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ABSTRACT
Distributed graph processing frameworks formulate tasks as se-

quences of supersteps within which communication is performed

asynchronously by sending messages over the graph edges. PageR-

ank’s communication pattern is identical across all its supersteps

since each vertex sends messages to all its edges. We exploit this

pattern to develop a new communication paradigm that allows us

to exchange messages that include only edge payloads, dramatically

reducing bandwidth requirements. Experiments on a web graph of

38 billion vertices and 3.1 trillion edges yield execution times of 34.4

seconds per iteration, suggesting more than an order of magnitude

improvement over the state-of-the-art.
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1 INTRODUCTION
The advent of web search and the popularity of social networks has

led to the creation of very large graphs. Facebook reports 2 billion

monthly active users [5] and at least 1 trillion connections between

them [12], while Google reports indexing hundreds of billions of

web pages [6]. Executing PageRank at this scale requires efficient

graph processing systems. Several such systems have been proposed

in the recent past, including Pegasus [19], Pregel [24], HaLoop [9],

Giraph [4], comb. BLAS [10], PowerGraph [14], Giraph++ [32],

Naiad [25], GPS [29], Mizan [20], Spark/GraphX [15], Blogel [33],

PowerLyra [11], BIDMat/Kylix [35], X-Stream [28], Chaos [27] and

GraphChi [21]. Extensive comparisons between state-of-the-art

frameworks can be found in [16] and [34].

One of the main tasks of a large-scale graph processing frame-

work is to efficiently implement the following primitive: iterate

over the graph’s vertices, generate messages for each of the edges’

targets, and deliver all generated messages to the appropriate tar-

gets. To achieve this, the input graph is first split into a number of
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partitions. Partitioning can either be user-driven, the output of a

graph balancing algorithm or random, but typically graph vertices

are randomly placed in partitions. A source partition transmits mes-

sages towards a target partition in the form of {message target id,

message payload} tuples. Target identifiers are necessary so that the

receiving partition is able to deliver the message to the appropriate

vertex upon reception. However, vertex ids are large hashes whose

size can dominate the size of the tuple (see Section 3.1). This is

especially true for PageRank, where payloads are typically only

32-bits long. While some graph processing systems map vertex ids

to a contiguous range of integers [29], thereby reducing their size,

relabeling vertex ids is expensive for web-scale graphs.

Orthogonally, even though random placement generates well-

balanced partitions, any partitioning scheme will lead to inlinks

imbalance when there exist large in-degree vertices. To address

this, graph processing systems introduced partitioning schemes

where individual edges (instead of vertices) are randomly parti-

tioned [14]. This approach indeed leads to partitions that are also

inlink-balanced, but imposes a significant overhead as the outlinks

of any given vertex no longer reside in the same partition. As a con-

sequence, multiple partitions need to maintain state information of

a given vertex and additional communication is necessary to keep

this information synchronized. Alternatively, source-side aggrega-

tion has been used to address the problem, where messages towards

the same target are combined before sent. This is effective because

there will be a large number of edges on every partition pointing to

a large in-degree vertex. However, source-side aggregation requires

maintaining a mapping from unique edge targets to aggregated

payloads, which is impractical since the number of unique edge

targets per partition is usually the same order of magnitude as the

number of all edges in the partition.

