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Abstract. Recent advances in 3d electron microscopy are yielding ever larger 
reconstructions of brain tissue, encompassing thousands of individual neurons 
interconnected by millions of synapses. Interpreting reconstructions at this scale 
demands advances in the automated analysis of neuronal morphologies, for ex-
ample by identifying morphological and functional subcompartments within neu-
rons. We present a method that for the first time uses full 3d input (voxels) to 
automatically classify reconstructed neuron fragments as axon, dendrite, or somal 
subcompartments. Based on 3d convolutional neural networks, this method 
achieves a mean f1-score of 0.972, exceeding the previous state of the art of 
0.955. The resulting predictions can support multiple analysis and proofreading 
applications. In particular, we leverage finely localized subcompartment predic-
tions for automated detection and correction of merge errors in the volume re-
construction, successfully detecting 90.6% of inter-class merge errors with a false 
positive rate of only 2.7%. 
Keywords: Connectomics, 3D neural network, Merge error. 

1 Introduction 

Recent advances in 3d electron microscopy (EM) have enabled synaptic-resolution vol-
umetric imaging of brain tissue at unprecedented scale [1–3]. Semi-automated recon-
structions of these volumes yield thousands of neurons and neuronal fragments, inter-
connected by millions of synapses [4–7]. Together, reconstructed neurons and synapses 
within each dataset describe a “connectome”: a connectivity graph whose structure is 
anticipated to reflect the computational function of the tissue [8, 9]. 

Interpreting neural connectivity at this scale is a significant undertaking. One means 
to enhance interpretability is to use ultrastructural and morphological details of neu-
ronal fragments to distinguish their functional subcompartments. For example, the clas-
sical description of “neuronal polarity”, i.e. the flow of information within vertebrate 
neurons, from dendritic subcompartments, into the soma, and out through the axon, 
remains central to understanding connectivity [10]. 

Although trained human reviewers can classify many neuronal fragments with re-
spect to subcompartment, the growing scale of connectomic reconstructions demands 
automated methods. A recent approach to this problem was based on training random 
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forest classifiers on manually defined features extracted from neurite segments and sep-
arately detected organelles such as mitochondria or synapses [4, 11]. A later extension 
improved accuracy by classifying 2d projections of neurites and their organelles with 
convolutional neural networks (CNNs), a technique called Cellular Morphology Net-
works (CMNs) [12]. However, an approach based on a full 3d representation of neuron 
fragments, which retains the maximum morphological and ultrastructural information, 
has not been previously demonstrated. 

Another application for subcompartment predictions is in proofreading, e.g. to cor-
rect errors in automated reconstructions. Prior works proposed to detect merge errors 
through identification of morphologically unlikely cross-shaped fragments [11, 13] or 
used a 3d CNN trained specifically to detect merge [14] or split errors [15]. Strong 
biological priors dictate that vertebrate neurons have only one major axonal branch ex-
tending from the soma, and that dendritic and axonal subcompartments do not typically 
intermingle within a neurite [10]. Violation of these priors in subcompartment predic-
tions provides a complementary way of detecting probable reconstruction errors, which 
can then be flagged for efficient human proof-reading workflows [16], or fully auto-
mated error correction. 

In the following we (1) present a system for neuronal subcompartment classification 
based on 3d convolutional neural networks, (2) demonstrate finely localized subcom-
partment predictions whose accuracy exceeds state-of-the-art, and (3) show how these 
predictions can be used for high-fidelity detection and correction of errors in an auto-
mated segmentation. 

2 Materials & Methods 

2.1 Dataset 

We used an automated Flood-Filling Network (FFN) segmentation of a 114x98x96 µm 
volume of zebra finch Area X brain tissue acquired with serial blockface EM at a voxel 
resolution of 9x9x20 nm [5]. Base FFN supervoxels (SVs) were agglomerated (Fig. 1a) 
via FFN resegmentation, with additional post-processing applied to the agglomeration 
graph to reduce merge and split errors [9]. We also used precomputed organelle prob-
ability maps for synaptic junctions and vesicle clouds [4] in some experiments. 

