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ABSTRACT
Traditional online quality metrics are based on search and brows-
ing signals, such as position and time of the click. Such metrics
typically model all users’ behavior in exactly the same manner.
Modeling individuals’ behavior in Web search may be challenging
as the user’s historical behavior may not always be available (e.g.,
if the user is not signed into a given service). However, in personal
search, individual users issue queries over their personal corpus
(e.g. emails, files, etc.) while they are logged into the service. This
brings an opportunity to calibrate online quality metrics with re-
spect to an individual’s search habits. With this goal in mind, the
current paper focuses on a user-centric evaluation framework for
personal search by taking into account variability of search and
browsing behavior across individuals. The main idea is to calibrate
each interaction of a user with respect to their historical behavior
and search habits. To formalize this, a characterization of online
metrics is proposed according to the relevance signal of interest
and how the signal contributes to the computation of the gain in
a metric. The proposed framework introduces a variant of online
metrics called pMetrics (short for personalized metrics) that are
based on the average search habits of users for the relevance signal
of interest. Through extensive online experiments on a large popu-
lation of GMail search users, we show that pMetrics are effective in
terms of their sensitivity, robustness, and stability compared to their
standard variants as well as baselines with different normalization
factors.
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1 INTRODUCTION
Online evaluation in information retrieval involves deploying a
search engine to actual users with real-world information needs
and assessing the performance of the system based on how these
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users interact with it [12]. Online evaluation is often used for con-
trolled experiments and allows absolute or relative quality assess-
ments with respect to a group of online quality metrics. Traditional
online quality metrics are based on search and browsing signals,
such as position and time of the click, modeling all users in exactly
the same manner. As a result, quality metrics computed based on
online evaluation may inaccurately reward or penalize a user’s
interaction with the ranked results. In other words, online evalu-
ation tends to oversimplify real-world search tasks in such a way
that the final metric value may overestimate or underestimate user
satisfaction [21].

In addition, previous efforts [14, 15] show that satisfaction can
be best explained with respect to the outcome (a.k.a gain) obtained
through the search experience at the price of the effort spent by the
searcher. While online metrics take into account the first factor via
the implicit feedback signals (such as position and time of click),
they do not account for difference in individuals’ effort. In par-
ticular, these metrics do not take into account individuals’ search
habits and persistence. Different users tend to treat ranked results
differently [1, 13, 23]; one may be a patient searcher in the sense
that they take the time to browse all the way down on the result
list as opposed to another user who usually cares about the very
top ranked results and rarely clicks on the ones lower on the list.
While traditional online effectiveness metrics assume all users have
similar behavior, this paper proposes a framework to adopt these
metrics to take into account variability of search and browsing
behavior across individuals.

Modeling individuals’ behavior in Web search may be challeng-
ing as the user’s historical behavior may not be available (e.g., if
the user is not signed into a given service). However, in personal
corpora, a.k.a personal search [4, 29], individual users issue queries
over their personal corpus (e.g. email, file, etc) while they are logged
in the system. Given the availability of such a valuable source of
information and the popularity of personal search, the existing eval-
uation metrics can be adopted to consider a user’s habits and effort
for finding information in their personal corpus. Even in the cold
start case, where there is little or no historical information recorded
for an individual, one can take into account the overall behavior of
an average user in the system to emulate that individual’s behavior
resulting in a more accurate estimate of user satisfaction.

This paper proposes and validates a user-centric evaluation
framework for personal search as the first yet significant step to-
wards that goal. The main idea is to calibrate each user interaction
with respect to the user’s historical behavior and search habits.
To formalize this, a characterization of online metrics is proposed
according to the signal of interest and how the signal contributes
to the computation of the gain in a metric. Then the framework
introduces a variant of normalizing the online metrics based on the
average search behavior of users for the signal of interest and its
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contribution property. This is supported by the intuition that simi-
lar interaction signals obtained from different individuals should
contribute differently to the overall metric value depending on the
effort each individual spends comparing to their usual behavior in
the system. As a result, variants of online metrics are formulated
and validated that take into account the above factors, resulting in
a suite of user-centric online metrics that we refer to as pMetrics
(short for personalized metrics).

Our primary contributions can be summarized as follows:
• We propose a characterization of online metrics according
to the signal of interest and how the signal contributes to
the computation of the gain in a metric.

• We propose a user-centric evaluation framework for per-
sonal search, through which we introduce our notion of
personalized online metrics (pMetrics) based on the aver-
age search habit of users for the signal of interest and its
contribution property.

• Through extensive online experiments on a large population
of GMail search users, we show thatpMetrics are effective in
terms of their sensitivity, robustness, and stability compared
to their standard variants as well as baselines with different
normalization factors.

The remainder of the paper is organized as follows: Section 2
provides an overview of the related work. A characterization of
online metrics is proposed in Section 3. This serves as the basis of
the proposed framework for user-oriented evaluation of personal
search in Section 4. The results of the evaluation of metrics adopted
with respect to the proposed framework are presented in Section 5.
Section 6 summarizes the concluding remarks and future direction.