In this paper, we introduce a new communication paradigm for

distributed graph processing systems, specifically optimized for

PageRank-like communication patterns, which allows us to: (1) ex-

change messages between partitions by only transmitting message

payloads; and (2) perform partial source-side message aggregation,

only for frequent message targets. First, we impose an order on the

messages exchanged between two arbitrary partitions within each

superstep. This allows us to memorize the order of incoming target

ids per {source, target} partitions tuple. Consequently, partitions

are able to transmit just message payloads: the corresponding tar-

get partitions are expected to pair the incoming payloads with the

correct target vertex identifiers upon receiving them (see Figure

1). Second, we observe that after incoming id orders have been

obtained, source partitions no longer need to maintain target ids

for each edge and therefore, only the target partition id is main-

tained for each edge. This allows us to accelerate the local iterations

over each partition’s edges by transforming vertex identifiers into a

more compact form that maintains just enough information for the

system to be able to send the corresponding messages (see Section

3.3). Third, we establish a fast, deterministic method for selecting
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Figure 1: Implicit Targeting. Edge target identifiers are labeled as Ki . Edge payloads are labeled as Vi . Partitions P1 and P2 are
sending messages to partitions P3 and P4. (i) each partition iterates over the edges assigned to it and buffers messages per
target partition; (ii) buffered messages are sent to their respective target partitions; (iii) packets arrive at target partitions; (iv)
incoming messages containing payloads are paired with pre-computed target vertex identifiers (labeled as Lj ) and delivered
to the application. Lj are local vertex identifiers, only known to their partitions, corresponding to the global Kj identifiers.
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Figure 2: Source-side Aggregation. Partitions P1, P2 and P4
contain 5, 3 and 6 edges respectively towards vertexv in par-
tition P3. (a) aggregation is not performed; (b) source-side
aggregation is performed with frequency threshold equal to
4. Messages from partitions P1 and P4 are aggregated, while
messages from partition P2 are sent directly to v as they are
below the frequency threshold.

a small subset of target vertices in each partition for which we

perform source-side payload aggregation. Specifically, we deduce a

set of target ids per partition whose elements are the target of at

least fTH edges in the partition, where fTH is a system-generated

local frequency threshold (see Figure 2). This set includes all large

in-degree vertices w.h.p., is small compared to the number of unique

target ids, and is obtained via a lightweight streaming algorithm

that requires memory only proportional to the size of the set.

We implemented our new communication paradigm, aptly named

implicit targeting (as target ids are implicit in messages), on Hronos,
a Yahoo! graph processing framework that has previously been used

for ML [31] [18] and other [30] distributed workloads. PageRank

[26], the classic web graph algorithm that simulates the surfing be-

havior of a random user [22], has been extensively used for evaluat-

ing the performance of graph processing frameworks. We evaluated

PageRank on graphs with up to 96.3 billion vertices. Specifically, for

a graph of ∼38 billion vertices and ∼3.1 trillion edges, we obtained

execution times of 34.4 seconds per iteration. We also compared our

system against Giraph on smaller public graphs and demonstrated

a 30X mean speedup.

The rest of the paper is organized as follows. In Section 2, we

briefly describe PageRank and the online algorithm used to detect

frequent elements. In Section 3 we describe our implicit targeting

communication pattern. In Section 4 we analyze the performance

of our source-side message aggregation algorithm. In Section 5 we

report experimental results.

2 PRELIMINARIES
2.1 PageRank
Let C be the set of pages in a web corpus, d(v) be the number

of outlinks of page v andW be a column stochastic matrix that

represents the connections between pages such that W [u,v] =
1/d(v) if there exists a link from page v to page u and 0 otherwise.

PageRank imposes a total order on C assuming ties are broken

arbitrarily. It denotes the probability that a user (called the random

surfer) would end up at a particular page if they started from an

arbitrary page and either visited one of the outlinks from that page,

or with a small probability α jumped to a pre-specified set of pages

(named the teleportation setT ). For pages without any outlinks the

user would jump directly to a page in T .
For each graph vertexv we maintain the current iteration PageR-

ank (rank(v)) and the next iteration PageRank (next_rank(v)) val-
ues. rank(v) is initialized to either 1.0 or to a value computed at a

previous sync point. In the main computation phase, before process-

ing any edges, all local next_rank values are copied into rank , just
before they are initialized to 0. Each process iterates over all edges

present in its graph partition. For each edge (u,v) it sends a ∆PR
message to target vertex v , where ∆PR = (1 − α) · rank(u)/d(u). It
also adds α · rank(u) to a local teleportation variable teleportation.
If u has no outlinks, it adds the complete rank(u) to teleportation.
Concurrently, upon reception of a message the process adds the
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Algorithm 1 FrequentItems< H >

1: function Process(value)
2: if value ∈ items .keys() then
3: items[value] ← items[value] + 1;
4: else if items .size() < H then
5: items[value] = 1;

6: else
7: for item ∈ items .keys() do
8: items[item] ← items[item] − 1
9: if items[item] = 0 then
10: delete items[item];

corresponding ∆PR to the next_rank(v) of the graph vertex v as-

sociated with the message. If v is not one of the vertices that

the process is maintaining, then it redirects the incoming ∆PR to

teleportation. This can happen if edge (u,v) points to an uncrawled
page. At the end of the iteration, the master process collects all local

teleportation values from its peers, aggregates them, and distributes

the sum to its peers and itself.