The agglomerated segmentation was skeletonized via TEASAR [17], and the result-
ing skeletons were sparsified to a mean inter-node spacing of 300 nm and eroded so 
that terminal nodes were at least 100 nm from the segment boundary. A subset of the 
objects in the volume were manually classified by human experts as axon, dendrite, or 
soma, of which 27 objects were used for training (32.8k axon, 8.4k dendrite, 7.5k soma 
nodes), 6 objects for validation (2.6k, 1.0k, 2.0k), and 28 objects for evaluation (29.3k, 
38.2k, 32.7k). 

2.2 Classification of neural subcompartment with 3D CNNs 

Classifier input fields of view (FOVs) were centered at neuron skeleton node locations, 
with the segment mask extracted from the neuron’s agglomerated segmentation (Fig. 
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1b). However, multiple axonal and dendritic processes from the same neuron some-
times pass close to each other, even if their connection point is far outside the FOV. 
Therefore, it was beneficial to remove segment mask components in the FOV that were 
not connected with the component at the center. Disconnected component removal was 
done at full 9x9x20 nm resolution, prior to downsampling the block to the network 
input resolution. 

 
Fig. 1. Neural subcompartment classification with 3D CNN.  (a) The segmentation consists of 
base SVs (top, different colors) that were agglomerated into more complete neuron segments 
(bottom, solid) [5]. (b) Input FOVs are centered at node positions from automated skeletonization 
of the segmentation mask. (c) The classifier architecture is a 3d extension of a ResNet-18 CNN, 
and outputs probabilities for axon, dendrite, and soma subcompartment classes.  (d) For some 
experiments, we provided additional input channels, e.g. the contrast normalized [18] EM image, 
or precomputed organelle probability maps [4]. (e) Illustration of the two primary FOV sizes 
used in our experiments, approximately 5.16 or 6.44 µm on a side. For comparison, we also 
illustrate the neurite-aligned 4x4x8 µm field of view employed by the previous CMN approach 
[12]. 

Classifier architectures were derived from the ResNet-18 CNN model [19], with con-
volution and pooling layers extended to 3d (Fig. 1c). Neuronal morphology was pro-
vided to classifiers as a 3d binary segment mask. When additional input channels (EM 
image, organelle masks; Fig. 1d) were provided, the segment mask was applied to the 
other channels instead of being provided separately, with areas outside the mask set to 
zero. Input data was provided at 36x36x40 nm resolution in blocks of 129 or 161 voxels 
on a side, for a total field of view of 4.64x4.64x5.16 or 5.80x5.80x6.44 µm respectively 
(Fig. 1e). Network output comprised probabilities for axon, dendrite, and soma sub-
compartment classes. 

For training, the input locations were class balanced by resampling skeleton nodes 
for underrepresented classes multiple times per epoch. We also applied random 3d 

d

Synaptic Junction
Vesicle Cloud 1 μm

7✕7✕7, 64, stride 2

3✕3✕3, max pool, 
stride 2

Global Avg Pool
3 class probabilities

3✕3✕3, 128

3✕3✕3, 64

3✕3✕3, 64 ✕2

3✕3✕3, 128 ✕2

3✕3✕3, 256

3✕3✕3, 256 ✕2

3✕3✕3, 512

3✕3✕3, 512 ✕2

2 μm

e

ca

5.16 μm

6.44 μm

b

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.043398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.043398
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

rotations to the input as a training data augmentation. Networks were trained via sto-
chastic gradient descent, with learning rate 0.003 and batch size 64 for 1.5M steps. For 
the best performing network, with two input channels and 6.44 μm field of view, the 
total number of trainable parameters was 33.2M. 

2.3 Automated detection and correction of merge errors 

We applied top-performing subcompartment predictions (Fig. 2) to further improve 
neuron reconstruction quality by detecting merge errors between different classes. FFN 
reconstruction biases base SVs (Fig. 1a) to have very few merge errors via an overseg-
mentation consensus procedure [5], so we focused on errors in SV agglomeration. Once 
agglomeration errors are identified and localized, they can be fixed efficiently by 
simply removing the bad agglomeration graph edges, either under human review [16] 
or automatically. 