2 RELATEDWORK
Offline and online quality metrics are widely used to measure the
performance of search and retrieval systems. Offline metrics rely
on relevance judgments to evaluate the effectiveness of a ranking
algorithm based on the explicit feedback obtained from annotators
on how satisfied they are with ranked results. Online metrics take
a contrasting approach in a sense that they are based on the actual
interactions between users and search systems in a natural usage
environment. While offline evaluation is usually costly and cannot
be done at large scale, it is often fast and less costly to collect online
experiments data in modern systems, making it fairly easy to scale
up online evaluation. On the other hand, online metrics are known
to suffer from various form of biases, such as position and selection
biases [16, 33].

Although both types of evaluation metrics have achieved suc-
cess, there still remain questions about whether they can predict
“actual” user satisfaction [5]. This may be more of an issue for on-
line metrics as the online behavior of users can be affected by their
search biases and habits that may need to be corrected for when
inferring search success. Another reason that online metrics are
the target of our study in this work is due to the popularity of
online evaluation in personal search domains. Personal search is
an important information retrieval task with applications such as
email search [4, 10] and desktop search [8]. One major difference
between personal and Web search is that in personal search sce-
narios each user has access only to their own private document

corpus (e.g., emails, files, etc) while they are logged in during their
entire interaction with the service. An important challenge in the
context of personal search is the collection of explicit relevance
judgments. Collection of TREC-like document relevance judgments
by third party raters are difficult to obtain due to privacy restric-
tions [7]. In addition, since each user will have their own unique
set of information needs and documents that evolve over time (e.g.,
new emails arrive every day), explicit relevance judgments may be
prohibitively costly to maintain. Therefore, performing online eval-
uation through controlled experiments by utilizing click-through
data as a noisy and biased source of relevance feedback has become
essential for building highly effective personal search systems.

Search satisfaction is commonly measured using simple instru-
ments in both offline and online metrics [5, 14, 15]: asking searchers
or annotators whether they are satisfied on a binary or multi-point
scale, or considering user interaction signals (e.g., click) as the no-
tion of satisfaction. Sanderson et al. [22] study the correlation of
user preferences and evaluation measures, arguing that there is
much scope for refining effectiveness measures to better capture
user satisfaction and preferences. While previous studies [2, 30]
have explored how user behavior can contribute to gains in rele-
vance through search personalization, the current paper is the first
to study how historical user behavior can provide valuable signals
for delivering a better evaluation of personal search systems.

Mao et al. [17] study the relationship between relevance, use-
fulness, and satisfaction and argue that traditional system-centric
evaluation metrics may not be well aligned with user satisfaction.
They suggest that a usefulness-based evaluation method should
be defined to better reflect the quality of search systems perceived
by users. In our proposed evaluation framework, we calibrate the
notion of relevance from each interaction of a user with respect to
the user’s historical behavior and search habits that can be seen
as a user-dependent notion of the usefulness of this interaction
towards the computation of the overall gain from all interactions
of this user with the system.

Other efforts [14, 15] show that satisfaction can be best explained
with respect to the outcome (a.k.a gain) obtained through the search
experience at the price of the effort spent by the searcher. They ar-
gue that the nature of a search task and the tenacity of the searcher
are among the factors that can influence the types of search behav-
ior observed, and therefore further studies are required to under-
stand the role of these and other factors on behavior and search
satisfaction. While traditional online metrics take into account the
first factor (i.e., the gain) via the implicit feedback signals (such
as position and time of click), they do not account for difference
in individuals’ efforts. In particular, these metrics do not take into
account individuals’ search habits and persistence.

One piece of related work on evaluation measures that does
capture searchers’ efforts is the one by Smucker and Clarke [25].
That work introduces an offline measure called time-biased gain
(TBG), which takes into account the effort that a user spends to
examine result snippets before reading the actual result document.
They propose to use the time spent by the user to examine the
snippets (that can depend on factors such as the document length)
as the basis for discounting the relevance value of a document
instead of the document rank. In more recent work [24], Smucker
and Clarke extend TBG in the context of stochastic simulation
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of user behaviors in order to capture variance in user behavior
such that they create a single user model for each participant in
their study. Furthermore, the U-measure proposed by Sakai and
Dou [21], is another offline metric that considers the searcher’s
effort in measuring search satisfaction. Instead of discounting the
value of a retrieved piece of information based on ranks, U-measure
discounts it based on its position within the trailtext, where trailtext
represents all the text the user has read during an information
seeking process. Similar toTBG , U-measure also takes the document
length into account.

Our work is also based on the idea of looking beyond item ids and
rank to capture searchers’ efforts. However, we consider discount-
ing the gain of each interaction with respect to a users’ average
behavior and search habits specifically for online metrics. To this
end, we propose a generic framework to calibrate online metrics
with respect to the implicit interaction signals, such as position and
time of click. To the best of our knowledge, this is the first work that
focuses on capturing variability of user behavior in online metrics
for personal search evaluation.

