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While the prospects for achieving quantum advantage 
with the quantum approximate optimization algorithm 
(QAOA) remain unclear, the algorithm prescribes 

a simple paradigm for optimization that makes it amenable to 
both analytical study and practical implementation1–10. Discrete 

optimization problems can be expressed as the minimization of 
a quadratic function of binary variables11,12, and one can visual-
ize these cost functions as graphs with binary variables as nodes 
and (weighted) edges connecting bits whose (weighted) products 
sum to the total cost function value. For most industrially relevant 
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Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and 
machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum tech-
nologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combi-
natorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, 
we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply 
the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to imple-
ment. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that 
is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, 
performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random 
guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term 
implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we sug-
gest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.
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problems, these graphs are non-planar and many ancilla would be 
required to embed them in (quasi-)planar graphs matching the 
qubit connectivity of most hardware platforms13. The challenge of 
realizing higher-dimensional problem graphs severely limits the 
applicability of scalable architectures for quantum annealing14–16 
and corresponds to increased circuit complexity in digital quantum 
algorithms for optimization such as QAOA.

This work builds on previous experimental demonstrations 
of QAOA on superconducting qubits17–20, ion traps21 and photon-
ics systems22, with a full comparison found in the Supplementary 
Information. The Google Sycamore superconducting quantum pro-
cessor consists of a two-dimensional array of 54 transmon qubits23 
with each qubit tunably coupled to four nearest neighbours in a 
rectangular lattice. In this study, all device calibration was fully auto-
mated24,25 and data were collected using a cloud interface to the plat-
form programmed using Cirq26. Our experiment was restricted to 23 
physical qubits of the larger Sycamore device, arranged as depicted 
in Fig. 1a. We are able to experimentally resolve increased perfor-
mance with greater QAOA depth and apply the algorithm to cost 
functions on graphs that deviate markedly from our hardware con-
nectivity. Owing to the low error rates of the Sycamore platform, the 
trade-off between the theoretical increase in quality of solutions with 
increasing decoherence due to noise is apparent for hardware-native 
problems as we scale the depth hyperparameter. We also apply the 
algorithm to non-native graph problems with their necessary com-
pilation overhead and study the scaling of solution quality and prob-
lem size. Our results reveal that the performance of the QAOA is 
qualitatively different when applied to hardware-native graphs 
versus more complex graphs, highlighting the challenge of scaling 
QAOA to problems of industrial importance.

The shallowest depth version of the QAOA consists of the appli-
cation of two unitary operators: the problem unitary (UC) and the 
driver unitary (UB). The first of these depends on the parameter γ 
and applies a phase to pairs of bits according to the problem-specific 
cost operator C:

C ¼
X

j < k
wjkZjZk ð1Þ

UC γð Þ ¼ e�iγC ¼
Y

j < k
e�iγwjkZjZk ; ð2Þ

where we restrict our study to two-local cost operators with Zj and 
Zk denoting the Pauli Z operator on qubits j and k, respectively, and 
the wjk corresponding to scalar weights with values {0, ±1}. Because 
the clauses act on at most two qubits, we are able to associate a graph 
with a given problem instance with weighted edges given by the wjk 
adjacency matrix. The second unitary depends on the parameter 
β, is problem independent, and serves to drive transitions between 
bitstrings within the superposition state:

UB βð Þ ¼ e�iβB ¼
Y

j
e�iβXj ; B ¼

X
j
Xj ð3Þ

where Xj is the Pauli X operator on qubit j. Both operators can be 
implemented by sequentially evolving under each term of the prod-
uct; specifically the problem unitary is applied with a sequence of 
two-body interactions while the driver unitary uses single-qubit 
rotations on each qubit. For higher-depth versions of the algorithm, 
the two unitaries are sequentially re-applied each with their own β 
and γ. The number of applications of the pair of unitaries is repre-
sented by the hyperparameter p giving parameter vectors γ = (γ1, …, 
γp) and β = (β1, …, βp). For n qubits, we prepare the parameterized 
state

γ; βj i ¼ UBðβpÞUCðγpÞ   UBðβ1ÞUCðγ1Þ þj in; ð4Þ

where þj in

I
 is the symmetric superposition of computational basis 

states. The algorithm is shown graphically in Fig. 1d.

Compilation and problem families
While the driver unitary UB is straightforward to implement, care 
must be taken to compile the problem unitary UC to the constraints 
of our superconducting processor. We approach compilation as 
two distinct steps: routing and gate synthesis. The need for routing 
arises when simulating UC for a cost function whose graph is not a 
subgraph of our planar hardware connectivity. To simulate such UC, 
we perform layers of swap gates that permute qubits such that all 
edges in the problem graph correspond to an edge in the hardware 
graph at least once, at which point the corresponding cost function 
terms can be implemented.

In this study, we consider three families of binary optimiza-
tion problems typified by their graph representation. First, we 
study problem graphs that match the connectivity of our hardware, 
which we term ‘hardware grid problems’. This family of problems 
is composed of random instances generated by sampling wjk to 
be ±1 for edges in the device topology or a subgraph thereof, as 
depicted in Fig. 1a. While formally NP-hard12 (and thus, unlikely 
to be efficiently solvable in the worst case), problems defined on 
these graphs with couplings chosen in this fashion are known to be 
classically efficient to exactly solve on average27. However, we study 
these problems here as they are a simple example of a problem that 
does not require routing.

Next, we study instances of the MaxCut problem on three-regular 
graphs. This is a prototypical discrete optimization problem with a 
low, fixed node degree but a high dimension that cannot be trivially 
mapped to a planar architecture28. It more closely matches prob-
lems of industrial interest, and an example is shown in Fig. 1b. For 
MaxCut on degree-three graphs, there is a classical approximation 
algorithm that achieves an approximation ratio of 0.9326 (ref. 29), and 
it is NP-hard to achieve 331/332 + ε ≈ 0.997 for every ε > 0 (ref. 30).  