We used subcompartment predictions to identify all somas and branches, and then 
to detect and correct two classes of agglomeration errors: axon/dendrite branch merge 
errors, and soma/neurite merge errors. As ground truth, we manually identified 132 
agglomerated neurons that contained merge errors and annotated their bad agglomera-
tion graph edges. This yielded 473 branches, among which there were 83 branch merge 
errors and 56 soma merge errors. Together these represent a significant fraction of all 
merge errors identified through an exhaustive screening of the reconstruction. 

2.4 Branch merge error correction by graph cut consistency score 

Branch merge errors involve a mis-agglomerated axon and dendrite (Fig. 3a). Intui-
tively, branches that contain a merge error tend to have lower overall node prediction 
consistency (defined as weighted mean probability of dominant class type). Removing 
a bad agglomeration edge should improve the node consistency of the two resulting 
subgraphs. 

The input to our system is the skeleton of the agglomerated neuron with node class 
predictions, and the neuron’s agglomeration graph, where each skeleton node contains 
information about the base SV it belongs to. The workflow is as follows: 

Step 1: Identify soma. If the segment has > 200 soma classified nodes, find the SV 
with the most soma nodes. 

Step 2: Separate branches from soma: Each subgraph of the agglomeration graph 
after removing the primary soma SV is considered a branch if it contains > 100 nodes.  

Step 3: Compute node weight (optional). Automated skeletonization sometimes 
over-clusters nodes within thicker objects. Densely clustered nodes can therefore be 
optionally down-weighted by 1 / (node count in 500 nm radius - 2). Furthermore, neu-
rite nodes proximal to the soma (within 5-10 µm) tend to have inconsistent class pre-
dictions. These nodes can also be optionally down-weighted by 0.01. 

Step 4: Group predictions. Node predictions are aggregated by base SV, to compute 
weighted mean class probabilities PSV and node count wSV for each SV (Fig. 3b). 

Step 5: Compute cut scores. Any cycles are first removed, then edges are traversed 
from leaf nodes in. At each edge, the branch is conceptually divided into subgraphs Gleave 
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and Gremain, and the "cut consistency score", a measure of how many nodes belong to their 
respective majority classes post- versus pre-cut, is computed (Fig. 3b): 

max∑ 𝑃𝑃𝑆𝑆𝑆𝑆
𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑆𝑆𝑆𝑆 𝑤𝑤𝑆𝑆𝑆𝑆 + max∑ 𝑃𝑃𝑆𝑆𝑆𝑆

𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆 𝑤𝑤𝑆𝑆𝑆𝑆

max∑ 𝑃𝑃𝑆𝑆𝑆𝑆
𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ
𝑆𝑆𝑆𝑆 𝑤𝑤𝑆𝑆𝑆𝑆

 (1) 

Step 6: Detection. Threshold the highest predicted cut score to determine if the 
branch contains a merge error, with constraints that Gleave and Gremain must have different 
majority class types and their weighted sizes must be > 50. 

Step 7: Correction (optional). Remove agglomeration edge corresponding to highest 
cut score and perform majority vote pooling within subcomponents. Compare branch 
pooled node prediction accuracy pre- and post-cut (Fig. 3e). 

2.5 Soma merge error correction by trajectory of primary neurite 

The second error mode involves a neurite fragment that is mis-agglomerated with soma 
(Fig. 4). We observed that these errors can be fixed with a simple heuristic based on 
branch trajectory relative to the soma surface. The pipeline is as follows:  

Steps 1-2: Shared with branch merge detection pipeline above. 
Step 3: Distance to soma. For each axon or dendrite node, compute the distance ds to 

the nearest soma node. 
Step 4: Distance to branch root. For each branch, the root is the node with minimum 

ds. Compute the distance dr from each branch node to the root (Fig. 4b). 
Step 5: Fit slope. For each branch, compute a linear fit to ds versus dr  (Fig. 4c) for 

nodes within a tunable distance to soma. The slope of the fit is then thresholded to 
determine if a branch is a soma merge error (Fig. 4c-e). 