3 CHARACTERISTICS OF STANDARD
ONLINE METRICS

Online quality metrics rely on user interaction signals, such as
position and time of click, as opposed to offline metrics that are
based on explicit relevance judgments. While interaction signals
may introduce noise and bias in the evaluation, they are often cheap
and fast to collect at large scale, which makes it relatively easy to
scale up online metrics and monitor them frequently as opposed to
their offline counterparts. In addition, online metrics rely on the
actual experience of users who issued queries in the search system
giving straightforward descriptions on how users would interact
with the system.

As pointed out by Chen et al. [5], online metrics typically are
i) click-based metrics; e.g., click-through rate and average click
position, and ii) time-based metrics; e.g., query dwell time and
average time to the first click. These metrics are typically computed
as the average of gains across actions. Denoting the number of
actions by n, an online metricM can be formulated as:

M = 1
n Σ

n
i=1Mi

whereMi is the gain obtained from action i .
Examining the formulation of onlinemetrics, we can characterize

these metrics according to the signal of interest and how the signal
contributes to the computation of gain in the metric:

- Interaction Signal: Online metrics vary based on the in-
teraction signal that is obtained from search logs and used
towards their computation. This signal may be position of
the interaction which is usually a click (e.g., the click po-
sition in average click position metric), an indicator value
(e.g., the binary click values used in the click-through rate
metric), and time of the interaction (e.g. the time in query
dwell time).

- Contribution to Gain: The way an interaction signal con-
tributes to the computation of the gain may vary in online
metrics. We find that for some metrics the signal of interest

contributes linearly (e.g., click position for average click posi-
tion) towards the gain, while there is an inverse contribution
(e.g., position for mean reciprocal rank) for others.

A group of common online metrics along with their signal and
contribution properties based on this characterization are depicted
in the first four columns of Table 1. As can be seen in the second
column of the Table, the right hand side of Σ is equally weighted
across all actions (and therefore across all users) for all the listed
metrics. In other words, the only factor that determines the gain is
the value of the interaction signal, such that similar interactions of
different users would be treated equally towards the final value of
the metric.

While these interaction signals are valuable sources reflecting
user behavior, they may introduce noise and bias in online eval-
uation. This paper is one step towards better adjustment of these
signals such that they capture user’s effort with respect to their
current interaction as well as their usual search habits.

As an example, consider the position-based click metric MRR
(mean reciprocal rank – the first metric listed in Table 1) in which
the position of click contributes in the same fashion across all users
(i.e., inversely) to calculate the gain obtained from each action.
However, a user may be a patient searcher in the sense that they
take the time to browse all the way down on the result list as
opposed to another user who usually cares about the very top
results (first or second) and rarely clicks on the ones lower on the
list. Such a metric does not accurately reflect the fact that different
members of the user population tend to behave differently than
others. What if this metric is adopted to reflect the average click
position of individuals as well?

As another example, consider the time-based TTC metric (time
to click – the last metric in Table 1) that uses the time between the
start of the search session and first click in that session as the signal
of interest contributing linearly to compute the gain. The standard
formulation of the metric measures the average time to first click
across users by assuming they are all equally fast. However, an
individual user may be a thorough examiner who takes a longer
time on average to decide whether to click on a result. The question
is whether this metric can be formulated according to the usual
examination habit of the user, which can be captured from the click
history of this individual.

4 A USER CENTRIC EVALUATION
FRAMEWORK

In this section, we extend the online quality metrics with respect
to the two factors described for these metrics earlier: interaction
signal and contribution to the gain. The average search behavior of
users for the signal of interest and how the signal contributes to
the metric’s gain form the basis of the proposed normalization for
these metrics. This is supported by the intuition that similar inter-
action signals obtained from different individuals should contribute
differently to the overall metric value depending on the effort each
individual spends compared to their usual behavior in the system.

4.1 Proposed Formulation of Online Metrics
Given action i with the signal si (e.g., click position, dwell time, etc),
we denote the average signal value of the corresponding user by s̄i .
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Table 1: Different types of online metrics and their personalized variant based on the proposed framework.

Metric family Standard metric Signal si Contribution wi pMetric

mean reciprocal rank MRR = 1
n Σ

n
i=1

1
ri click position ri inverse log( r̄iri + 1) pMRR =

Σni=1
log( r̄iri +1)

ri

Σni=1 log( r̄iri +1)

average click position ACP = 1
n Σ

n
i=1ri click position ri linear log( rir̄i + 1) pACP =

Σni=1 log( rir̄i +1)×ri
Σni=1 log( rir̄i +1)

click-through rate CTR = 1
n Σ

n
i=1ci binary click indicator ci linear log( ci

CTRi
+ 1) pCTR =

Σni=1 log( ci
CTRi

+1)×ci

Σni=1 log( ci
CTRi

+1)

abandonment rate AR = 1
n Σ

n
i=1ai binary abandonment indicator ai linear log( ai

ARi
+ 1) pAR =

Σni=1 log( ai
ARi
+1)×ai

Σni=1 log( ai
ARi
+1)

time to click TTC = 1
n Σ

n
i=1ti time ti linear log( tit̄i + 1) pTTC =

Σni=1 log( tit̄i +1)×ti
Σni=1 log( tit̄i +1)

