied the problem of stabilizing neural search

ranking models.

2.2 Large Scale Online Experimentation
Consumer-facing companies, such as Amazon [26, 27], Microsoft

[24, 25] and Google [46], use controlled experiments to evaluate

changes affecting user experience and make decisions accordingly.

Conventional online controlled experiments such as A/B testing

diverts incoming requests into control and treatment groups, evalu-

ates the performance of the base and experiment models separately

and then compares the two. This approach usually requires a large

volume of traffic to obtain significant results hence can slow down

the model development cycle. In practice, many online services

have many features that only affect a small proportion of incom-

ing traffic. In such cases, including requests that do not trigger

the treatment dilutes the true effect. It is instead more efficient to

analyze only requests that can trigger the treatment. This type of

trigger analysis is efficiently implemented by counterfactual log-

ging in practice [13, 14, 46]. By restricting comparison to queries

for which base and experiment models produce different rankings,

trigger analysis can considerably improve the sensitivity of online

experiments.

Another data-efficient method is interleaved evaluation [9, 21,

22]. Interleaved evaluation merges two rankings into one inter-

leaved ranking and reports win, lose, or tie, and hence provides

a direct comparison between two rankers. Interleaved evaluation re-

duces individual-level noise (Figure 2a), but can not handle population-

level noise (Figure 2b).

Although the design of our objective function is motivated by

trigger analysis, our proposed methods can directly improve the

stability of neural search ranking models and can be evaluated with

any online experimentation method.

3 BACKGROUND
We provide some background on learning to rank and trigger anal-

ysis in this section. Key concepts are also defined here.

3.1 Modeling Preliminary
Suppose we have a set of N queries Q = {qi }

N
i=1, each query q

is associated with a group of D documents D(q) = {d
q
j }

D
j=1 and

each document d ∈ D(q) is given a relevance label r (q,d) (e.g.,
a binary or graded label). For notational convenience, we collect

relevance labels of documents associated with the same query q
as a D−dimensional vector r (q). The goal of ranking models is

to generate a ranking π (q) = (π1,π2, · · · ,πD) (πj is the rank of

document dj) over D(q) for each q to optimize an overall ranking

metric Eq∼u(Q) [M(q)], where u(Q) is uniform distribution over Q

and popular choices of ranking metrics M include reciprocal rank

(RR) and normalized discounted cumulative gain (NDCG) [11].

Learning-to-rank (LTR) algorithms learn a parameterized func-

tion f = fθ (·) which takes features of a query-document pair

(q,d) as input, ranks documents associated with q according to

the value of f , and outputs a ranking π (q) = π (q, f). Due to the

non-smoothness of commonly used ranking metrics, learning θ by

directly optimizing this objective can be difficult and approximation

is often needed [4, 6, 7]. We adopt this approach and discuss in de-

tail the ranking metric we use and its approximation in subsection

6.1.

3.2 Definition of Key Concepts
This subsection provides definitions for three key concepts that are

frequently referred to in this paper.

• Base model: The neural ranking model before applying any

update is denoted by f base. This is typically the deployed model in

a production system.

• Benchmark model: The default approach to applying model

updates without considering stabilization, denoted by f benchmark
.

Concretely, if the model update adds features, the default approach

can be to simply concatenate existing features xexist with new

features xnew, x = (xexist,xnew) and train f benchmark
with the

same neural net architecture as that of f base. When the model

update is an architecture change, one uses existing features and

trains f benchmark
with the new architecture. f benchmark

will serve

as a baseline for comparison purposes later.

• Affected query: A query for which the base model f base and
an experimental model f produce different rankings. All affected

queries are denoted by QT = {q ∈ Q|π (q, f) , π (q, f base} ⊆ Q.

3.3 Trigger Analysis
Trigger analysis refers to the study of the treatment’s effect on

affected queries QT . Trigger analysis is important in evaluating

performance changes of an experimental model, since including

queries not in QT not only dilutes the measured impact of the

experiment, but also introduces noise caused by user variance into

metric computation and hence lowers the power of statistical tests.

In statistics, the coefficient of variation is defined as CV = σ
µ ,

where µ > 0 is the mean and σ is the standard deviation of some

statistic. It is commonly used to measure the dispersion of a proba-

bility distribution and is closely related to hypothesis testing. The

smaller CV is, the easier it is to observe significant results in sta-

tistical tests. [28]. We now show, via the following theorem, that

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li et al.

trigger analysis indeed lowers the coefficient of variation compared

with controlled experiments.

Theorem 1. The coefficient of variation of improved ranking met-
ric∆M in controlled experiments CVcontrol is larger than that in trigger
analysis CVtrigger.

Proof. Note that when q ∈ QT
c
, ∆M(q) = 0. Combining this

key fact and conditional expectation, we have

E[∆M] = P(QT)E[∆M |QT] + P(QT
c)E[∆M |QT

c]

= P(QT)E[∆M |QT]

VAR[∆M] = E[∆M2] − E[∆M]2

= P(QT)E[∆M
2 |QT] − P(QT)

2E[∆M |QT]
2

= P(QT)
2
VAR[∆M |QT] + P(QT)P(QT

c)E[∆M2 |QT]

Therefore,

CV
control

CVtrigger

=
(VAR[∆M])

1

2 /E[∆M]

(VAR[∆M |QT])
1

2 /E[∆M |QT]

=

√
1 +

1 − P(QT)

P(QT)

E[∆M2 |QT]

VAR[∆M |QT]

> 1

□

In particular, we see from the above proof when P(QT) is small,

trigger analysis can greatly improve the significance of the test.