Hardware grida b c dThree-regular MaxCut Sherrington–Kirkpatrick model
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Fig. 1 | Problem families under study. a, Hardware grid problems with a graph matching the hardware connectivity of the 23 qubits used in this 
experiment. b, MaxCut on random three-regular graphs, with the largest instance depicted (22 qubits). c, The fully connected SK model shown at the 
largest size (17 qubits). d, QAOA uses p applications of problem and driver unitaries to approximate solutions to optimization problems.
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For these problems, we use the routing functionality from the t ketj i
I

 
compiler to heuristically insert SWAP operations31.

Finally, we study instances of the Sherrington–Kirkpatrick (SK) 
model32, defined on the complete graph with wjk randomly chosen 
to be ±1 as depicted in Fig. 1c. This is a canonical example of a 
frustrated spin glass (implying that large instances are probably 
classically inefficient to exactly solve on average12,32,33) and is most 
penalized by routing, which can be performed optimally using the 
linear swap networks discussed in ref. 34 and Fig. 2 at the cost of a 
linear increase in circuit depth. Thus, of our three example prob-
lems, the two requiring compilation are probably classically inef-
ficient to solve on average whereas the native hardware graph is 
efficient to solve on average. But we emphasize that at the sizes stud-
ied in this paper, all of the problems are exactly solvable by classical 
algorithms.

The second compilation step is termed gate synthesis and involves 
decomposing arbitrary one- and two-qubit interactions into physi-
cal gates supported by the device (see, for example, Fig. 2b). The 
physical gates used in this experiment are arbitrary single-qubit 
rotations and a two-qubit entangling gate native to the Sycamore 
platform, which we call SYC and define in Fig. 2c. Through multiple 
applications of this gate with single-qubit rotations, we can synthe-
size arbitrary entangling gates with full compilation details in the 
Supplementary Information. The average two-qubit gate fidelities 
on this device were 99.4% as measured by cross-entropy bench-
marking23 and average readout fidelity was 95.9% per qubit.

Energy landscapes and optimization
QAOA is a variational quantum algorithm where circuit parameters 
(γ, β) are optimized using a classical optimizer, but function evalu-
ations are executed on a quantum processor4,35,36. First, one repeat-
edly constructs the state γ; βj i

I
 with fixed parameters and samples 

bitstrings to estimate hCi  γ; βh jC γ; βj i
I

. A classical ‘outer loop’ 
optimizer can then suggest new parameters to decrease the observed 
expectation value. Note that we normalize by the cost function’s true 
minimum, so we are in fact maximizing 〈C〉/Cmin (Cmin is negative 
and hence minimizing 〈C〉 corresponds to maximizing 〈C〉/Cmin).

For p = 1, we can visualize the cost function landscape as a func-
tion of the parameters (γ, β) = (γ1, β1) in a three-dimensional plot 

(where we drop the subscript 1 in axes labels). Comparison of 
simulated and empirical p = 1 landscapes is a common qualitative 
diagnostic for the application of QAOA to real hardware18–22. For 
classical optimization to be successful, the quantum computer must 
provide accurate estimates of 〈C〉; otherwise, noise can overwhelm 
any signal and optimizations can fail to make progress. Hardware 
issues such as decoherence, crosstalk and coherent errors manifest 
as differences (damping, warping) from the ideal landscape.

Figure 3 contains simulated theoretical and experimental land-
scapes for selected instances of the three problem families evalu-
ated on a grid of evenly spaced (γ, β) points. Each expectation 
value was estimated using 50,000 circuit repetitions with efficient 
post-processing to compensate for readout bias (Supplementary 
Information). The hardware grid problem shows clear peaks and 
valleys in the correct locations at the maximum size of our study, 
n = 23. For the other two problems, performance degrades with 
increasing n so we show n = 14 and n = 11 for the three-regular 
graph and SK model, respectively. We highlight the correspon-
dence between experimental and theoretical landscapes for these 
problems of considerably higher complexity. Previous experimental 
demonstrations have presented landscapes for a maximum of n = 20 
on a hardware-native interaction graph21 and a maximum of n = 4 
for a fully connected problem like the SK model19.

In Fig. 3, we also overlay a trace of the classical optimizer’s path 
through parameter space as a red line. We used a classical optimizer 
called model gradient descent, which has been shown numeri-
cally to perform well with a small number of function evaluations 
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Fig. 2 | Circuits and compilation. a, The linear swap network can route 
a 17-qubit SK model problem unitary to n layers of nearest-neighbour 
two-qubit interactions. b, The e−iγwZZ ⋅ SWAP interaction is a composite 
phasing and SWAP of example qubits p and q that can be synthesized from 
three applications of our hardware-native entangling SYC and single-qubit 
rotations (yellow boxes). c, The definition of the SYC gate.
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Fig. 3 | Simulated and experimental QAOA landscapes. Comparison of 
simulated (left) and experimental (right) p = 1 landscapes shows a clear 
correspondence of landscape features. An overlaid optimization trace 
(red, initialized from square marker) demonstrates the ability of a classical 
optimizer to find optimal parameters. The blue star in each noiseless plot 
indicates the theoretical local optimum. Problem sizes are n = 23, n = 14 and 
n = 11 for hardware grid, three-regular MaxCut and SK model, respectively.
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by using a quadratic surrogate model of the objective function to 
estimate the gradient37. In this example, we initialized the param-
eter optimization from an intentionally bad parameter setting and 
observed that the optimizer was able to enter the vicinity of the opti-
mum in ten iterations or fewer, with each iteration consisting of six 
energy evaluations of 25,000 shots each.