We consider a normalization factor ofwi for each action of the user
that depends on s̄i , the current signal si , and a metric dependent
parameter ρ:

wi = f (s̄i , si , ρ)

This normalization factor can be seen as a measure of how well
the ranking system fulfills the expectation and general behavior
of users. For instance, if the system delivers beyond the user’s
average behavior, the metric should reflect that as a positive impact
towards the overall score of the system. As a result, the proposed
online metric (pM), normalized with respect to the user’s historical
behavior, can be formulated as:

pM =
Σni=1wiMi

Σni=1wi
(1)

which is the weighted average of the standard gain with respect to
the factorwi across the actions.

We refer to the proposed user-centric variant of online metrics
as pMetrics (short for personalized metrics), and denote it by pM for
the given standard metricM . For instance, the personalized variant
of MRR is denoted by pMRR, the personalized variant of CTR is
denoted by pCTR, and so on.

4.2 Normalization Factor
Here we consider a log-based function f to account for the im-
pact of a user’s past behavior through the normalization factorwi .
Investigating variants of f in a more systematic way is a future
direction for this work, but we compare the log-based function with
a linear-based candidate function in the experimental evaluation.

Assuming a log-based weighting function, the way that the aver-
age behavior of the user is formulated with respect to their current
behavior can be decided based on the type of the contribution the
signal has to the gain of the metric. If the signal of interest con-
tributes linearly towards the gain, the higher the observed signal
value is for an action the higher the value of the gain is for the met-
ric in that action. In this case, we want to reward the system slightly
higher if the current signal (si ) is also higher than the user’s usual
behavior (s̄i ). In other words, in case of a “linear” contribution to
the gain, we want to consider a normalization weight proportional

to log( sis̄i ). Otherwise, if the contribution to the gain is “inverse”,wi

should be proportional to log( s̄isi ) in order to take into account that
the system should be rewarded more if the current signal value is
lower than user’s historical behavior recorded for that signal.

To implement this idea, we define a binary parameter, denoted
by ρ that is metric dependent. This parameter is 1 if the signal’s
contribution towards the metric’s gain is linear, and 0 otherwise. As
a result, the proposed normalization factor is formulated as follows:

wi = log[(
si
s̄i
)2ρ−1 + 1] (2)

The intuition behind this weighting function can be explained
further with an example. Consider a position based metric, such
asMRR, where the signal of interest is the position of click and it
contributes inversely to the metric’s gain. This means that ρ = 0
in Equation 2. We also consider s̄i = r̄i and si = ri , respectively,
representing the average position of click and the current position
of click for the user corresponding to action i . As a result, the
normalization factor for the personalized variant ofMRR is set as:

wi = log[( rir̄i )
(2×0−1) + 1] = log( r̄iri + 1)

and the underlying intuition can be explained as follows:
(1) If the current click position and the average click position

are the same, we do not want to change the gain obtained
from this action, because the system appears to be able to
fulfill as expected according to the general behavior of the
user; hence,

ri = r̄i ⇒ wi = 1.
(2) If the user usually clicks on lower positions (towards the

bottom of the list) than their click position in the current
action (i.e., r̄i > ri ), we want to reward the performance of
the system in this action, because it appears to provide the
user with an experience with less effort needed than usual;

r̄i > ri ⇒ log( r̄iri + 1) > 1 ⇒ wi > 1

(3) If the user usually clicks on higher positions than their click
position in the current action (i.e., r̄i < ri ), we want to reduce
the gain of this action’s click on the overall performance of
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Table 2: An example of how variants of MRR discussed in this paper can be computed with respect to different users’ search
habits and the way their actions contribute towards the gain for these metrics.

Action 1 Action 2 Action 3 Action 4 Action 5

Current click position (ri ) 2 3 1 3 -

Average click position for the user of this action (r̄i ) 2 1 2 3 2

Log-based normalization:wi = loд(
r̄i
ri + 1) 1 0.41 1.58 1 1

Linear-based normalization:wi =
r̄i
ri 1 0.33 2 1 1

MRRi =
1
ri (standard gain) 0.5 0.33 1 0.33 0

pMRRi = wiMRRi (log-based gain) 0.5 0.13 1.58 0.33 0

pMRRi = wiMRRi (linear-based gain) 0.5 0.11 2 0.33 0

MRR = 1
5 (0.5 + 0.33 + 1 + 0.33 + 0) = 0.43

pMRR (log) = [1/(1 + 0.41 + 1.58 + 1 + 1)] × (0.5 + 0.13 + 1.58 + 0.33 + 0) = 0.50
pMRR (linear) = [1/(1 + 0.33 + 2 + 1 + 1)] × (0.5 + 0.11 + 2 + 0.33 + 0) = 0.55

the system to account for the higher than expected effort
they spent;

r̄i < ri ⇒ log( r̄iri + 1) < 1 ⇒ wi < 1

The above intuition can be better illustrated through an example
in Table 2. Assume there are five actions recorded in the search log
based on which we want to calculateMRR. The second row in the
Table shows the click position for these actions. Note that the fifth
action is a no-click, and its gain is set as zero in theMRR formulation.
The third row of the Table, on the other hand, shows the average
click position of the user corresponding to each action. This average
click position can be calculated from the historical interactions of
users with the system. If there is no historical action recorded for a
user (i.e., the cold start case), the average click position of all users
is used. It is noted that the numbers in this row are for example
purposes, and in reality they do not need to be integers.