The most straightforward way to implement trigger analysis is

to divert traffic to either the control group or the experiment group

conditioned on triggering. Since determining which query request

triggers the treatment may require additional processing at run-

time and increase latency, triggering cannot easily be implemented

online. Instead, we run the experiment model on the logs of the

control group and base model on the logs of the experiment group

to identify the affected queries (i.e., QT). Due to its counterfactual
nature, this approach is known as counterfactual logging [13, 46].

4 PROBLEM DESCRIPTION
Deep neural networks are wellsuited for large scale search ranking

problems for several reasons. First, understanding the semantics of

queries and documents is critical to the success of search engines

and deep models are known for their ability to learn meaningful

semantic embeddings [31, 32]. Second, ranking is typically a large-

scale problem, while neural network models are highly scalable

because training can be distributed and paralleled using specialized

hardware [1, 12].

However, neural networks are highly non-convex and admit

a large number of local minima. Recent research has shown that

almost all local minima are also global minima [34, 42, 43]. Fur-

thermore, multiple sources of randomness are involved in training

deep models, including but not limited to random initialization,

minibatch training, (asynchronous) distributed training, random-

ness of optimizers (in addition to stochastic gradient, e.g. Adagrad

[16]). Therefore, even with exactly the same setup (data, model

hyper-parameters, etc.), independent training runs of the same neu-

ral net result in different models. We refer to this phenomenon as

instability.
Instability is also common when updating the neural ranking

models for better performance. Often, when a modeling improve-

ment is proposed, we observe improved overall ranking perfor-

mance but a large number of affected queries. One natural question

is, how many of these ranking changes are meaningful when it

comes to improving ranking quality and how many of them are

simply due to instability? From a practical perspective, a large per-

centage of affected queries weakens the power of trigger analysis.

Inconsistent ranking results over time can also hurt the user expe-

rience. Therefore, we would like to answer the following research

questions: (1) how do we identify useful and non-useful ranking

changes? (2) is it possible to suppress unnecessary changes and

only keep the useful ones, resulting in more stable neural ranking

models?

In order to leverage the information of new features or the ca-

pacity of more powerful neural architectures, it is reasonable to

expect some changes in ranking results that contribute to improved

ranking quality. In contrast, unnecessarily affected queries do not

contribute to performance gains. Motivated by this key observation,

we propose to maximize the following objective

E[∆M]

P(QT)
(1)

where the numerator E[∆M] is the overall improvement in ranking

metricM and the denominator is the size of affected queries. This

quantity measures the mean improved ranking metric per affected

query and we denote it by ∆M/aq.

Intuitively, we expect significant improvements for each affected

query and hence unnecessary changes are discouraged. If equation

(1) is maximized by f ⋆, the instability issue no longer exists as

f ⋆ = argmin

f
{P(QT (f))|E[∆M(f)] = E[∆M(f ⋆)]}

Among all models which perform equally well as f ⋆, f ⋆ affects

the fewest queries and hence there are no unnecessary changes.

In addition, the objective in equation (1) is also closely related to

trigger analysis. One can rewrite the objective as the performance

gain of the ranking metric from trigger analysis

∆M/aq =
E[∆M(q)]

P(QT)
=

1

|QT |

∑
q∈Q

∆M(q)

=
1

|QT |

∑
q∈QT

∆M(q) = E[∆M(q)|QT]

When ∆M/aq is optimized, we observe a stronger treatment effect

per affected query, which potentially leads to more statistically

significant results.

One concern is that ∆M/aq is relative and as a result can be

misleading. For example, if a new model affects only one query of

the base model – the worst performing one, by lifting the clicked

document to the top – the new model would show a very large

improvement when utilizing trigger analysis, even though the new

model is almost identical to the base one. Although being a sound

and reasonable theoretical concern, very small model changes can

affect millions of queries and users in practical systems. In our

Stabilizing Neural Search Ranking Models WWW ’20, April 20–24, 2020, Taipei, Taiwan

experiments, even the slightest model change gives rise to at least

10% affected queries.We therefore argue that the proposed objective

is still meaningful to optimize in practice.

If optimization problem (1) can be solved successfully by f ⋆ then

we will be able to answer the aforementioned questions. First, es-

sential changes are identified by QT (f
⋆) and unnecessary changes

are characterized by QT (f
⋆)

c
. Second, unnecessary changes can

be suppressed by maximizing trigger metric change.

One potential approach to optimizing ∆M/aq is to develop a

mechanism (e.g., based on offline analysis) that determines whether

the base model or the experimental model performs better for in-

coming queries. This approach can help ensure the ranking per-

formance is improved for every affected query. However, both the

base model and the updated model would need to be served si-

multaneously which may require non-trivial engineering effort.

The additional logic required to implement this would also require

additional processing time and hence has the potential to increases

latency.

The next three subsections are dedicated to solving optimization

problem (1).

5 METHODS
In this section, we introduce three methods to stabilize neural

search ranking models. The first two methods are heuristics and

mainly target cases where new features are added to a base model.

The last method, score regularization, (approximately) solves the

optimization problem maxf ∆M/aq directly and can be applied to

various model development scenarios.