Performance scaling
Before fault tolerance, circuit executions are expected to degrade 
in fidelity as the number of gates is increased. Here we study the 
performance of the QAOA on our problems at different size n and 
depth p using the normalized observed cost function 〈C〉/Cmin as 
an application-specific metric of performance. The normalization 
ensures that a value of 1 is perfect and 0 corresponds to random 
guessing. To distinguish the effects of noise from the quality of a 
classical outer-loop optimization, here we report results obtained 
from running circuits at the theoretically optimal parameter values 
(that is, starting from the β and γ parameters that were found to be 
optimal through classical simulation).

In Fig. 4 we observe that 〈C〉/Cmin for hardware graph problems 
saturates at a value that is independent of n, which occurs despite 
the fact that circuit fidelity is decreasing with increasing n. This 
behaviour can be anticipated by moving to the Heisenberg opera-
tor formalism and considering an observable ZiZj. The expecta-
tion value for this operator is conjugated by the problem unitary p 
times giving an expression for the expectation value of ZiZj that only 
involves qubits that are at most p edges away from i and j. Thus, for 
fixed p, the error for a given term is asymptotically unaffected as n 
is increased. Non-local error channels could remove this property.

Compiled problems—namely SK model and three-regular 
MaxCut problems—result in deeper circuits extensive in the num-
ber of qubits. As the depth grows, there is a higher chance of an 
error occurring. The high degree of the SK model graph and the 
high effective degree of the MaxCut circuits after compilation 
means that these errors quickly propagate among all qubits and the 
quality of solutions can be approximately modelled as the result of 
a depolarizing channel, with further analysis in the Supplementary 

Information. Even on these challenging problems, we observe 
performance exceeding random guessing for problem sizes up to 
17 bits, even with circuits of depth p = 3. Note finally that despite 
circuits with materially fewer gates (although similar depth), per-
formance on the MaxCut instances tracks performance on the SK 
model instances rather closely, further substantiating the circuit 
depth as a useful proxy for the performance of the QAOA.

In noiseless simulation, the quality of solutions is improved by 
increasing the depth hyperparameter p. However, the additional 
depth increases the probability of error on real hardware. We study 
this interplay in Fig. 5. Previously, improved performance with p > 1 
had only been experimentally demonstrated for an n = 2 problem20. 
For larger problems (n = 20), performance for p = 2 was shown to 
be within error bars of the p = 1 performance21. Figure 5 shows the 
p dependence averaged across all 130 instances where n > 10. The 
mean finds its maximum at p = 3, although the relatively flat depen-
dence of performance on depth suggests that the experimental noise 
seems to nearly balance the increase in theoretical performance for 
this problem family. When we consider each instance individually 
and identify which value of p maximizes performance for that par-
ticular instance, performance is maximized at p = 3 for over half of 
instances with a histogram of these per-instance maximal values 
is inset in Fig. 5. Our full dataset (available in the Supplementary 
Information) includes per-instance data at all settings of p.

Conclusion
Discrete optimization is an enticing application for near-term 
devices owing to both the potential value of solutions and the viabil-
ity of heuristic low-depth algorithms such as the QAOA. While no 
existing quantum processors can outperform classical optimization 
heuristics, the application of popular methods such as the QAOA to 
prototypical problems can be used as a benchmark for comparing 
various hardware platforms.

Previous demonstrations of the QAOA have primarily optimized 
problems tailored to the hardware architecture at minimal depth. 
Using the Google ‘Sycamore’ platform, we explored these types of 
problem, which we termed hardware grid problems, and demon-
strated robust performance at large numbers of qubits. We showed 
that the locations of maxima and minima in the p = 1 diagnostic 
landscape match those from the theoretically computed surface, 
and that variational optimization can still find the optimum with 
noisy quantum objective function evaluation. We also applied the 
QAOA to various problem sizes using pre-computed parameters 
from noiseless simulation, and observed an n-independent noise 
effect on the approximation ratios for hardware grid problems. 
This is consistent with our theoretical understanding that the 
noise-induced degradation of each term in the objective function 
remains constant in the shallow-depth regime where correlations 
remain local. Furthermore, we report clear cases of performance 
maximization at p = 3 for the QAOA owing to the low error rate of 
our hardware.

Most real-world instances of combinatorial optimization prob-
lems cannot be mapped to hardware-native topologies without 
additional resources. Instead, problems must be compiled by rout-
ing qubits with swap networks. This additional overhead can have 
a considerable impact on the algorithm’s performance. We studied 
random instances of the fully connected SK model. Although we 
report non-negligible performance for large (n = 17), deep (p = 3) 
and complex (fully connected) problems, we see that performance 
degrades with problem size for such instances.

The promise of quantum enhanced optimization will continue 
to motivate the development of new quantum technology and algo-
rithms. Nevertheless, for quantum optimization to compete with 
classical methods for real-world problems, it is necessary to push 
beyond contrived problems at low circuit depth. Our work demon-
strates important progress in the implementation and performance 
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Fig. 4 | QAOA performance as a function of problem size n. Each size is 
the average over ten random instances (s.d. given by error bars). While 
hardware grid problems show n-independent noise, we observe that 
experimental SK model and MaxCut solutions approach those found by 
random guessing as n is increased. Note that due to the small problem 
sizes, many efficient classical algorithms could solve these instances 
exactly, giving a perfect approximation ratio. Therefore, we compare 
to random guessing as a baseline against a completely noisy quantum 
algorithm rather than as a point of comparison to classical algorithms.
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of quantum optimization algorithms on a real device, and under-
scores the challenges in applying these algorithms beyond those 
natively realized by hardware interaction graphs.
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S1. HARDWARE AND COMPILATION DETAILS

In this section, we discuss detailed compilation of the desired unitaries into the hardware native gateset, particularly
the syc gate defined in Figure 2c. The syc gate is similar to the gate used in Arute et al. [1] but with the conditional

phase tuned to be precisely π/6. A
√

iswap gate is simultaneously calibrated and available but has a longer gate
duration and requires additional (physical) Z rotations to match phases. The required interactions for this study are

compiled to an equivalent number of syc and
√

iswap, so syc was used in all circuits. Single-qubit microwave pulses
enact “Phased X” gates PhX(θ, φ) (alternatively called XY rotations or the W gate) with φ = 0 corresponding to
RX(θ) and φ = π

2 corresponding to RY (θ) (up to global phase). Intermediate values of φ control the axis of rotation
in the X-Y plane of the Bloch sphere.