The following two rows in Table 2 (i.e., the fourth and fifth rows)
respectively represent the log- and linear- based normalization
factors computed in terms of the current click signal and the average
click signal for each action. The next three rows show the gain
value that each action contributes towards the metric for each
of the standard MRR, the log-based pMRR, and the linear-based
pMRR. For instance, the first action contributes the same gain of
0.5 towards all three metrics because the current click behavior
and the historical click behavior of the corresponding user are
the same (i.e., ri = r̄i = 2). Whereas, for the second action, both
the log-based and linear-based variants of MRR contribute less
compared to the standard variant of the metric. The only difference
is that the log-based variant has a more conservative normalization
than the linear-based, and as a result we see gain contributions of
0.13 versus 0.11 for these settings respectively, as opposed to the
standard metric which has a gain of 0.33 from the second action.
Finally, the value of eachmetric is computed according to Equation 1
as shown in the last row of Table 2.

In the above example, we dived deep intoMRR, where the met-
ric’s signal of interest is the click position that contributes inversely
to the metric’s gain. Similar arguments hold for cases with click

position as the signal and linear contribution (e.g., ACP metric -
average click position) and time-based metrics (e.g. TTC metric -
time to click).

However, for metrics with binary signal (e.g. CTR with click or
no click as the only two possible values of the metric’s signal), we
need to measure the average behavior of the user (s̄i in Equation 2)
with respect to the historical value of the metric for each individual.
The rest of the normalization factor calculation is similar to what
explained above. For instance, for the CTR metric, we set ρ = 1
since the binary click signal contributes linearly to the CTR’s gain.
We then consider s̄i = CTRi and si = ci , respectively, representing
the average click-through rate and the current click signal for the
user corresponding to action i . As a result, the normalization factor
for the personalized variant of CTR is set as:

wi = log[( ci
CTRi

)(2×1−1) + 1] = log( ci
CTRi

+ 1)

As stated before, for cold start cases where there is little or no
historical information recorded for an individual, one can take into
account the overall behavior of an average user of the system to
emulate the individual’s behavior. Hence, we define s̄0 to denote
the average value of the signal of the interest across all users, and
let s̄i = s̄0 in Equation 2 for cases where the user of action i has a
value of zero recorded for their average historical behavior at the
time of evaluation.

Following the proposed formulation in Equation 1 and the nor-
malization variants described above, the personalized variant of
commonly used online metrics are presented in the last column
of Table 1. Different forms of metrics are listed in the Table that
are based on the factors described in our characterization of online
metrics in Section 3.

It is worth mentioning that although ACP and CTR share re-
spectively similar characteristics with TTC and AR - in terms of
how their signal contributes to the gain and therefore how their
pMetric variants are formulated - we include them all in the Table
for the completeness of our presented list of online metrics that are
commonly used in the personal search evaluation.
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5 EVALUATION OF THE PROPOSED METRICS
A suite of experiments are conducted in this section to empirically
evaluate the effectiveness of the proposed metrics and compare
them with their standard counterparts and baselines with different
normalization factors.

5.1 Experimental Setting
The data set used for our experimental study consists of GMail
search log data. GMail is one of the most popular and widely used
email providers. It has over 1.5 billion users1, many of whom rely
on search to find their personal emails.

For search, GMail uses an overlay to show relevance ranked
search results as a user types. This evaluation specifically focuses
on the relevance ranked email results displayed in the overlay. The
search overlay disappears when the user clicks on one of the results
orwhen they press the “enter” key (thus triggering a chronologically
sorted search). The search overlay shows up to six relevance ranked
email results for each query. Given the specifics of the user interface,
each search query is associated with at most one click.

Given the sensitive nature of personal email content, all of the
data analyzed in these experiments have been rigorously aggregated
and anonymized in line with industry-wide best practices and in
accordance with all relevant terms of service and business contracts.

For all the experiments reported in this section, we use a window
of 30 days from different points of time in 2018 and consider a notion
ofd , such that the lastd days constitute the observation period based
on which pMetrics are computed. The preceding 30 − d days are
the estimation period used to compute each user’s average behavior.
In these experiments, unless stated otherwise, we set d = 10. This
value has been chosen so that we can dedicate the majority of
the time from the beginning of the study window to compute the
average behavior of users while there is still enough time left as
our observation period to obtain sufficient number of actions for
the computation of the metrics. The value of d is varied in the
second group of experiments (Section 5.3) where we study the
discriminative power of the proposed metrics.