5.1 Additive Boosting
As much of the instability is caused by re-training a deep neural

model from scratch, the most intuitive approach to mitigate this

issue is to avoid complete re-training and exploit the base model as

much as possible.

Additive boosting is a classic family of boosting methods [17,

18] and is widely used in modern data science. We propose using

additive boosting

f boost((xexisting,xnew)) = f base(xexisting) + bϕ (xnew)

In this approach, during model training, the base model is fixed. bϕ
is a learnable booster that fits the residual between the prediction

of the base model f
base

(xexisting) and the ground truth. bϕ can take

different forms. For example, bϕ can be a linear model or even a

neural network itself when a feature with more than one dimension

(e.g., embeddings for a single feature) or a group of new features

are added.

Additive boosting is particularly interesting for low coverage

features, which is not uncommon in practice. Low coverage features

(or feature groups) are those for which only a small fraction (e.g.

less than 20%) of queries have documents with non-default feature

values. When a low coverage feature is added, it is sensible to expect

there to only be a few affected queries between the new model and

the base model because the ranking should not change for queries

whose associated documents have the same default value for the

new feature. Additive boosting can be quite effective in such cases.

Futhermore, scores of documents that correspond to queries that

only have default feature values get changed by the same constant.

This type of score translation does not affect ranking. Therefore,

P(QT) is naturally upper-bounded by the coverage of the (non-

default-valued) new feature.

5.2 Latent Cross
One major drawback of additive boosting is that it does not allow

higher order feature interactions between existing and new features,

hence meaningful interactions between them can not be captured.

We therefore propose using latent cross [2], a boosting-inspired idea

that is able to learn second-order interactions between features.

Figure 3 provides a schematic illustration of boosting with latent

cross. All variables in the base model f base are frozen, similar to

that in additive boosting. After being processed by a trainable dense

layer for dimension matching, new features are then element-wise

multiplied with the output of the second-to be-last layer in f base.
Boosting with a latent cross architecture can learn meaningful fea-

ture interactions between existing and new features, potentially

providing better overall ranking performance than additive boost-

ing. Intuitively, since the base model is fixed, the number of affected

queries should be lower than when training from scratch, though

we no longer ensure a tight upper bound for low coverage features

as with additive boosting.

Input (existing features)

Fully Connected

σ

Fully Connected Fully Connected

Input (new features)

∗

σ

Softmax

Figure 3: Illustration of latent-cross architecture. Dashed
green and solid red boxes represent trainable and untrain-
able layers respectively. ∗ is element-wise multiplication
and σ is an activation function (e.g., sigmoid, ReLU). Note
the left part (base model) does not have to be a stack of fully
connected layers.

Figure 4 shows the relative positions of additive boosting, latent

cross, and the benchmark model on the spectrum of affected queries

and feature interactions. Additive boosting and latent cross pro-

vide two alternatives to balance the trade-off between new/existing

feature interactions (usually correlated with overall ranking perfor-

mance) and the number of affected queries. Intuitively, it is easier to

improve performance for a small subset of queries than to achieve

the same improvement over a large subset, hence additive boost-

ing and latent cross can achieve better results than the benchmark

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li et al.

interaction between new and existing features

percentage of affected queries

additive boosting latent cross benchmark

largesmall

less more

Figure 4: An illustration of additive boosting, latent cross,
and benchmark on the spectrum of affected queries and fea-
ture interaction.

model and can be regarded as heuristically optimizing the objective

in equation (1).

Additive boosting and latent cross are limited to model updates

that involve adding new features. They can not handle updates

that involve architecture changes. This limitation motivates us to

consider a more unified and systematic approach in the next section.

5.3 Score Regularization
Score regularization allows re-training a neural network model to

optimize the objective function in (1) directly.

Typically, neural search ranking models are updated by adding

more informative features or changing the model architecture to

increase capacity. In both scenarios, the update results in a more

powerful model and we may reasonably assume E[∆M(f)] > 0.

Commonly used ranking metrics (such as MRR, NDCG) are all

bounded, therefore E[∆M(f)] is also upper bounded. Note that

optimization problem (1) is a standard fractional programming and

can be converted to an equivalent problem due to Dinkelbach [15],

max

f

E[∆M(f)]

P(QT (f))
= max

f
{E[∆M(f)] − λP(QT (f))}

for some λ > 0. The latter one can be written as

max

f
{E[∆M(q, f)] − λP(QT (f))

⇐⇒ max

f
{E[M(f) −M(f base)] − λP(QT (f))}

⇐⇒ max

f
{E[M(f)] − λP(QT (f))}

⇐⇒ min

f
−E[M(f)]︸ ︷︷ ︸
first term

+λ P(QT (f))︸ ︷︷ ︸
second term

(2)

In practice, λ is unknown and treated as a tunable hyper-parameter.

The first term is the original objective in LTR and is approximated

the same way as in the benchmark model. The second term is non-

smooth and also needs to be approximated. An intuitive method is

to use the difference of scores as surrogate of P(QT (f)). Compared

with the benchmark model, the only difference is that the loss

function has an additional score regularization term, hence we refer

to this approach as score regularization. We denote the minimizer

of equation (2) by f srλ .

Compared with the benchmark method, score regularization

differs only by the additional regularization term and can be easily

implemented in practice.