Arbitrary single-qubit rotations can be applied by a PhX(θ, φ) gate followed by a RZ(ϑ) gate. As a compilation
step, we merge adjacent single-qubit operations to be of this form. Therefore, our circuit is structured as a repeating
sequence of: a layer of PhX gates; a layer of Z gates; and a layer of syc gates. All Z rotations of the form exp [−iθZ]
can be efficiently commuted through syc and PhX to the end of the circuit and discarded. This leaves alternating
layers of PhX and syc gates. The overheads of compilation are summarized in Table S1.

Problem Routing Interaction Synthesis

Hardware Grid WESN e−iγZZ 2

MaxCut Greedy e−iγZZ 2

MaxCut Greedy swap 3

SK Model Swap Network e−iγZZ · swap 3

TABLE S1. Compilation details for the problems studied. “Routing” gives the strategy used for routing, “Interaction” gives
the type of two-qubit gates which need to be compiled, and “Synthesis” gives the number of hardware native 2-qubit syc gates
required to realize the target interaction. “WESN” routing refers to planar activation of West, East, etc. links.

Compilation of ZZ(γ). These interactions (used for Hardware Grid and MaxCut problems) can be compiled
with 2 layers of syc gates and 2+1 associated layers of single qubit PhX gates. We report the required number of
single-qubit layers as 2+1 because the initial (or final) layer from one set of interactions can be merged into the final
(initial) single qubit gate layer of the preceding (following) set of interactions. In general, the number of single qubit
layers will be equivalent to the number of two-qubit gate layers with one additional single-qubit layer at the beginning
of the circuit and one additional single-qubit layer at the end of the circuit. The explicit compilation of ZZ to syc is
available in Cirq and a proof can be found in the supplemental material of Ref. [1]. Here we reproduce the derivation
in slightly different notation but following a similar motivation.

The syc gate is an fSim(π/2,π/6) which can be broken down into a cphase(π/6), cz, swap, and two S gates
according to Figure S1. We analyze the KAK coefficients for a composite gate of two syc gates sandwiching arbitrary

SYC = eiφZ⊗Z
e−iφZ

e−iφZ

S†

S†
= eiφZ⊗Z

ΓZ

ΓZ

FIG. S1. Circuit decomposition of the syc gate: ΓZ = S†e−iφZ = e−iφZS† and φ = −π/24, where two solid dots linked by a
line represent the cz gate and two crosses linked by a line represent the swap gate.

single qubit rotations, depicted in Figure S2, to determine the space of gates accessible with two syc gates.

Any two qubit gate is locally equivalent to standard KAK form [2]. The coefficients in the KAK form is equivalent
to the operator Schmidt coefficients of the 2-qubit unitary. To find the Schmidt coefficients, we introduce the matrix
representation of 2-qubit gates in terms of Pauli operators, i.e., the jk-th matrix element equals to the corresponding
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SYC
G1

G2

SYC = eiφZ⊗Z
ΓZ

ΓZ

G1

G2

ΓZ

ΓZ
eiφZ⊗Z = eiφZ⊗Z

G′1

G′2
eiφZ⊗Z

FIG. S2. Single-qubit gates sandwiched by two syc gates: The ΓZ gates map single-qubit operations to single-qubit operations

coefficient of the Pauli operator Pj ⊗ Pk, where P0,1,2,3 = I,X, Y, Z,

OM =

3∑
j,k=0

MjkPj ⊗ Pk . (1)

The Schmidt coefficients of OM equal to the singular values of M . Any single-qubit gate G′1,2 can be decomposed
into the Z-X-Z rotations; the Z rotations commute with the cz and the cphase, and they do not affect the Schmidt
coefficients of the two-qubit operation defined in Figure S2. We neglect the Z rotations and simplify G′1,2 to single-
qubit X rotations

G′1 = cos θ1I + i sin θ1X , G′2 = cos θ2I + i sin θ2X . (2)

The Pauli matrix representation of G′1 ⊗G′2 in Eq. (2) is

A =


c1c2 ic1s2 0 0

is1c2 −s1s2 0 0

0 0 0 0

0 0 0 0

 , (3)

where c1,2 = cos θ1,2 and s1,2 = sin θ1,2. The rank of the matrix A is one, representing a product unitary. After being
conjugated by the cz gates, i.e, O 7→ czO cz, the matrix A becomes

A 7→ B =


c1c2 0 0 0

0 0 0 is1c2
0 0 −s1s2 0

0 ic1s2 0 0

 , (4)

where we use the relations for O 7→ czO cz,

X1X2 7→ Y1Y2 , X1 7→ X1Z2 , X2 7→ Z1X2 . (5)

The cphase part in the syc gate is

eiφZ⊗Z = cosφ I ⊗ I + i sinφZ ⊗ Z , (6)

where φ = −π/24. An arbitrary operator O left and right multiplied by cphase part is expressed as

eiφZ⊗ZOeiφZ⊗Z = (cosφ)2O +
i

2
sin(2φ)