3 Results 

3.1 Subcompartment classification performance of 3D CNNs 

We compared the performance of our 3d CNN classifiers to previous state-of-the-art 
results from CMNs [12], in terms of class-wise precision, recall, and f1 metrics (Fig. 
2a). For each trained 3d CNN, we saved parameter checkpoints throughout the training 
period and screened them on a small manually labeled validation set. For most models, 
performance on the validation set approached or exceeded 0.99 on all metrics (not 
shown), but validation performance was useful for tracking convergence, confirming 
there was no overfitting to the training set, and for avoiding checkpoints where training 
temporarily became unstable. We then applied the ten checkpoints with highest valida-
tion accuracy to the larger evaluation set to compute the mean and standard deviation 
for each metric. 

Compared with CMNs (Fig. 2a, blue), a network analyzing voxel representation of 
3d segment shape alone was competitive (green). Adding vesicle cloud and synaptic 
junction organelle probability map channels allowed the 3d CNN to exceed state of the 
art (red). Interestingly, further adding the full EM image channel had negligible impact 
(yellow). Expanding the field of view for the masked organelles network from 5.16 μm 
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to 6.44 μm yielded the best performing system tested (pink). We also tested expanding 
the FOV further, increasing the input resolution, increasing the CNN depth, and provid-
ing different input channel configurations; see supplemental Table S1. 

 
Fig. 2.  Subcompartment classification results. (a) Node classification performance on axon, 
dendrite, and soma labeled examples. (b) Skeleton node classifications of two automated neuron 
reconstructions outside the train, validation, and evaluation sets. 

Of the top ten checkpoints from the best performing model, the median overall node 
accuracy on the evaluation set was 97.1%, and mean f1 across classes was 0.972. We 
then used this median checkpoint to predict node classes for reconstructed neurons and 
fragments throughout the entire volume. Predicted skeletons demonstrate good class 
consistency within soma and neurites, with some ambiguity at the interface between 
branch and soma (Fig. 2b). Based on the predictions, the volume contains 3.25 m total 
axon path length, and 0.79 m dendrite path length, a ratio of 4:1 that is similar to the 
5:1 ratio previously reported [12]. However, the total path length here significantly ex-
ceeds that previously reported, probably due to differences in skeleton sparsity, so the 
absolute lengths here should be considered an upper bound. 

3.2 Agglomeration merge error detection and correction 

We fed subcompartment predictions back to detect and correct two classes of recon-
struction merge errors that occur during SV agglomeration: axon/dendrite branch 
merges, and soma/neurite merges. The branch merge error correction system is based 
on analyzing the predicted subcompartment class consistency of agglomerated seg-
ments, with and without candidate cuts applied (Fig. 3a-b). We first considered branch 
merge error detection performance, and plotted the receiver operating characteristic 
(ROC) curve by varying the cut score threshold (Fig. 3c-d). In areas with many small 
SVs, several nearby cut candidates can have equivalent impact, so predicted cuts that 
fell within four agglomeration graph edges of ground truth cuts were considered cor-
rectly detected. The best detection performance was at 1.05 cut score threshold, with f1 
of 0.850 (see also Table S2). 
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Fig. 3. Correction of branch merge errors via subcompartment prediction. (a) Left, view of 
an agglomerated segment centered on a branch merge error, with the node predictions for the 
branch overlaid. Inset shows the EM image and overlaid base SVs for the merge. Right, zoomed 
in view of the merge error, with base SVs in different colors. (b) Node predictions are aggregated 
to get class probabilities [axon, dendrite, soma] and weight (node count) per SV. Three SVs are 
predicted axon, one dendrite, reflecting the merge error. Candidate neuron cuts are annotated 
with their consistency improvement scores (Eq. 1). (c) ROC plot showing detection performance 
as the cut score threshold is varied. Separate curves show three variants with different node re-
weighting (to address node clustering or nodes close to the soma). (d) The f1 of merge detection 
versus cut score threshold. (e) Branch-wise majority vote pooled class accuracy distribution be-
fore (top) and after (bottom) applying suggested cuts. 