The remainder of this section describes two possible approxima-

tion techniques and the connection to ensemble methods.

5.3.1 Pointwise Score Regularization. The first option is a direct

comparison of document scores output by the base model and the

new model:

P(QT (f)) ≈
1

|Q|

∑
q∈Q

∑
d ∈D(q)

R(f (d), f base(d))

where R(·, ·) is a bi-variate function. We refer to this choice as

pointwise score regularization because the score regularization

term drives the new model to reproduce the exact score of the base

model for every document. Common choices of R(·, ·) include the
L2 norm (squared) and L1 norm

L2 : R(x ,y) = |x − y |2 , L1 : R(x ,y) = |x − y | .

5.3.2 Listwise Score Regularization. Although pointwise score reg-

ularization is straightforward, it can be too restrictive in that any

monotonic transformation (e.g. translation) can change scores but

still preserve the ranking. Requiring new models to achieve a par-

ticular score configuration can be difficult.

As discussed in [7], the value of f (q,d) is the logit of document

d being clicked for query q. We therefore propose the following

listwise score regularization

P(QT (f)) ≈
1

|Q|

∑
q∈Q

R(˜f (q), ˜f
base

(q))

where
˜f (q) = 1∑

d∈D(q) exp{f (q,d)}
[exp{ f (q,d1)}, · · · , exp{ f (q,dD)}]

and R : RD ×RD → R. With softmax normalization, we turn a logit

vector into a probability vector and guarantee ranking invariance

under a common type of monotonic transformation - translation.

We consider four regularizers for listwise score regularization:

L2 : R(x ,y) =
D∑
i=1

(xi − yi)
2 , L1 : R(x ,y) =

D∑
i=1

|xi − yi | ,

KL:R(x ,y) =
D∑
i=1

xi log
xi
yi
, Hellinger:R(x ,y) =

D∑
i=1

(
√
xi −

√
yi)

2 .

5.3.3 Connection to Ensemble Methods. When λ = 0, the regu-

larization term vanishes and the score regularization model f sr
0

degenerates to the benchmark model f benchmark
; when λ = ∞, the

regularization term forces f sr∞ to recover f base. Therefore, when
λ varies in (0,∞), f srλ is a continuous (nonlinear) interpolation be-

tween f base and f benchmark
in model space. See Figure 5 for an

illustration. In this sense, score regularization can be viewed as an

ensemble of the base model and the benchmark model.

Surprisingly, score regularization is also closely related to boost-

ing. In particular, when pointwise L2 regularization is used, Shalev

showed that under mild conditions, training a model with the loss in

Equation 2 amounts to performing one selfie-boost step [38]. Selfie-
boost, unlike conventional boosting algorithms such as gradient

boosting trees [18], does not use a linear combination of generated

models as its final model, but always replaces the old model with the

new one and results in a single model in the end. Therefore, selfie-
boost is well-suited for boosting neural nets. The selfie-boost point
of view also helps us understand why score regularization should be

Stabilizing Neural Search Ranking Models WWW ’20, April 20–24, 2020, Taipei, Taiwan

model space

f sr∞ (f base)
f sr
0
(f benchmark)

f srλ

Figure 5: Illustration of f srλ being a (nonlinear) interpolation
between f base and f benchmark in model space.

better than the benchmark in terms of∆M/aq. Due to the regulariza-

tion term, we have P(QT (f
sr

λ)) < P(QT (f
benchmark)) and thanks to

the boosting effect, we have E[M(f srλ)] > E[M(f benchmark)], hence

score regularization has better performance measured in ∆M/aq.

In summary, the score regularization approach is motivated to

directly (but approximately) optimize ∆M/aq and works for a wide

variety of different types of model changes. Hence it is a unified

and systematic approach to stabilize neural search ranking models.

6 EVALUATION
In this section, we study how to stabilize neural ranking model

updates in the context of personal search. We conduct a series of ex-

periments over two commercial personal search engines, Gmail and

Google Drive search, to evaluate the effectiveness of the methods

proposed in section 5.

6.1 Experiment Setup
6.1.1 Data set and metric. Our experiments use click-through data

sampled from Gmail and Google Drive search logs. We discard

queries without clicks. In total, we have hundreds of millions

of queries in each data set. Each query is associated with up to

6 documents, which is a constraint arising from the user inter-

face. To protect user privacy, all data are anonymized using k-
anonymity [45] and the only content feature we have access to

are query and document n-grams that are frequent in the corpus.

We use these content features, together with other categorical (e.g.

is_spam, is_social, is_promotion, etc.) and dense numeric (e.g.,

document_age, num_recipients, etc.) features to build feature vec-
tors for each query-document pair (q,d). Among collected queries,

80% are used for training, 15% are used for validation and hyper-

parameter tuning, and the remaining 5% are held out for testing.

For personal search, click-through data serves as a binary indi-

cator of relevance [21], For such binary relevance labels, we use

mean reciprocal rank (MRR) as our primary metric of interest. If

we denote the index of the clicked by j⋆ then

MRR = Eq∼u(Q)[RR(q)] =
1

|Q|

∑
q∈Q

1

π j⋆ (q)

We use MRR as the objective in learning-to-rank and approximate

it via the softmax loss [7], which is a differentiable lower bound of

MRR in log scale [4]. This approximation allows us to interpret the

value of f as the logit of the document being clicked.