(
Z⊗2O +OZ⊗2

)
− (sinφ)2Z⊗2OZ⊗2 . (7)

Applying the operation O 7→ 1
2 (Z⊗2O +OZ⊗2) to the operator B, we have

B 7→ C =


0 0 0 0

0 s1s2 0 0

0 0 0 0

0 0 0 c1c2

 . (8)

Applying the operation O 7→ Z⊗2OZ⊗2 to the operator B, we have

B 7→ D =


c1c2 0 0 0

0 0 0 −is1c2
0 0 −s1s2 0

0 −ic1s2 0 0

 . (9)
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The resulting two-qubit gate at the output of the circuit in Figure S2 takes the form

M = (cosφ)2B + i sin(2φ)C − (sinφ)2D . (10)

Two singular values of M are cos(2φ)c1c2 and cos(2φ)s1s2 corresponding to the diagonal matrix elements M0,0 and
M2,2, and the magnitudes of these two singular values are bounded by the angle φ. Consider the two-dimensional
subspace of the matrix B, C, and D with the two known singular values removed

B 7→ B′ =

(
0 is1c2

ic1s2 0

)
, C 7→ C ′ =

(
s1s2 0

0 c1c2

)
, D 7→ D′ =

(
0 −is1c2

−ic1s2 0

)
(11)

The Pauli representation matrix in the reduced space is

M ′ = (cosφ)2B′ + i sin(2φ)C ′ − (sinφ)2D′ (12)

= i

(
sin(2φ)s1s2 s1c2

c1s2 sin(2φ)c1c2

)
= ic1c2

(
sin(2φ)t1t2 t1

t2 sin(2φ)

)
. (13)

To calculate the singular values of a 2× 2 matrix

Mα = α0I + α1X + α2Y + α3Z , (14)

we used the formula

σ± =

√
η ±

√
η2 − ξ2 , (15)

where η = |α0|2 + |α1|2 + |α2|2 + |α3|2 and ξ = |α2
0 − α2

1 − α2
2 − α2

3|. For matrix M ′, we have,

η =
1

2

∑
j,k

|M ′jk|2 (16)

=
1

2

(
sin(2φ)2s21s

2
2 + s21c

2
2 + c21s

2
2 + sin(2φ)2c21c

2
2

)
(17)

=
1

2
− 1

2
cos(2φ)2

(
s21s

2
2 + c21c

2
2

)
. (18)

and

ξ =
1

4

∣∣∣ sin(2φ)2 (s1s2 + c1c2)
2 − (s1c2 + c1s2)2 + (s1c2 − c1s2)2 − sin(2φ)2 (s1s2 − c1c2)

2
∣∣∣ (19)

= cos(2φ)2
∣∣s1s2c1c2∣∣ . (20)

We have solved all the four singular values of the 2-qubit unitary at the output of Figure S1,

λ0 = | cos(2φ)c1c2|, λ1 = | cos(2φ)s1s2|, λ2 =

√
η +

√
η2 − ξ2, λ3 =

√
η −

√
η2 − ξ2. (21)

For the case s1 = 0 and c1 = 1, we have λ1 = λ3 = 0 and the other two singular values

λ0 = | cos(2φ)c2| ∈ [0, cos(2φ)] , λ2 =
√

2η =
√

1− cos(2φ)2c22 . (22)

Since cos(2φ) ' 0.966 > 1/
√

2, we can implement any cphase gate using only two syc gates. This is achieved by
matching the Schmidt coefficients of e−iθZZ/2 to λ0 and λ2. If | cos(θ)| > cos(2φ) then we can reset c1,2 and s1,2
appropriately to select out the other pair of singular values.

Compilation of swap. A swap gate requires three applications of syc and is used for the 3-regular MaxCut
problem circuits. The swap gate was numerically compiled by optimizing the angles of the circuit in Figure S3 to
match the KAK interaction coefficients for the swap gate.

SYC
RXY (φ1)(θ1)

RXY (φ2)(θ2)
SYC

RXY (φ3)(θ3)

RXY (φ4)(θ4)
SYC

RXY (φ5)(θ3)

RXY (φ6)(θ4)

FIG. S3. Circuit used to match the KAK coefficients of the swap gate. The RXY (φ)(θ) is a rotation of θ around an axis in
the XY -plane defined by φ. This is implemented in Cirq as a PhasedXPow gate.
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After the the angles in the circuit depicted in Figure S3 are determined to match the KAK coefficient of the swap
gate we add single qubit rotations to make the circuit fully equivalent to swap.

Compilation of e−iγwZZ · swap. This composite interaction can be effected with three applications of syc and
is used for SK-model circuits. The syc gate KAK coefficients are (π/4, π/4, π/24) which is locally equivalent to a
cphase(π/4 − π/24) followed by a swap. Therefore, to implement a ZZ(γ) followed by a swap we need to apply a
single syc gate followed by the composite cphase(γ − π/24 + π/4). The total composite gate now involves 3 syc
gates, a single Rx gate and two Rz gates.

Scheduling of Hardware Grid gates. An efficient planar graph edge-coloring can be used to schedule as many
simultaneous ZZ interactions as possible. We activate links on the graph in the following order: 1) horizontal edges
starting from even nodes; 2) horizontal edges starting from odd nodes; 3) vertical edges starting from even nodes; 4)
vertical edges starting from odd nodes. Viewed as cardinal directions and choosing an even node as the central point
this corresponds to a west, east, south, north (W, E, S, N) activation sequence.

0:

1:

2:

3:

4:

H

H

H

H

H

zzswap
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zzswap
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zzswap
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zzswap

𝜃=2𝛾𝑤ij
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FIG. S4. p = 1 swap network for a 5-qubit SK-model. Physical qubits are indicated by horizontal lines and logical node indices
are indicated by red numbers. The network effects all-to-all logical interactions with nearest-neighbor interactions in depth n.