Merge error detections can be used to flag the location for human review. We also 
calculated the node prediction accuracy improvement after directly applying the sug-
gested cut. For the 96 branches with either a predicted merge or ground truth merge, 
we manually determined their nodewise ground truth class as axon or dendrite, then 
performed majority vote predicted class pooling before and after applying predicted 
cuts. Comparing class pooled accuracy pre- and post-cut (Fig 3e), the mean node pre-
diction accuracy improves from 0.804 to 0.886. 

We addressed the second category of agglomeration merge errors, between somas 
and nearby neurites, by analyzing the trajectory of the branch relative to the somal sur-
face (Fig. 4a-c). We found the best performance is achieved by sampling skeleton nodes 
within the initial 10 µm from the soma, yielding an f1 of 0.923 at a slope of 0.78. (Fig. 
4d-e; see also Table S3). 

Combined, branch and soma merge analyses detected 90.6% of merge errors, with a 
false positive rate of only 2.7%. 
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Fig. 4. Correction of soma merge errors. (a) Example of a soma with multiple neurite branches, 
each in a different color. Two of the branches were erroneously agglomerated to the soma. (b) 
For each node along a branch, the distance to the nearest soma node is computed. The distance 
to the branch root (defined as the branch node closest to the soma) is also computed. (c) The 
soma distance versus branch root distance for the nodes comprising branches from (a), with 
matching color-coding. The dashed line of slope 0.78 separates the trajectories of correct 
branches that run primarily radially out from the soma, from the soma merge error branches that 
run primarily tangential. (d) ROC plot showing performance of merge error detection as slope 
threshold is varied. Separate curves show results with nodes at different distances from the soma 
included in the analysis. (e) The f1 of merge error detection versus slope threshold. 

4 Conclusions & Discussion 

To make volume EM datasets of brain tissue easy to analyze at scale, it is crucial to 
reduce the data they contain to more compact and semantically meaningful representa-
tions. Segmentation and synapse detection provide an important first step in this pro-
cess. Here we presented a system that can provide further information about the bio-
logical identity of neurites by predicting subcompartment types, and feed back to the 
preceding reconstruction stage through automated correction of agglomeration errors. 

We expect this approach to be useful for brain circuit analyses, and to be applicable 
to diverse datasets. We also anticipate that the approach could be extended to finer 
grained subcompartment classification. For example, the subcompartment localization 
of a postsynaptic site on e.g. a dendritic spine, dendritic shaft, soma, or axon initial 
segment is linked to both the synapse’s functional impact as well as the identity of its 
presynaptic partner [20, 21]. Another related application is in the identification of neu-
ronal subtypes, whose shared structural and functional properties can enhance connec-
tome interpretability by organizing thousands of individual neurons into a reduced com-
plement of conceptual roles [22–24]. 

The primary advantages of our system are its simplicity, and its ability to capture 
complete local information about a neurite, resulting in a new state of the art. A funda-
mental limitation is that processing efficiency drops with increasing field of view as the 
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neurite of interest fills a progressively smaller fraction of the voxels that need to be 
processed. This limitation could be mitigated by using an alternative representation of 
sparse 3d data [25–28]. 
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Supplemental Material 

Node classification ablations and extensions 

Table S1 presents performance metrics on the evaluation set for 15 node classi-
fication experiments, as well as the performance of the previous state-of-the-art 
CMNs [12]. Bold rows indicate data already plotted in the main text (Fig. 2). 

Rows 5-7 and 9 focus on changing the input channels. Rows 5 and 6 show 
the relative performance of using only synaptic junction or vesicle cloud proba-
bility maps alone, rather than both together (row 3); the vesicle clouds perform 
better, but neither is sufficient on its own. Rows 7 and 9 show that adding mito-
chondria probability maps does not improve performance, and may cause some 
degradation. 