We primarily use weighted reciprocal rank (WRR) as the evalua-

tion metric for our offline experiments and report mean improved

weighted reciprocal rank per affected query (∆WRR/aq).

M(q) =WRR(q) =
w j⋆

π j⋆ (q)

where w1,w2, · · · ,wD are constants that can be estimated using

the RandPair method [48]. WRR accounts for position bias in clicks

and bridges the gap between our offline experiments and actual

online experiments [48]. We also report the relative improvement

of overall WRR (∆WRR% =
E[∆WRR(f)]
E[WRR(f base)]) and the percentage of

affected queries P(QT) for a deeper understanding of the model

behavior.

6.1.2 Experiment Design. We use a multi-layer perceptron (MLP)

neural net implemented in Tensorflow as our parameterized func-

tion f . Our ranking model is trained with the softmax cross entropy

loss [4, 7]. We perform two major categories of experiments. The

first category adds new features to a base model. We experiment

with three groups of new features for both Gmail and Drive. The

new features with their characteristics are summarized in Table

1. We cover typical practical feature addition scenarios, including

adding a single feature (both low and high coverage) and groups

of features. The second category changes the model architecture.

Here, we experiment with increasing the capacity by adding one

more hidden layer to the base model. We deepen hidden layers from

[1024, 512, 256, 128, 64] to [2048, 1024, 512, 256, 128, 64] for Gmail,

and from [256, 128, 64] to [512, 256, 128, 64] for Drive.

Table 1: Summary of Added New Features.

Service Label Comments

Gmail

A A single feature

B A single feature, low coverage

C A group of 5 features

Drive

D A single feature

E A single feature

F A group of 5 features

We report the results of a simple linear model for bϕ in addi-

tive boosting. We also tried a more complex booster such as an

MLP when adding group of features but observed similar empiri-

cal performance due to the limited interaction among the newly

added features. For score regularization, the regularization strength

λ is tuned in {1, 10, 100}. Since the scale of the gradient is approxi-

mately proportional to λ, we set the learning rate to be inversely
proportional to λ, i.e., l = c

λ to facilitate stable training and c is
tuned in {0.1, 0.5, 1.0}. The hyper-parameter pair (λ, l) that leads
to the highest ∆WRR/aq on the validation set is selected.

6.2 Evaluation Results and Analysis
In this subsection, we report and analyze experiment results. Experi-

ment results are summarized in Table 2. For brevity, we only present

the L2 regularizer for the listwise score regularization family. In

commercial personal search systems such as Gmail and Google

Drive, an overall improvement of 0.5% for WRR is typically consid-

ered significant [47].

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li et al.

A B C
new features

0.02

0.01

0.00

0.01

0.02

0.03

W
R

R
/a

q

L2
L1
benchmark

(a) pointwise

A B C
new features

0.00

0.01

0.02

0.03

0.04

W
R

R
/a

q

Hellinger
L2
KL
L1
benchmark

(b) listwise

Figure 6: Comparison of pointwise and listwise score regularization for a model update that adds new features (Gmail).

6.2.1 Pointwise v.s. Listwise Score Regularization. We first com-

pare pointwise and listwise score regularization. We only present

the comparison of models where new features are added over the

Gmail data set since we observe similar trends for other settings.

From Figure 6a, we see that pointwise score regularization does not

perform well. When new features are added, the ranking metric

deteriorates in most cases. This result validates the concern that

pointwise score regularization can be too restrictive in forcing new

models to achieve a particular, specific score configuration and

should be discouraged in practice. On the contrary, in Figure 6b,

except for the case of applying the L1 regularizer to feature C, the

listwise score regularization approach with various regularizers all

outperform the benchmark consistently.

As listwise score regularization demonstrates a clear win over

pointwise score regularization, we will refer to the former as score

regularization for simplicity in the remainder of this section.

6.2.2 Adding New Features. Empirical results for model updates

that add new features are shown in Figure 7. Overall, additive

boosting and score regularization with an appropriate regularizer

(e.g., Hellinger, L2 and KL) consistently outperform the benchmark

model across all features. Latent cross is also quite effective in

certain cases (e.g., feature E). These results validate the effectiveness

of our proposed methods in general.

Additive boosting has impressive performance when the low

coverage feature B for Gmail is added. From table 2, we see that

compared with the benchmark, additive boosting drops the percent-

age of affected queries from 73.8% to 11.0% without sacrificing much

ranking performance gain. Moreover, additive boosting can also be

quite effective when a group of features are added (feature group C

for Gmail). This is probably because the interaction between new

and existing features is weak and the newly added group of features

alone can achieve most of the ranking performance headroom.

For score regularization, despite the robust performance in gen-

eral, Hellinger is the best performing regularizer. L1 regularization
does not perform equally well in experiments and can sometimes

be worse than the benchmark (feature E). We believe this is due

to L1 being non-smooth and the propagated gradients are not as

stable as that in other regularizers.

6.2.3 Architecture Change. As we mentioned before, only score

regularization can be used to stabilize neural ranking models when

their underlying model architecture changes. The performance of

various regularizers are shown in Figure 8. All regularizers with

appropriate regularization strength outperform the benchmark. L2
performs the best over all four regularizers and Hellinger performs

the second best.