Fully Connected Swap Network. All-to-all interactions can be implemented optimally with a swap network in
which pairs of linear-nearest-neighbor qubits are repeatedly interacted and swapped. Crucially, the required interac-
tions swap and e−iγZZ between all pairs all mutually commute so we are free to re-order all two-qubit interactions to
minimize compiled circuit depth. After n applications of layers of e−iγwZZ · swap interactions (alternating between
even and odd qubits), every qubit has been involved in a ZZ interaction with every other qubit and logical qubit in-
dices have been reversed. This can be viewed as a (parallel) bubble sort algorithm initialized with a reverse-sorted list
of logical qubit indices. An example at n = 5 is shown in Figure S4. If p is even, two applications of the swap network
return qubit indices to their original mapping. Otherwise, post-processing can reverse the measured bitstrings.

The swap network requires linear connectivity. On the 23-qubit subgraph of the Sycamore device used for this
experiment, this limits us to a maximum size of n = 17 for the SK model, shown in Figure S5.

FIG. S5. The largest line one can embed on the 23-qubit device is of length 17.

Distance between compiled problems and hardware grid. There are several ways of quantifying the distance
between two graphs. In our case, the only relevant one is how much the performance degrades by embedding a graph
into the planar grid representing our hardware connectivity. We found that the depth of the compilation is a good
correlate of this, and so optimized for that. Finding the minimum-depth compilation (in the routing framework)
is likely NP-hard, though this has not been proven, so the relevant distance metric becomes the lowest depth of a
compilation that we can efficiently find. (A few related problems have been shown to be NP-hard, e.g., Maslov et al.
[3], Botea et al. [4].) Spectral sparsification has been used [5] to find an initial assignment of logical to physical qubits.
That approach, while generalizable to 2D, is primarily focused on 1D hardware graphs. More importantly, as with
the routing problems, these metrics may also provide good heuristics and approximations for the depth, but are not
the same.
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S2. PRIOR WORK

Reference Date Problem topology ∆(G) n p Optimization

Otterbach et al. [6] 2017-12 Hardware 3 19 1 Yes

Qiang et al. [7] 2018-08 Hardware 1 2 1 No

Pagano et al. [8] 2019-06 Hardware1 (system 1) n 12, 20 1 Yes

Hardware1 (system 2) n 20–40 1–2(2) No

Willsch et al. [9] 2019-07 Hardware 3 8 1 No

Abrams et al. [10] 2019-12 Ring 2 4 1 No

Fully-connected n No

Bengtsson et al. [11] 2019-12 Hardware 1 2 1, 2 Yes

This work Hardware 4 2–23 1–5 Yes

3-regular 3 4–22 1–3 Yes

Fully-connected n 3–17 1–3 Yes

TABLE S2. An overview of experimental demonstrations of QAOA. Although each work generally frames the algorithm
in terms of a combinatorial optimization problem (2SAT, Exact Cover, etc.), we classify problems based on their topology,
maximum degree of the problem graph ∆(G), the number of qubits n and the depth of the algorithm p. These attributes
give a rough view of the difficulty of a particular instance. We indicate whether variational optimization of parameters was
demonstrated. 1In superconducting processors, “Hardware” topologies are 2-local planar lattices. In ion trap processors,
hardware-native topologies are long range couplings of the form Jij ≈ J0/|i− j|α. 2p = 2 only for n = 20.

Prior work has included experimental demonstration of the QAOA. The referenced works often include additional
results, but we focus specifically on the sections dealing with experimental implementation of the algorithm.

Otterbach et al. [6] demonstrated a Bayesian optimization of p = 1 parameters on a 19-bit hardware-native Ising
graph using a Rigetti superconducting qubit processor. The authors compared the cumulative probability of finding
the lowest energy bitstring over the course of the optimization to binomial coin flips and showed performance from the
device exceeding random guessing. The problem topology involved a roughly hexagonal tessellation. The problems
were related to a restricted form of two-class clustering.

Qiang et al. [7] demonstrated a n = 2, p = 1 QAOA landscape on their photonic quantum processor. They
presented three instances of the two-bit problem, which was framed as Max2Xor. The color scale for the landscapes
was re-scaled for experimental values. They demonstrated high probability of obtaining the correct bitstrings.

Pagano et al. [8] demonstrated application of the QAOA with two ion trap quantum processors, called “system
1” and “system 2”. The problems were of the form Jij ≈ J0/|i − j|α with α close to unity. This corresponds to
an antiferromagnetic 1D chain. This problem is fully connected, but is spiritually similar to the hardware native
planar graphs studied in superconducting architectures in the sense that the cost function cannot be programmed
and is easily solvable at any system size. A landscape is shown for n = 20 from system 1. Optimization traces are
shown for n = 12 and n = 20 on system 1. On system 2, performance was demonstrated at optimal parameters for
n = {20, 25, 30, 35, 40}. Additionally, a partial p = 2 grid search was performed on system 2. Nine discrete choices
for (γ1, β1, β2) were selected and then a scan over γ2 was reported for each choice. Finally, on system 2, performance
was compared between p = 1 and p = 2 at n = 20, giving a ratio of (93.8± 0.4)% versus (93.9± 0.3)%, respectively.

Willsch et al. [9] demonstrated an application of the QAOA via IBM’s Quantum Experience cloud service on the
16Q Melbourne device. The 8-bit problem studied was framed as 2SAT and had a topology matching the device with
maximum node degree of 3. A landscape with re-scaled color map was compared to the theoretical landscape.