2.2 Frequent Items
Following, we present an algorithm that detects all target ids of

frequency f > n/(H + 1), of which there can be at most H , where n
is the number of all target ids in the partition. Let us first describe

the algorithm via an example for the base case of H = 1 [8]. Given

an array A of n elements, we would like to detect the majority ele-

ment if one exists. That is, we would like to detect an element that

appears more than n/2 times in the array. The algorithm works

in a streaming mode: it does not know n in advance and only ex-

amines each element once. It maintains a counter and a candidate
variable. Initially, counter = 1 and candidate = A[1]. It examines

each of the array elements A[2], . . . ,A[n]. If the current element is

the same as the one in candidate , then counter is incremented. Oth-

erwise, counter is decremented. If counter becomes negative, then

candidate is set to the current element and counter is reset to 1. In

the end, if a majority element exists, it will be present in candidate .
Intuitively, this holds because the number of all non-majority ele-

ments inA is smaller than the number of times the majority element

appears in A and therefore they are not enough to displace it from

candidate after all elements have been processed. The algorithm

is generalized in a straightforward manner for arbitrary H [13].

It maintains a map (items) between each candidate and its corre-

sponding counter . It hasO(n) amortized time complexity andO(H )
space complexity. It is depicted on Algorithm 1.

3 IMPLICIT TARGETING
Implicit targeting communication assumes that the target partition

understands how to deliver messages to a target vertex without

actually receiving the graph vertex identifier along with the mes-

sage it corresponds to. The underlying idea is the following: During

each superstep, a target partition j receives sets of messages from

its peers without any specific order of arrival. However, sets of mes-

sages arriving from a particular source partition i will be delivered
in-order to j . We guarantee this by adopting unidirectional message

queues for point-to-point communication between i and j. So long

as the source partition i iterates over its edges in the same order,

the subset of the edges corresponding to target partition j will also
be processed in the same order and therefore, the corresponding

messages will be sent out, and be received by partition j in the same

order.

3.1 Vertex Identifiers
For large graphs, we can see that identifiers that are smaller than

128-bits are impractical via a birthday paradox argument: Let H be

the number of unique values of a vertex id and q(n,H ) = 1−p(n,H )
be the probability that no two values are the same in a set of n
values randomly drawn from [1..H ] with repetition. Then

q(n,H ) = 1 ·

(
1 −

1

H

)
·

(
1 −

2

H

)
· · ·

(
1 −

n − 1

H

)
≈ e−1/H · e−2/H · · · e−(n−1)/H

≈ e−n
2/(2H )

Solving for n, we obtain the size of graph n(p,H ) for which there

will be collisions between its vertex identifiers with probability at

least p:

n(p,H ) ≈

√
2H ln

1

1 − p

Assuming 64-bit vertex identifiers and p = 10
−6
, there will be

collisions between ids with graphs of as few as 6.1 million vertices.

Arguably, such graphs are not the target of a large-scale graph

framework. Moreover, for public graphs such as the Common Crawl

Graph (see Table 1), the collision probability is 26%. On the other

hand, 128-bit ids allow for graphs with 820 billion vertices before

collisions for p = 10
−15

.

3.2 Target Learning Phase
In order for each partition to learn the graph’s vertex identifiers,

a target-learning phase is executed during graph loading: After a

partition has loaded its subset of the graph, it knows the partition
out-degrees for each of its peer partitions, i.e. the number of edges

that point to graph vertices in each of the other partitions. In the first

part of the target-learning phase, partitions also collect partition
in-degrees, i.e. the number of edges they should be expecting from

each peer partition during each superstep. In the second part of the

target-learning phase, each partition scans its subset of the graph

and sends out messages that contain the edges’ primary target

identifiers. The partition can quickly compute the target for each

edge as it knows the exact range of identifiers each partition is

responsible for. At the same time, each partition receives sets of

messages from its peers. For each message, it obtains the mapping

from the primary vertex identifier to the local vertex identifier,

which it then places at the end of the incoming order vector for

the corresponding source partition. After sending out all messages,

each partition sends termination messages to each peer.