6.2.4 More Details on Score Regularization. We present a more de-

tailed comparison between score regularization and the benchmark

model. Concretely, for each model update, we record the relative

improve of WRR, ∆WRR%, and the percentage of affected queries

P(QT) of each score regularization approach, and compare with

those of the benchmark model. The difference in P(QT) is plotted
on the x-axis, the difference of ∆WRR% is plotted on the y-axis,
and the result is shown in Figure 9. L2 regularization with λ = 1.0

is used to generate the plots.

Each point represents a comparison between score regularization

and the benchmark model for an update and all these points have

negative x-coordinates and positive y-coordinates. This means that,

compared with the benchmark, score regularization not only effec-

tively reduces the number of affected queries, but also improves

the ranking metric further because it is an ensemble of the base

and benchmark model, hence is better than either one.

In Figure 10, we plot the performance improvement ∆WRR%

and the percentage of affected queries P(QT) as regularization

strength parameter λ varies. When λ increases, P(QT) decreases as
expected, but ∆WRR% does not necessarily decrease, e.g., Figure

10d. Consequently, even if instability is not a concern in certain

applications, one can still leverage score regularization to update a

model and obtain a model that performs better than the benchmark.

Such favorable empirical behavior is due to the close connection

between score regularization and ensemble methods as discussed

in subsection 5.3.3, and further validates the advantage of score

regularization.

6.2.5 Discussion of Boosting Methods. From Table 3, we see boost-

ing methods have considerably smaller coefficients of variation

than the benchmark, also smaller than that of score regularization

methods in many cases, suggesting they may be able to achieve

Stabilizing Neural Search Ranking Models WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: Comparison of proposed methods on Gmail and Drive data sets. The units of ∆WRR% and P(QT) are percentage. The
best ∆WRR/aq is highlighted in bold face for each update.

Service Update

Benchmark Additive Boosting Latent Cross L2
∆WRR/aq ∆WRR% P(QT) ∆WRR/aq ∆WRR% P(QT) ∆WRR/aq ∆WRR% P(QT) ∆WRR/aq ∆WRR% P(QT)

Gmail

A 0.0338 5.34 83.0 0.0380 3.52 48.7 0.0329 4.25 67.6 0.0389 5.93 80.0

B 0.0118 1.66 73.8 0.0720 1.51 11.0 0.0174 1.85 55.6 0.0155 2.06 69.9

C 0.0174 2.50 75.4 0.0363 1.87 27.1 0.0193 2.12 57.6 0.0209 2.88 72.5

Deeper 0.0029 0.40 73.1 — — — — — — 0.0066 0.66 52.9

Drive

D 0.0068 0.55 62.4 0.0097 0.24 19.6 0.0097 0.37 29.3 0.0097 0.56 45.0

E 0.0072 0.58 62.5 0.0107 0.29 20.8 0.0120 0.41 26.5 0.0113 0.65 44.6

F 0.0088 0.71 63.1 0.0108 0.29 20.5 0.0097 0.50 39.9 0.0110 0.65 45.5

Deeper 0.0013 0.10 59.2 — — — — — — 0.0067 0.36 41.9

A B C
new features

0.00

0.02

0.04

0.06

W
R

R
/a

q

additive boosting
latent cross
Hellinger
L2
KL
L1
benchmark

(a) Gmail

D E F
new features

0.000

0.002

0.004

0.006

0.008

0.010

0.012

W
R

R
/a

q

additive boosting
latent cross
Hellinger

L2
KL

L1
benchmark

(b) Drive

Figure 7: Comparison of various proposed methods when adding new features.

Gmail Drive0.000

0.002

0.004

0.006

0.008

W
R

R
/a

q

Hellinger
L2
KL

L1
benchmark

Figure 8: Comparison of score regularization with various
regularizers for architecture change.

statistically significant results more efficiently in online experi-

mentation. In practice, however, when consecutively adding new

features to the base model, additive boosting and latent cross grow

many branches which may be difficult to maintain. To mitigate this

inconvenience and still leverage the power of boosting methods, we

-3.5% -3.0% -2.5%
(T(fsr)) (T(fbenchmark))

0.0%

0.2%

0.4%

0.6%

W
R

R
%

(f
sr

) -

W
R

R
%

(f
be

nc
hm

ar
k) A

B
C
Deeper (Gmail)
D
E
F
Deeper (Drive)

Figure 9: Detailed comparison between score regularization
and benchmark for each update.

can either periodically retrain a deep neural model with all features

or use boosting methods to identify useful new features and then

launch the corresponding benchmark model.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li et al.

100 101 102

regularization strength
3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

6.0%
W

RR
%

WRR% (fsr)
(T(fsr))
WRR% (fbenchmark)
(T(fbenchmark)) 55%

60%

65%

70%

75%

80%

(
T)

(a) A

100 101 102

regularization strength
0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

W
RR

%

WRR% (fsr)
(T(fsr))
WRR% (fbenchmark)
(T(fbenchmark)) 45%

50%

55%

60%

65%

70%

75%

(
T)

(b) B

100 101 102

regularization strength

1.0%

1.5%

2.0%

2.5%

W
RR

%

WRR% (fsr)
(T(fsr))
WRR% (fbenchmark)
(T(fbenchmark))

45%

50%

55%

60%

65%

70%

75%

(
T)

(c) C

100 101 102

regularization strength

0.2%

0.3%

0.4%

0.5%

0.6%

W
RR

%

WRR% (fsr)
(T(fsr))
WRR% (fbenchmark)
(T(fbenchmark))

35%

40%

45%

50%

55%

60%

65%

70%

75%

(
T)

(d) Deeper

Figure 10: ∆WRR% (left y-axis in blue) and P(QT) (right y-axis in red) of score regularization when regularization strength λ
varies. Dotted horizontal lines represent the performance of the benchmark model. Four figures correspond to four updates
in Gmail data set.