Row 10 shows that further expanding the field of view (FOV) to 193 voxels 
on a side degrades performance relative to the 161 voxel model (row 8). As FOV 
increases, the neuron segment mask is increasingly sparse, i.e. the input is in-
creasingly empty. This may cause the model to train less smoothly, consistent 
with the larger checkpoint variance. 

Rows 11 and 12 show that increasing input resolution to 18x18x20 nm de-
grades performance relative to the 36x36x40 nm models (e.g. row 3). The num-
ber of voxels in the input block for the higher resolution models remained the 
same, so the resulting reduction in FOV in terms of microns likely explains the 
degradation. Interestingly, adding the full EM image does improve the perfor-
mance of these higher resolution models, in contrast to the lower resolution 
models where adding the image has little effect (rows 3 and 4). This is consistent 
with our observation that as human viewers we find a significant amount of de-
tail is lost in the EM image when downsampling from 18x18x20 to 36x36x40 
nm. 

Rows 13-16 repeat several of the experiments using a deeper ResNet-50 net-
work architecture. Overall, the results are similar to ResNet-18 performance. 
The best performing ResNet-18 model performs somewhat better than its Res-
Net-50 equivalent (rows 8 and 16) and is significantly less computationally in-
tensive, so we favored ResNet-18 in experiments and production. 
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Table S1. Node classification ablations and extensions 
vox: voxels on a side; Res: roughly isotropic resolution; prec: precision;  

 im: EM image; sj: synaptic junctions; vc: vesicle clouds; mito: mitochondria 

 FOV 
(vox) 

Res 
(nm) 