3.3 Partition Learning Phase
Being able to send payloads without target ids significantly reduces

communication requirements and surfaces a new opportunity for

optimization. First, we note that it is no longer necessary for each

source partition to know the primary vertex identifiers of its edges’
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targets. This information would be necessary for a traditional com-

munication pattern, as the target partition needs to associate the

primary id to a local id in order to process each payload appropri-

ately. However, in the implicit targeting communication pattern, it

is sufficient for the source partition to know just the target partition

id, and for the target partition to know the originating partition for

each set of incoming payloads. Therefore, each partition iterates

over its edges, deduces their target partitions, and stores only target

partition identifiers for each of the edges. This typically reduces

the footprint for each partition’s edges eight-fold (since 128-bit

identifiers for vertices are replaced with 16-bit identifiers for the

partitions they belong to) and speeds up iterating over a partition’s

edges. The partition learning phase occurs concurrently with the

target learning phase. We note that the time required to establish

the implicit targeting communication pattern is always less than

the execution time of a single superstep that iterates over all graph

edges in a traditional communication pattern, and is therefore very

efficient.

4 MESSAGE AGGREGATION
Maintaining in-order vectors per partition introduces another chal-

lenge to the system: As each target partition may access its K − 1
incoming-message orders non-sequentially, it would be inefficient

to store them on secondary storage and are therefore maintained

in memory, which is a limited resource. While graph partitions are

typically well-balanced, inlinks per partition are not. In fact, we

have observed inlink count imbalances of five-fold or more. One

way to address this challenge would be to rebalance the graph as

a preprocessing step. However, graph partitioning algorithms are

expensive to execute on large-scale graphs, so that any benefit is

typically not enough to offset the delay they introduce to the overall

execution time except for very long-running computations. An al-

ternative to graph rebalancing would be to combine messages with

the same target primary identifier on the source side. This approach

would indeed address the inlinks imbalance. However, in order to

support source-side aggregation, one needs to maintain a structure

that is O(pu ), where pu is the number of unique edge targets in

the partition. Hash-based graph partitioning implies that this is

pu = O(ps ), where ps is the number of edge targets in the partition.

Therefore, this approach simply moves the memory bottleneck to a

different component of the system.

A natural way to refine this approach would be to selectively

perform source-side aggregation only for the very frequent target

primary ids (target ids with high inlink counts within the partition).

This optimization indeed removes the memory overhead of source-

side aggregation. Nevertheless it introduces another challenge: It

is not possible to deterministically compute the frequency of the

elements in an array of size n unless Ω(n) memory is used [23].

Although this would be a one-time operation, it is still inefficient for

very large graphs. We observe the following: We do not really need

to know the exact frequency of all target ids in each partition. We

only need to identify those that cross a given frequency threshold.

This greatly simplifies the time and space complexity of the problem

and allows us to adopt the algorithm in Section 2.2. In this context,

n is equal to ps .

The algorithm is executedwhile loading the graph partition. Each

primary target identifier is examined via Process() (Algorithm 1).

It is essentially executed at no cost, as graph loading is heavily

I/O bound and the processing of each vertex is pipelined with the

loading of the next vertex. We note that the elements in the set FI
of the resulting H target identifiers are not guaranteed to appear

more than n/(H + 1) times. Rather, it is only guaranteed that the

target identifiers whose frequency is larger than n/(H + 1) will be
part of the resulting set of H ids.

Let us now examine the performance of a system that adopts

source-side aggregation. Let v be a vertex with large in-degree

dv , K be the number of partitions and µ = dv/K . Conditioned on

v , the sources of all edges (si ,v) are evenly distributed across all

partitions K . Let us consider applying aggregation on a specific

partition with frequency f = µ. Then the probability that v is in FI
is 50%. As a result, we expect dv/2 + K messages to be sent across

all partitions corresponding to the (si ,v) edges. This approach is

very inefficient, as it only discards half of the messages towards

vertex v . Fortunately, we will subsequently show that almost no

edge escapes source-side aggregation when f = µ/2.