Table 3: Estimated coefficient of variation (CV) of ∆WRR/aq.
The unit is 10−4. The smallest CV is highlighted in boldface.
λ = 1.0 for L2 regularization.

Service Update Bechmark Additive Boosting Latent Cross L2

Gmail

A 70.5 54.5 46.7 72.7

B 302.6 82.6 177.0 120.5

C 276.3 108.7 122.8 87.5

Drive

D 1669.6 749.8 822.8 1089.9

E 1206.9 684.4 859.5 928.2

F 986.0 662.3 1057.6 792.8

6.2.6 Summary. Based on the above observations, we draw several

major conclusions and provide guidelines for practitioners.

(1) When adding low-coverage features, additive boosting should

be considered, since it is a simple yet effective approach to

stabilize neural ranking models for this type of update.

(2) By observing the performance of both updates that involve

adding new features and changing the underlying model ar-

chitecture, we conclude that Hellinger and L2 listwise score
regularization have robust performance and should be con-

sidered as the default regularizer for score regularization.

(3) Score regularization works for both types of model updates,

improves ranking quality, and suppresses the number of

affected queries simultaneously. It provides a theoretically-

grounded and unified approach to stabilize neural ranking

models.

7 CONCLUSION
In this paper, we identified an important problem, the instability

issue of neural ranking models. We discuss how this issue makes it

difficult to pinpoint beneficial model updates. Additionally, unnec-

essary updates that change search ranking are undesirable because

as users adjust from one update to another, inconsistencies increase

failures in finding relevant documents [41]. As such, we proposed a

new objective, improved ranking metric per affected query ∆M/aq,

that can be used to balance the trade-off between quality improve-

ments and the number of affected queries. As such, three stabi-

lization methods were proposed, including heuristic approaches

utilizing additive boosting and latent cross, as well as a theoretically

motivated approach which we prove optimizes an approximation of

∆M/aq. We studied this problem in the context of personal search

and empirically validated our proposed methods on both Gmail and

Stabilizing Neural Search Ranking Models WWW ’20, April 20–24, 2020, Taipei, Taiwan

Google Drive search, demonstrating that our proposed methods

significantly improve the stability of neural ranking model updates.

Our work opens up several interesting research directions for

future work. (1) While we study the instability issue in the context

of personal search, the proposed methods are generally applicable

and it would be interesting to apply them to other use cases. (2)

Ranking permutations below the clicked document can also be less

informative when learning a model. How to stabilize neural rank-

ing models under more sophisticated ranking comparator metrics

can also be studied in the future. (3) While we focus on neural

ranking models, other widely used learning-to-rank methods such

as LambdaMART [6] also involve randomness in training and can

suffer from instability – stabilizing these methods also warrants

further investigation.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Li et al.

REFERENCES
[1] Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying parallel and distributed

deep learning: An in-depth concurrency analysis. arXiv preprint arXiv:1802.09941
(2018).

[2] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H

Chi. 2018. Latent cross: Making use of context in recurrent recommender systems.

In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining. ACM, 46–54.

[3] Eliot Brenner, Jun Zhao, Aliasgar Kutiyanawala, and Zheng Yan. 2018. End-to-End

Neural Ranking for eCommerce Product Search: an Application of Task Models

and Textual Embeddings. Proc. of the 41st International ACM SIGIR Conference on
Research and Development in Information Retrieval (2018).

[4] Sebastian Bruch, Xuanhui Wang, Mike Bendersky, and Marc Najork. 2019. An

Analysis of the Softmax Cross Entropy Loss for Learning-to-Rank with Binary

Relevance. In Proceedings of the 2019 ACM SIGIR International Conference on the
Theory of Information Retrieval.

[5] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Gregory N Hullender. 2005. Learning to rank using gradient

descent. In Proceedings of the 22nd International Conference on Machine learning.
89–96.

[6] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
International Conference on Machine learning. 129–136.

[8] David Carmel, Guy Halawi, Liane Lewin-Eytan, Yoelle Maarek, and Ariel Raviv.

2015. Rank by time or by relevance?: Revisiting email search. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management.
ACM, 283–292.

[9] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. 2012. Large-

scale validation and analysis of interleaved search evaluation. ACM Transactions
on Information Systems (TOIS) 30, 1 (2012), 6.

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[11] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines:
Information retrieval in practice. Vol. 520. Addison-Wesley Reading.

[12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale

distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[13] Alex Deng and Victor Hu. 2015. Diluted treatment effect estimation for trigger

analysis in online controlled experiments. In Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining. ACM, 349–358.

[14] Alex Deng, Ya Xu, Ron Kohavi, and Toby Walker. 2013. Improving the sensitivity

of online controlled experiments by utilizing pre-experiment data. In Proceedings
of the Sixth ACM International Conference on Web Search and Data Mining. ACM,

123–132.