We focus our experiments on several tens of millions of users
randomly sampled from the population of users of the service that
were active during the experimentation time period. The interaction
signals recorded for our experiments are the following:

- Position of click (ri ): varies from 1 to 6 based on whether the
user clicked on any of the results displayed in the action i .

- Indicator of click (ci ): 0 or 1 indicating whether the user
clicked on any of the displayed results in the action i .

- Time of click (ti ): the time from when the query is issued
until the click (if any) occurs in the action i .

For each interaction signal in a metric, we also compute the av-
erage behavior across all users in the estimation period. This global
estimate is substituted for an individual user’s average behavior
if there is no interaction history in the observation period. This
global average is denoted by s̄0 in general form in Section 4, and by
r̄0, c̄0, and t̄0 for the interaction signals collected in our study.

Various online experiments are conducted with respect to the
above settings. Each pMetric , its standard form, and the variant

1https://twitter.com/gmail/status/1055806807174725633

with a linearweight function are calculated for each of these settings
for comparison purposes. Each group of experiments is explained
in more detail next. In summary, we aim at addressing the following
research questions through these experiments:

- How sensitive are pMetrics in detecting changes in ran-
domized tests?

- How discriminative are pMetrics across runs?
- How stable are pMetrics?
- How correlated are pMetrics with their standard counter-
parts?

5.2 Sensitivity in Randomized Tests
A good online metric should be able to detect changes through A/B
experiments effectively. Hence, a reasonable approach to validate
the effectiveness of the proposed metrics is to purposefully degrade
the quality of the underlying search engine’s results through ran-
domization to observe whether the proposed metrics are at least as
good as their standard counterparts in detecting the change.

For this purpose, we randomly divide our user population into
seven experiment buckets. All users within a given bucket expe-
rience the search results returned by exactly one of the following
seven settings:

- EC : The existing (production) ranking algorithm is used by
the system.

- ER : Fully randomizes the ordering of the top six items re-
turned by the production ranking algorithm.

- Ei,i+1 for i ∈ {1, ..., 5}: Randomly swaps the production sys-
tem’s results in positions i and i + 1, known as FairPairs [18].

We end up with six A/B experiments such that they vary based
on their treatment group (B), which is one of ER , E1,2, ...,E5,6. All
experiments share the same control group (A) that is EC . Ideally, in
all these A/B experiments, a perfect metric should be able to detect
a performance decrease in control versus treatment.

Different variants of popular online metrics are computed for
this set of A/B experiments. For each metric, the point estimate of
the relative change in treatment versus control is computed at a
significance level of 0.05 using a Jackknife statistical test [9] with 20
buckets. These numbers are reported in percentage form in Table 3.
If a metric detects the change to be statistically significant, the
corresponding number appears in bold in the Table.

Of the standard online evaluation metrics, CTR appears to be
the most consistent in terms of detecting system pairs to be statisti-
cally significantly different. The same trend is also observed in the
proposed pMetric variant of CTR in Table 3.

Note that some of the system changes experimented with, such
as those FairPairs that randomly swap items at lower positions in
the ranked list, may not be easily detectable via A/B tests. This is
primarily due to the relatively sparse number of clicks observed at
these positions as a result of the underlying click distribution and
due to factors such as position bias. For these reasons, it is not too
surprising to see that none of the metrics, standard or personalized,
are able to reliably detect such subtle changes in behavior.

It is also observed that for all cases, the proposed log-based per-
sonalized variant of the metrics can detect statistically significant
changes in system pairs just as well as the standard variant of each
metric. The baselines with the linear-based weight function, on
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Table 3: Sensitivity in randomized tests: The control setup is the same in all tests whereas the treatments are based on different
settings that change the results list at random. The numbers do not represent the absolute value of metrics, but they reflect
the percentage change of each metric in treatment from control.

point estimate (%)
Metric family Comparison pair Standard Proposed log-based pMetric Linear-based variant

A/B

EC /ER -26.5901 -31.7119 -32.9302
EC /E1,2 -8.6315 -11.5692 -12.5413

MRR EC /E2,3 -0.8017 -0.9011 -0.897
EC /E3,4 -1.0374 -0.9011 -1.271
EC /E4,5 -0.7669 -0.9011 -0.6772
EC /E5,6 -1.4646 -1.6603 -1.6678

EC /ER -11.069 -13.2651 -9.4612
EC /E1,2 -3.008 -4.5422 -2.1373

CTR EC /E2,3 -0.799 -1.5307 -0.4311
EC /E3,4 -1.0499 -3.1233 -0.5184
EC /E4,5 -1.0251 -1.6247 -1.0822
EC /E5,6 -1.7228 -4.3949 -0.5155

EC /ER +1.8339 +1.9263 +6.2718
EC /E1,2 +0.5889 +0.9216 +1.8828

TTC EC /E2,3 +0.1559 +0.2265 +2.0705
EC /E3,4 +0.0352 +0.161 -0.7703
EC /E4,5 +0.2646 +7.2407 +1.3783
EC /E5,6 +0.3554 +0.5322 -0.3083

the other hand, appear weaker in detecting some of the changes.
In particular, the personalized variant of TTC with linear-based
weighting is found to detect no statistically significant change in
pairs, whereas the proposed log-based (pMetric) variant of the met-
ric, as well as the standard one, detect significant changes in some
cases. This may be due to the fact that a linear-based weighting
may not be suitable for a signal like time that tends to have large
absolute values and high variance. A log-based weighting would
provide a more tempered way of taking the average behavior of
individuals into account, suggesting that the proposed framework
suits a wide group of interaction signals in online metrics.