Abrams et al. [10] implemented QAOA on two types of problems; each with two compilation strategies. The
4-bit problems had a ring topology and a fully-connected topology. While a 4-qubit ring would fit on the Rigetti
superconducting device, they implemented both problems using only linear connectivity with the introduction of
swaps. In one compilation strategy, they used cz as the gate-synthesis target. In the other, they used both cz and
iswap. The color bars were re-scaled for the experimental data.

Bengtsson et al. [11] ran 2-bit QAOA instances on their superconducting architecture at p = 1 and p = 2. They
show four p = 1 landscapes and demonstrate optimization for n = 2, p = 2. They observed that increasing circuit
depth to p = 2 increases the probability of observing the correct bitstring.
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S3. READOUT CORRECTION

The experimentally measured expectation values plotted in Figure 3 were adjusted with a procedure used to
compensate for qubit readout error. We model readout error as a classical bit-flip error channel that changes the
measurement result of qubit i from 0 to 1 with probability p0,i and from 1 to 0 with probability p1,i. Under the effect
of this error channel, a measurement of a single qubit in the computational basis is described by the following positive
operator-valued measure (POVM) elements (we drop the subscript i here for clarity):

Π̃0 = (1− p0)Π0 + p1Π1 (23)

Π̃1 = p0Π0 + (1− p1)Π1, (24)

where Π0 = |0〉〈0|, Π1 = |1〉〈1|. The uncorrected Z observable can be written as

Z̃ = Π̃0 − Π̃1 = (p1 − p0)I + (1− p1 − p0)Z. (25)

Solving for Z, we have

Z =
Z̃ − (p1 − p0)I

1− p1 − p0
. (26)

For our problems we are interested in the two-qubit observable ZiZj , so the corrected observable is

ZiZj =
Z̃i − (p1,i − p0,i)I

1− p1,i − p0,i
· Z̃j − (p1,j − p0,j)I

1− p1,j − p0,j
. (27)

This expression tells us how to adjust the measured observable to compensate for the readout error. In the above
analysis, we can replace p0 and p1 by their average (p0 + p1)/2 if we perform measurements in the following way: for
half of the measurements, apply a layer of X gates immediately before measuring, and then flip the measurement
results. In this case, the corrected observable is

ZiZj = Z̃iZ̃j ·
1

1− p1,i − p0,i
· 1

1− p1,j − p0,j
. (28)

We estimated the value of p0,i on the device by preparing and measuring the qubit in the |0〉 state 1,000,000 times
and counting how often a 1 was measured; p1,i was estimated in the same way but by preparing the |1〉 state instead
of the zero state. This estimation was performed periodically during the data collection for Figure 3 to account for
drift following automated calibration.

We measure each qubit via the state-dependent dispersive shift they induce on their corresponding harmonic
readout resonator as described in Arute et al. [1] supplementary information section III. We interrogate the readout
resonator frequency with an appropriately calibrated microwave pulse (e.g. a frequency, power, and duration). When
demodulated, the readout signal produces a ‘cloud’ of In-phase and Quadrature (IQ) Voltage points which are used to
train an out state descrimator. Often, we find that optimal single-qubit calibrations extend to the case of simultaneous
readout, but this is not always the case. For example, due to the Stark shift induced by photons in readout resonators,
new frequency collisions may be introduced that are not present in the isolated readout case. Similarly, the combined
power of a multiplexed readout pulses may exceed the saturation power of our parametric amplifier.

At the time of the primary data collection for this experiment, all automated calibration routines were performed
with each qubit in isolation. Subsequently, a calibration which optimizes qubit detunings during readout was imple-
mented to mitigate these correlated readout errors caused by frequency collisions. Figure S6 shows |0〉 and |1〉 state
errors for simultaneous readout of all 23 qubits (which are used to correct 〈ZZ〉 observables) both as they were during
primary data taking for Figure 3 (top) and after implementing the improved readout detuning calibration (bottom).
During primary data collection, the median isolated readout error was 4.4% as measured during the previous auto-
mated calibration. The discrepancy between these figures and the calibration values shown in Figure S6, top can be
attributed to drift since the automated system calibration in addition to the simultaneity effects described above.

Data presented in Figure 4 and Figure 5 was taken on a different date with median isolated readout error as 4.1%
as reported in the main text. Readout correction was not used for these two figures.

While automated calibrations will continue to improve, drift will likely remain an inevitability when controlling
qubits with analog signals. As such, we expect the readout corrections employed here will continue to provide utility
for end-users of cloud-accessible devices. In general, there will always be a difference between a hands-on calibration
conducted by an experimental physicist and automated calibration for a cloud-accessible device, and we look forward
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FIG. S6. (Top) Marginalized error probabilities p0,i and p1,i for simultaneous readout of all qubits from a representative
calibration used to correct Figure 3 for readout error. (Bottom) Values for typical marginalized simultaneous readout error
probabilities after the implementation of an improved automated calibration routine. Error bars (barely visible) represent a
95% confidence interval.

to future research ideas being “productionized” to make them accessible to a wide audience of algorithms researchers.
Even in this instance there is still an imperfect abstraction: if one is interested in reading only a subset of all available
qubits, higher performance can be obtained by doing a highly-tailored calibration; but we expect that the vast majority
of cases will be served better by the new calibration routines.