Lemma 4.1. The probability that a specific partition P has at most
k edges towards vertex v with in-degree dv is:

k∑
i=0

(
µK

i

)
1

K

i (
1 −

1

K

)µK−i
(1)

Proof. Let Xi be the indicator variable that denotes whether
the i-th edge has been placed in P . Then Xi is a Bernoulli RV

with success probability 1/K . Therefore
∑
i Xi follows the binomial

distribution characterized by dv trials and 1/K success probability.

□

We will use Hoeffding’s inequality to bound Eq. (1).

Theorem 4.2 (Hoeffding [17]). Let Xi be dv IID
Bernoulli RVs with success probability 1/K . Then it holds that:

P

(∑
i
Xi ≤ µ − ϵdv

)
≤ e
−2ϵ 2dv

(2)

We can now bound the probability that a specific partition does

not apply source-side aggregation to the edges it is responsible for

that are targeting vertex v .

Theorem 4.3. The probability that a specific partition P has at
most µ/2 edges towards vertex v is bounded by e

−µ/2K .

Proof. Let ϵ = 1/2K . Then from Eq. (2) we obtain:

P

(∑
i
Xi ≤ µ/2

)
≤ e
−2ϵ 2dv = e

−µ/2K .

□

We can now compute the expected number of messages that will

be transmitted towards vertex v from all partitions K .

Theorem 4.4. The expected number of messages that are targeting
vertex v is at most:

K +
µK

2

e
−µ/2K

(3)
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Table 1: Public Datasets

Dataset Vertices Edges

Common Crawl [1, 3] 3,315,452,339 128,736,952,320

WebUK 2006-2007 [7] 133,633,040 5,507,679,822

Twitter [2] 52,579,682 1,963,263,821

Table 2: Web Graph Properties

Property Value

URLs 37.73 Billion

Total Outlinks 3.076 Trillion

Graph Storage Footprint 99.2 TB

Proof. There are at most K partitions on which source-side

aggregation can be applied, therefore at most K messages will be

emitted as a result of such aggregations. On the partitions where

source-side aggregation is not applied, at most µ/2 edges will be

targeting vertex v . By linearity of expectation, at most
µK
2
e
−µ/2K

non-aggregated edges will reach vertex v . □

By Eq. 3 we see that this simple, coordination-free scheme applies

an exponentially small dampening factor to dv . In Section 5, we

will see in practice that source-side aggregation almost completely

eliminates inlink imbalance even for small values of H .

5 EVALUATION
We explore the performance of PageRank on Hronos and compare

it with Giraph [12]. Giraph is a production-hardened framework

that has been shown to scale to 1 trillion edge graphs [12]. A recent

comparison between Pregel+, GPS, Giraph and GraphLab on the

WebUK[7] and Twitter[2] datasets for PageRank can be found in

[34]. We provide results for publicly available graphs (Table 1) and

large proprietary web graphs (Table 2). We collected results on a

3,000-node cluster of the following node configuration: 64GB RAM,

2x Intel Xeon E5-2620, 10Gbps Ethernet.

5.1 Public Datasets
We first provide results forHronos and Giraph on the public datasets
(see Table 3). We observe mean speedups of more than 15X for 64

threads, and more than 30X for 5,000 threads. We observe that Gi-

raph appears to favor fewer workers, each of which using multiple

threads, rather than single-thread workers. For each experiment,

we show the best Workers×Threads combination that we could

find via a parameter sweep. Better results could not be obtained

for any of the experiments even when we allowed for up to 40,000

threads. For all Giraph experiments, workers were given the full

memory of the nodes.

5.2 Web Graphs
We provide results on a web graph of 37.7 billion vertices and

3.076 trillion edges (see Table 2). Loading and pre-processing of

the graph partitions consumes approximately 9’ for the slowest

mapper. Service discovery requires negligible time using a single-

node ZooKeeper. We first examine how well balanced graph splits

Figure 3: Absolute execution times for a single PageRank it-
eration. Results shown a web graph of 37.7 billion vertices
and 3076 billion edges for explicit pattern (graph on disk),
explicit pattern (graph in memory), explicit pattern (graph
in memory; H = 30000), implicit pattern (graph on disk;
H = 10000), implicit pattern (graph in memory; H = 10000).