Extra 
Inputs 

Model 
Depth 

Axon Dendrite Soma 

prec recall f1 prec recall f1 prec recall f1 

1 CMNs (Schubert et al. 2019) 0.951 0.936 0.943 0.952  0.944 0.948 0.967 1.000 0.983 

2 129 40  18 0.894 ± 
0.004 

0.964 ± 
0.003 

0.928 ± 
0.002 

0.975 ± 
0.003 

0.897 ± 
0.005 

0.935 ± 
0.003 

0.977 ± 
0.002 

0.999 ± 
0.000 

0.988 ± 
0.001 

3 129 40 sj, vc 18 0.951 ± 
0.006 

0.951 ± 
0.008 

0.951 ± 
0.003 

0.967 ± 
0.006 

0.941 ± 
0.005 

0.954 ± 
0.002 

0.970 ± 
0.001 

0.999 ± 
0.000 

0.984 ± 
0.001 

4 129 40 im, sj, 
vc 

18 0.953 ± 
0.009 

0.950 ± 
0.007 

0.951 ± 
0.003 

0.967 ± 
0.006 

0.937 ± 
0.007 

0.952 ± 
0.002 

0.963 ± 
0.002 

0.999 ± 
0.000 

0.981 ± 
0.001 

5 129 40 sj 18 0.892 ± 
0.006 

0.956 ± 
0.006 

0.923 ± 
0.004 

0.970 ± 
0.005 

0.892 ± 
0.005 

0.929 ± 
0.003 

0.972 ± 
0.001 

0.999 ± 
0.000 

0.986 ± 
0.001 

6 129 40 vc 18 0.917 ± 
0.006 

0.953 ± 
0.008 

0.934 ± 
0.003 

0.968 ± 
0.006 

0.912 ± 
0.006 

0.939 ± 
0.003 

0.970 ± 
0.001 

0.999 ± 
0.000 

0.984 ± 
0.001 

7 129 40 sj, vc, 
mito 

18 0.950 ± 
0.007 

0.959 ± 
0.011 

0.954 ± 
0.004 

0.974 ± 
0.008 

0.940 ± 
0.006 

0.957 ± 
0.003 

0.971 ± 
0.001 

0.999 ± 
0.000 

0.985 ± 
0.001 

8 161 40 sj, vc 18 0.954 ± 
0.006 

0.981 ± 
0.004 

0.967 ± 
0.002 

0.991 ± 
0.003 

0.940 ± 
0.005 

0.965 ± 
0.002 

0.967 ± 
0.001 

0.999 ± 
0.000 

0.983 ± 
0.000 

9 161 40 sj, vc, 
mito 

18 0.934 ± 
0.007 

0.969 ± 
0.009 

0.951 ± 
0.003 

0.981 ± 
0.007 

0.924 ± 
0.006 

0.952 ± 
0.002 

0.967 ± 
0.001 

0.999 ± 
0.000 

0.983 ± 
0.000 

10 193 40 sj, vc 18 0.940 ± 
0.014 

0.970 ± 
0.020 

0.955 ± 
0.007 

0.983 ± 
0.016 

0.923 ± 
0.013 

0.952 ± 
0.005 

0.962 ± 
0.001 

0.999 ± 
0.000 

0.980 ± 
0.000 

11 129 20 sj, vc 18 0.902 ± 
0.011 

0.937 ± 
0.009 

0.919 ± 
0.004 

0.954 ± 
0.007 

0.919 ± 
0.011 

0.936 ± 
0.004 

0.992 ± 
0.002 

0.999 ± 
0.000 

0.995 ± 
0.001 

12 129 20 im, sj, 
vc 

18 0.938 ± 
0.010 

0.935 ± 
0.012 

0.936 ± 
0.003 

0.954 ± 
0.008 

0.932 ± 
0.009 

0.943 ± 
0.003 

0.971 ± 
0.002 

0.999 ± 
0.000 

0.985 ± 
0.001 

13 129 40  50 0.898 ± 
0.006 

0.960 ± 
0.004 

0.928 ± 
0.002 

0.973 ± 
0.003 

0.900 ± 
0.006 

0.935 ± 
0.002 

0.976 ± 
0.001 

0.999 ± 
0.000 

0.987 ± 
0.001 

14 129 40 im 50 0.951 ± 
0.009 

0.959 ± 
0.006 

0.955 ± 
0.002 

0.974 ± 
0.004 

0.937 ± 
0.009 

0.955 ± 
0.003 

0.966 ± 
0.002 

0.999 ± 
0.000 

0.982 ± 
0.001 

15 129 40 sj, vc 50 0.950 ± 
0.005 

0.958 ± 
0.006 

0.954 ± 
0.002 

0.972 ± 
0.005 

0.941 ± 
0.005 

0.956 ± 
0.001 

0.971 ± 
0.001 

0.999 ± 
0.000 

0.985 ± 
0.000 

16 161 40 sj, vc 50 0.951 ± 
0.002 

0.975 ± 
0.003 

0.963 ± 
0.001 

0.986 ± 
0.003 

0.938 ± 
0.002 

0.961 ± 
0.001 

0.967 ± 
0.001 

0.999 ± 
0.000 

0.983 ± 
0.000 
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Detailed branch merge detection metrics 

Table S2 shows the detailed performance metrics for the best performing (in 
terms of f1 metric) cut score threshold settings of the branch merge detection 
pipeline, corresponding to data plotted in the main text (Fig. 3c-d). 

Table S2. Branch merge detection performance (best f1) 

Node reweighting Precision Recall F1 AUC 
no reweighting 0.753 0.843 0.795 0.910 
clusters 0.807 0.855 0.830 0.912 
clusters, near soma  0.845 0.855 0.850 0.918 

 
Detailed soma merge detection metrics 

Table S3 shows the detailed performance metrics for the best performing (in 
terms of f1 metric) slope threshold settings of the soma merge detection pipeline, 
corresponding to data plotted in the main text (Fig. 4d-e). After excluding pre-
dicted soma merge error branches, we were able to identify a single correct ax-
onal branch 82.4% of the time. 

Table S3. Soma merge detection performance (best f1) 

Sampling range Precision Recall F1 AUC 
5 μm 0.852 0.821 0.839 0.972 
10 μm 0.885 0.964 0.923 0.986 
15 μm 0.839 0.929 0.881 0.986 
20 μm 0.779 0.946 0.855 0.982 
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