S4. OPTIMIZER DETAILS

In this section, we describe the classical optimization algorithm that we used to obtain the optimization results
presented in Figure 3. The algorithm is a variant of gradient descent which we call “Model Gradient Descent”. In
each iteration of the algorithm, several points are randomly chosen from the vicinity of the current iterate. The
objective function is evaluated at these points, and a quadratic model is fit to the graph of these points and previously
evaluated points in the vicinity using least-squares regression. The gradient of this quadratic model is then used as
a surrogate for the true gradient, and the algorithm descends in the corresponding direction. Our implementation
includes hyperparameters that determine the rate of descent, the radius of the vicinity from which points are sampled
(the sample radius), the number of points to sample, and optionally, whether and how quickly the rate of descent and
the sample radius should decay as the algorithm proceeds. Pseudocode is given in Algorithm 1.
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Algorithm 1 Model Gradient Descent

Input: Initial point x0, learning rate γ, sample radius δ, sample number k, rate decay exponent α, stability constant A, sample
radius decay exponent ξ, tolerance ε, maximum evaluations n

1: Initialize a list L
2: Let x← x0
3: Let m← 0
4: while (#function evaluations so far) + k does not exceed n do
5: Add the tuple (x, f(x)) to the list L
6: Let δ′ ← δ/(m+ 1)ξ

7: Sample k points uniformly at random from the δ′-neighborhood of x; Call the resulting set S
8: for each x′ in S do
9: Add (x′, f(x′)) to L

10: end for
11: Initialize a list L′

12: for each tuple (x′, y′) in L do
13: if |x′ − x| < δ′ then
14: Add (x′, y′) to L′

15: end if
16: end for
17: Fit a quadratic model to the points in L′ using least squares linear regression with polynomial features
18: Let g be the gradient of the quadratic model evaluated at x
19: Let γ′ = γ/(m+ 1 +A)α

20: if γ′ · |g| < ε then
21: return x
22: end if
23: Let x← x− γ′ · g
24: Let m← m+ 1
25: end while
26: return x

S5. SUPPORTING PLOTS FOR PERFORMANCE AT OPTIMAL ANGLES

A. Analysis of Noise

There are two relevant mechanisms when considering the difference in performance between problems. One is the
propagation of faults through the circuit and the other is fidelity decay due to circuit depth. A single fault on low-
degree problems (Hardware Grid and 3-regular MaxCut, with degree four and three, respectively) can only propagate
to terms p edges away from the original location of the fault, irrespective of the total number of qubits. However, if
compilation results in circuits extensive in the system size, the probability of a fault increases. For the SK-model, the
degree of the problem is extensive in system size so both the propensity for fault propagation as well as the probability
of faults grows with n. Additionally, compilation of the 3-regular problems onto the hardware topology introduces
SWAPs, which can propagate faults through nodes which would otherwise not be adjacent in the problem graph.
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FIG. S7. An exponential model compatible with a depolarizing error channel reasonably models the performance of compiled
SK Model and 3-Regular MaxCut problems because their circuits are extensive in system size and faults are rapidly mixed.
This error model is a poor fit for Hardware Grid problems due to the low degree of the problem graph and simple compilation.
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To probe these two effects, we fit a global depolarizing channel to the results for the three problems. A global
depolarizing channel results in the mixed state

ρ = fc|ψ〉〈ψ|+
1− fc
d

I

where |ψ〉 is the noiseless QAOA state, I is the n-qubit identity matrix, and fc is the total circuit fidelity. Tr(IC) = 0
because of the ZZ structure of the cost function, so the experimental objective function is simply a scaled version
of the noiseless version, 〈C〉Expt = fc〈C〉Noiseless. We perform a linear regression on fc = fn × f0 ↔ log(fc) =
n log(f) + log(f0) where log(f) and log(f0) are fittable parameters physically corresponding to a per-qubit fidelity
and a qubit-independent offset. For the Hardware Grid, a depolarizing model is inappropriate, as the limited fault
propagation and fixed circuit depth yield a largely n-independent noise signature. The exponential decay expected
from a global depolarizing channel reasonably fits both the SK model and MaxCut results. We note that the fit is
considerably stronger for the high-degree SK model where faults are rapidly mixed.
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FIG. S8. Performance of QAOA at p ∈ [1, 5] and n ∈ [2, 23] over random instantiations of couplings as described in the main
text. Points have been perturbed along the x-axis to avoid overlap. Green: Noiseless Blue: Experimental
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FIG. S9. Performance of QAOA at p ∈ [1, 3] and n ∈ [3, 17] over random SK model instances as described in the main text.
Points have been perturbed along the x-axis to avoid overlap. Green: Noiseless Blue: Experimental
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FIG. S10. Performance of QAOA at p ∈ [1, 3] and n ∈ [4, 22] over random 3-regular MaxCut problems as described in the
main text. Points have been perturbed along the x-axis to avoid overlap. k-regular graphs must satisfy n ≥ k+ 1 and nk must
be even, hence only even n are considered here. Green: Noiseless Blue: Experimental
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S6. SUPPORTING PLOTS FOR OPTIMIZATION TRACES
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FIG. S11. During experimental optimization of angles, we use six executions of 25,000 samples to estimate the gradient and
propose new angles. (top) We estimate the probability of finding a correct bitstring Pr(z∗) by combining the data for the six
gradient evaluations as well as an additional execution of 25,000 repetitions at the new angles for a total of 175,000 bitstrings.
Measuring these low-probability events requires many samples for an accurate estimate, which is why we mainly focus on the
more robust quantity 〈C〉 in the main text. Points below the plot correspond to regions of parameter space where an optimal
bitstring was not observed at all. (bottom) The cumulative probability of seeing an optimal bitstring given the number of
samples taken thus far. While random sampling on this 23-bit problem can find a ground state bitstring with roughly 20%
chance, it is worthwhile to use the samples to move into a better region of parameter space where the cumulative probability
of finding a ground state bitstring quickly jumps to nearly 100%.
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FIG. S12. For the smaller problems, random guessing is an effective strategy compared to the initial optimization points
(deliberately chosen to be far from optimal). Once the optimizer makes progress, QAOA is also able to find the optimal
bitstrings rapidly.
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