[15] Werner Dinkelbach. 1967. On Nonlinear Fractional Programming. Management
Science 13, 7 (1967), 492–498.

[16] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[17] Yoav Freund, Robert E Schapire, et al. 1996. Experiments with a new boosting

algorithm. In Proceedings of the 13th International Conference on Machine Learning,
Vol. 96. 148–156.

[18] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of statistics (2001), 1189–1232.
[19] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen

Wu, W Bruce Croft, and Xueqi Cheng. 2019. A deep look into neural ranking

models for information retrieval. arXiv preprint arXiv:1903.06902 (2019).
[20] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. ACM, 2333–2338.

[21] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.

In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 133–142.

[22] Thorsten Joachims. 2002. Unbiased evaluation of retrieval quality using click-

through data. (2002).

[23] Ronny Kohavi, Thomas Crook, Roger Longbotham, Brian Frasca, Randy Henne,

Juan Lavista Ferres, and Tamir Melamed. 2009. Online experimentation at Mi-

crosoft. Data Mining Case Studies 11 (2009), 39.
[24] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.

2013. Online controlled experiments at large scale. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 1168–1176.

[25] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne. 2009.

Controlled experiments on the web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[26] Ron Kohavi, Llew Mason, Rajesh Parekh, and Zijian Zheng. 2004. Lessons and

challenges from mining retail e-commerce data. Machine Learning 57, 1-2 (2004),

83–113.

[27] Ronny Kohavi and Matt Round. 2004. Front line internet analytics at Amazon.

com. Santa Barbara, CA (2004).

[28] Erich L Lehmann and Joseph P Romano. 2006. Testing statistical hypotheses.
Springer Science & Business Media.

[29] Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. 2014. Deep

learning powered in-session contextual ranking using clickthrough data. In

Advances in neural information processing systems.
[30] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations

and Trends® in Information Retrieval 3, 3 (2009), 225–331.
[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems. 3111–3119.
[33] Bhaskar Mitra, Nick Craswell, et al. 2018. An introduction to neural information

retrieval. Foundations and Trends® in Information Retrieval 13, 1 (2018), 1–126.
[34] Quynh Nguyen and Matthias Hein. 2017. The loss surface of deep and wide

neural networks. In Proceedings of the 34th International Conference on Machine
Learning. 2603–2612.

[35] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur Rahman,

Pinar Karagoz, Alex Braylan, Brandon Dang, Heng-Lu Chang, Henna Kim, Quin-

ten McNamara, et al. 2018. Neural information retrieval: At the end of the early

years. Information Retrieval Journal 21, 2-3 (2018), 111–182.
[36] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[37] Rohan Ramanath, Gungor Polatkan, Liqin Xu, Harold Lee, Bo Hu, and Shan

Zhou. 2018. Deploying deep ranking models for search verticals. arXiv preprint
arXiv:1806.02281 (2018).

[38] Shai Shalev-Shwartz. 2014. Selfieboost: A boosting algorithm for deep learning.

arXiv preprint arXiv:1411.3436 (2014).
[39] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

A latent semantic model with convolutional-pooling structure for information

retrieval. In Proceedings of the 23rd ACM international conference on conference on
information and knowledge management. ACM, 101–110.

[40] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

Learning semantic representations using convolutional neural networks for web

search. In Proceedings of the 23rd International Conference on World Wide Web.
ACM, 373–374.

[41] Ben Shneiderman, Donald Byrd, and W Bruce Croft. 1998. Sorting out searching:

A user-interface framework for text searches. Commun. ACM 41, 4 (1998), 95–98.

[42] Daniel Soudry and Yair Carmon. 2016. No bad local minima: Data indepen-

dent training error guarantees for multilayer neural networks. arXiv preprint
arXiv:1605.08361 (2016).

[43] Daniel Soudry and Elad Hoffer. 2017. Exponentially vanishing sub-optimal local

minima in multilayer neural networks. arXiv preprint arXiv:1702.05777 (2017).

[44] Danny Sullivan. 2016. FAQ: All about the Google RankBrain algorithm. Google’s
using a machine learning technology called RankBrain to help deliver its search
results. Here’s what’s we know about it.[cited 2018 May 15] Available from:
https://searchengineland. com/faq-all-about-the-new-google-rankbrain-algorithm-
234440 (2016).

[45] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05
(2002), 557–570.

[46] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. 2010. Overlap-

ping experiment infrastructure: More, better, faster experimentation. In Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 17–26.

[47] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In Proc. of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 115–124.

[48] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc

Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal

Search. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining (WSDM ’18). ACM, New York, NY, USA, 610–618. https:

//doi.org/10.1145/3159652.3159732

[49] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise

approach to learning to rank: theory and algorithm. In Proceedings of the 25th
International Conference on Machine learning. 1192–1199.

https://doi.org/10.1145/3159652.3159732
https://doi.org/10.1145/3159652.3159732

	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Search Ranking Models
	2.2 Large Scale Online Experimentation

	3 Background
	3.1 Modeling Preliminary
	3.2 Definition of Key Concepts
	3.3 Trigger Analysis

	4 Problem Description
	5 Methods
	5.1 Additive Boosting
	5.2 Latent Cross
	5.3 Score Regularization

	6 Evaluation
	6.1 Experiment Setup
	6.2 Evaluation Results and Analysis

	7 Conclusion
	References