5.3 Discriminative Power
We also compare the proposed metrics with the baselines in terms
of their discriminative power [19]. The discriminative power is
commonly used for evaluating the robustness of quality metrics.
Given a collection of runs and a quality metric, the discriminative
power of the metric is calculated as the percentage of the run pairs
that are detected as statically significant based on this metric and
using a pairwise significance test. A low value of the discriminative
power for a metric indicates that the metric may not be useful
for drawing conclusion from experiments, whereas a metric with
relatively higher discriminative power can be regarded as being
more sensitive in detecting changes.

The experiments conducted in this section aim at calculating
the discriminative power of pMetrics as well as the baselines to
evaluate how consistent they are across runs; in other words, how
often the metrics can detect differences between runs with high

confidence. The online experiments that we set up for this purpose
are the following:

• Experiments that display differing numbers of relevance
ranked email results. Values tried include 3, 4, 5, 6, 7, and 8.

• Experiment in which the ranking of the top results returned
by the production ranking algorithm is randomized, sim-
ilar to the fully randomized experiments described in the
previous subsection.

For each metric and every pair of experiments in the collection,
we conduct a pairwise significance test to measure the statistical
significance of the difference in the mean of the experiments pair.
The number of statistically significantly different pairs for each
metric determines the metric’s discriminative power.

Since we have 7 experiments (6 displaying different numbers of
results and one that randomizes the displayed results order), we
have

(7
2
)
= 21 experiment pairs to test. We use a Jackknife statistical

test [9] with 20 buckets and α = 0.05. The pairwise comparisons
are repeated across five days, varying d from 8 to 12 days to collect
enough data to compute the average discriminative power of each
metric. The analysis is conducted forMRR, CTR, and ACP and for
three settings: standard, pMetric , and linear weighting, resulting
in 3x3=9 metrics overall. As a result, we conducted 945 statistical
tests for this round of the study: 21 (pairs) × 9 (metrics) × 5 (days)
= 945 statistical tests conducted.

The results of this study are depicted in Figure 1. Comparing
standard metrics only (blue bars in the plot), it appears thatMRR-
based metrics are more discriminative than CTR- and ACP-based
metrics in general. Comparing different variants of pMetrics (red
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Figure 1: Discriminative power of metrics under the pairwise significance test with a significance level of 0.05.

Table 4: Percentage of A/A tests with no statically significant difference detected by pMetrics, their linear-based variant, and
the standard metrics.

Metric family Setting % of A/A tests with no significant change

standard 94.77
MRR linear-based variant 90.20

proposed log-based pMetric 95.43

standard 94.20
CTR linear-based variant 93.31

proposed log-based pMetric 96.73

standard 94.45
ACP linear-based variant 90.86

proposed log-based pMetric 95.84

bars versus orange bars), the proposed log-based pMetrics appear
to outperform their linear-based variants in terms of the discrimi-
native power across all metric types, suggesting once again that a
log-based normalization is indeed better suited for these metrics.
Finally, comparing standard metrics against the proposed log-based
pMetric (blue bars against orange ones), we observe that the log-
based pMetrics are more discriminative than or at least as good as
their standard counterparts in detecting a change throughout the
experiments, suggesting these metrics are reliable online metrics
for controlled experiments.

5.4 Stability in A/A Tests
An online quality metric is ideally expected to detect no significant
difference between two groups of the same population experiencing
the same system. However, the natural variability in the population
usually results in some false positives, or type I errors, indicating
that a behavior change exists when in reality there should not be
a difference between the two control groups. This motivates us to
validate the proposed metrics in terms of their stability in A/A tests
and study how they can handle user sampling bias in such tests
compared to standard online metrics.

It is expected that the proposed metrics are, at the least, as stable
as standardmetrics in A/A tests. We evaluate this via setting up a set
of A/A experiments by randomly placing our user population into
50 control groups. We then conduct a Jackknife statistical test (with
20 buckets) between every control pair, resulting in

(50
2
)
= 1225

tests per metric. For each metric, we calculate the percentage of
A/A tests in which the metric detects no statistically significant
change at a significance level of 0.05.