Figure 4: Maximum / mean memory required vs Frequent
Items H . Memory imbalance is 19.68% for H = 30000.

Figure 5: Relative execution times for implicit pattern for
Frequent ItemsH . ForH = 30000 execution time is 96.1% com-
pared to the case whereH = 0. Overall messages sent are 97%
of the total using source-side aggregation with H = 30000.
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Table 3:Hronos Performance for a single PageRank Iteration
on Public Datasets

Dataset

Hronos
P=64 P=384 P=5000

Common Crawl 2012 128.19" 7.63" 2.45"

WebUK 2006 3.64" 0.53" < 0.1"

Twitter 1.06" 0.21" < 0.1"

Giraph

P=64 P=384 P=5000

Common Crawl 2012 - - 67.51"

WebUK 2006 51.6" 9.54" 9.50"

Twitter 17.57" 6.05" 9.21"

Hronos Speedup over Giraph

P=64 P=384 P=5000

Common Crawl 2012 - - 27.55X
WebUK 2006 14.17X 18.00X 95.00X+

Twitter 16.58X 28.81X 92.10X+

Figure 6: Relative execution times for one PageRank itera-
tion for implicit pattern (H =1k) and explicit pattern (graph
in memory) for 1000, 2000, 3000, 4000 and 5000 graph splits.

are. As expected, partitions become more imbalanced as the split

count increases. Nevertheless, in the worst case, the largest partition

on the 5,000 graph split is only 12.24% larger than average.

In Figure 3 we show absolute execution times for the various

communication patterns. In the implicit targeting communication

pattern, the system is able to complete one PageRank iteration in

34.4 seconds. We observe a speedup of 7.2X of the implicit pattern

over the explicit pattern. The overhead of scanning the graph from

disk rather than from memory is negligible in the explicit pattern,

as the bottleneck in this case is communication. The opposite is

true for the implicit pattern, where scanning the graph from disk

is ∼30% slower. In addition to our main web graph we collected

performance results on the largest web graph we were granted

access to, of 96.3 billion vertices and 5.874 trillion edges. For this

we used implicit pattern, H = 10000, 64-bit payloads, and measured

134-second iterations.

Figure 7: Relative execution times for a single PageRank it-
eration for implicit pattern (H = 10000) and explicit pattern
(graph in memory) for 5000 graph splits and 20%, 40%, 60%,
80% graph sub-sampling.

We then examine the number of inlinks to a partition when

source-side aggregation is used for different values of H . First, we

observe that inlink imbalance is indeed a significant problem. Specif-

ically, the largest inlink count is more than five times larger than

average (Figure 4). Inlink count dictates the size of the in-order

vectors for the implicit pattern and therefore has a direct impact

on memory requirements. Source-side aggregation, through the

detection of high-frequency inlinks, resolves the imbalance even

for relatively small numbers of H . For instance, for H = 30000, the

worst-case imbalance is 19.68%. We also measure the performance

of the algorithm for various values ofH and observe there is no over-

head when using aggregation. In fact, we observe a performance

increase in accordance with the reduction in overall messages sent

over the network. For instance, whenH = 30000, the messages sent

over the network are 97% of all messages, while execution time

improves to 96% compared to the baseline case (see Figure 5).

Finaly, Hronos exhibits strong and weak scalability properties:

(1) we observe that performance improves almost linearly with the

number of graph partitions for both the implicit and explicit pattern

(Figure 6;) and (2) we sub-sample the web graph in order to inspect

performance as the graph size increases while keeping a fixed split

count and observe that the system scales linearly with graph size

(Figure 7).

6 CONCLUSION
In this work, we introduced a novel communication paradigm for

graph processing frameworks that is optimized for PageRank-like

workloads. We evaluated its performance on graphs of up to 96

billion vertices and 5.9 trillion edges and demonstrated more than

an order of magnitude improvements over the state-of-the-art.
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