Table 4 shows the results of this study. As expected, the pro-
posed pMetrics outperform their counterparts in terms of their
stability in A/A tests. The results observed here are similar to those
observed in other experiments. Specifically, the proposed log-based
variants clearly outperform the linear-based variants. Furthermore,
the log-based variants consistently outperform the standard met-
rics for each metric family. These results suggest that the proposed
framework can be seen as a step closer to reduce the effect of user
bias in evaluating online controlled experiments.

5.5 Correlation Study
Correlation studies are commonly performed to evaluate evaluation
metrics empirically. This is based on the idea that metrics that
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Table 5: Kendall’s τ correlation of pMetrics as well as the linear-based variant of pMetrics with the standard metrics.

Metric family pMetric variant Correlation with standard metric

MRR linear-based variant 0.7222
proposed log-based pMetric 0.7778

CTR linear-based variant 0.3889
proposed log-based pMetric 0.4444

TTC linear-based variant 0.0555
proposed log-based pMetric 0.2222

correlate poorlywith standardmetrics are probably poormetrics [3].
What is commonly performed in this type of empirical evaluation
is that quality metrics are evaluated based on how similarly they
rank systems compared to the established metrics in order to verify
that the new metrics measure the same thing on average. Kendall’s
τ [26] is a well-established rank correlation measure for comparing
system rankings generated by different metrics [6, 20, 28, 32].

In this set of experiments, we randomly divide our user pop-
ulation into nine buckets and expose all users of each bucket to
experience the search results returned by a different ranking model.
The ranking models include a number of experimental models that
were being evaluated at the time.

Kendall’s τ is used to measure the stability of the rankings of
these experimental runs under the pMetrics as well as their linear-
based variants with respect to the rankings obtained from the stan-
dard metrics. Note that Kendall’s τ ranges from +1 to -1, with +1
indicating perfect agreement and -1 indicating the opposite.

The results of this analysis are presented in Table 5. As it is
shown in the Table, the proposed log-based variant of pMetrics
correlates better with standard metrics as opposed to the linear-
based variant. This further confirms the previous empirical results
presented in this section suggesting that pMetrics offer a better
formulation with respect to the user’s average behavior comparing
to their linear-based counterparts.

6 CONCLUSION
Traditional online quality metrics are based on the search and
browsing signals, such as position and time of the click, modeling
all users in exactly the same manner. As a result, quality metrics
computed based on the online evaluation may inaccurately reward
or penalize a user’s interaction with the ranked results. While
these metrics take into account a gain-based computation of the
final score with respect to the implicit feedback signal from each
interaction of each user, they do not account for differences in
individuals’ effort.

Given the availability of logged-in information in personal search,
the existing evaluation metrics can be adopted to consider a user’s
habits and effort for finding information in their personal corpus.
Hence, in this paper, we propose a user-centric framework to cali-
brate online personal search metrics to take into account variability
of search and browsing behavior across individuals.

We first propose a characterization of online metrics according
to the signal of interest and how the signal contributes to the com-
putation of the gain in a metric. Then we motivate and introduce a

log-based weighting function and use it to normalize online metrics
in our framework based on the average search behavior of users for
the signal of interest and its contribution property. This is supported
by the intuition that similar interaction signals obtained from differ-
ent individuals should contribute differently to the overall metric
value depending on the effort each individual spends comparing to
their usual behavior in the system. As a result, we formulate and
validate variants of online metrics that take into account the above
factors, and refer to them as pMetrics (personalized metrics).

Through extensive online experiments on a large population of
GMail search users, we evaluate the effectiveness of pMetrics and
compare them with their standard counterparts and baselines with
linear-based normalization factors. Through randomized experi-
ments that purposefully degrade the quality of the search results,
we show that the proposed metrics are as sensitive as their standard
variants in terms of detecting statistically significant changes while
they outperform their linear-based counterparts. We also compare
pMetrics with the baselines in terms of their discriminative power
across a collection of runs. The results of this study confirms that the
proposed pMetrics outperform their linear-based variants in terms
of the discriminative power, suggesting once again that a log-based
normalization is indeed better suited for these metrics. In addition,
we observe that pMetrics are generally more discriminative than
their standard counterparts in detecting a change throughout the
experiments, suggesting that they are reliable online metrics for
controlled experiments. In the third group of experiments, we eval-
uate the stability of pMetrics in A/A tests. The observed results
are similar to those from the previous experiments, indicating that
pMetrics consistently outperform their linear-based variants as
well as the standard metrics. Finally, through a correlation study,
we compare pMetrics with their linear-based variants in terms of
how correlated they are with the standard metrics. The results
observed here show that pMetrics correlate better with standard
metrics as opposed to the linear-based variants, further supporting
the previous empirical results presented in the paper.

Overall, the proposed framework can be seen as the first yet
significant step towards reducing the effect of user bias in evaluat-
ing online controlled experiments. While the proposed log-based
normalization factor appears to be suited for these metrics, investi-
gating different variants of the normalization in a more systematic
way is a future direction. In addition, different types of search
tasks [11, 27, 31] as well as the variability of user behavior across
these tasks are among factors that can be considered to better cali-
brate these metrics with respect to user behavior in personal search.
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