Quantum Science and Technology

PAPER

Using models to improve optimizers for variational quantum algorithms

To cite this article: Kevin J Sung et al 2020 Quantum Sci. Technol. 5 044008

View the article online for updates and enhancements.

10P Publishing
AVIRTUAL CONFERENCE

QUANTUM 2020,

19-22 OCTOBER

CO-ORGANIZERS:

(f'ugr@waz-&é\) FHRXE

nese Physical Society ity of Science and Technology of China

This content was downloaded from IP address 132.229.13.63 on 07/10/2020 at 18:38

https://doi.org/10.1088/2058-9565/abb6d9
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvu0wDGeXofa1Zu1RNWxS4ilWceC7km3qyfw0Szhx939gKJHP91FhVmkCEZhtBkiMB5DNiU8uS6YK2asFkJJU4qKoCtS5y8LbA4tRthVk6xslvh9rSncJSu9WQXB-PTth7u9S8zhOHK7BzzDRkFqwAILJ8_Isz4pK2McwZRmCqL1pbncpYpPvvV3W25QWzXrrqrb6KaDl3JeGf694P1nzku4a-lZUf9K69C-7Cfvvi0X4_qBtTH&sig=Cg0ArKJSzHvjUMjdCgz8&adurl=https://www.iopconferences.org/iop/frontend/reg/thome.csp%3FpageID%3D978476%26eventID%3D1552%26traceRedir%3D2

10P Publishing Quantum Sci. Technol. 5 (2020) 044008 https://doi.org/10.1088/2058-9565/abb6d9

Quantum Science and Technology

PAPER
® CrossMark

Using models to improve optimizers for variational quantum

e, algorithms

REVISED

7 August 2020 Kevin J Sung>>*®, Jiahao Yao’, Matthew P Harrigan', Nicholas C Rubin'®, Zhang
ACCEPTED FOR PUBLICATION]iang1 , Lin Lin“, Ryan Babbush' and Iarrod R McClean"*

9 September 2020

! Google Research, Venice, CA

2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
3 Department of Mathematics, University of California, Berkeley, CA, United States of America

* Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America

* Author to whom any correspondence should be addressed.

PUBLISHED
24 September 2020

E-mail: kevjsung@umich.edu and jmcclean@google.com

Keywords: quantum algorithms, variational quantum algorithms, optimization

Supplementary material for this article is available online

Abstract

Variational quantum algorithms are a leading candidate for early applications on noisy
intermediate-scale quantum computers. These algorithms depend on a classical optimization
outer-loop that minimizes some function of a parameterized quantum circuit. In practice, finite
sampling error and gate errors make this a stochastic optimization with unique challenges that
must be addressed at the level of the optimizer. The sharp trade-off between precision and
sampling time in conjunction with experimental constraints necessitates the development of new
optimization strategies to minimize overall wall clock time in this setting. In this work, we
introduce two optimization methods and numerically compare their performance with common
methods in use today. The methods are surrogate model-based algorithms designed to improve
reuse of collected data. They do so by utilizing a least-squares quadratic fit of sampled function
values within a moving trusted region to estimate the gradient or a policy gradient. To make fair
comparisons between optimization methods, we develop experimentally relevant cost models
designed to balance efficiency in testing and accuracy with respect to cloud quantum computing
systems. The results here underscore the need to both use relevant cost models and optimize
hyperparameters of existing optimization methods for competitive performance. The methods
introduced here have several practical advantages in realistic experimental settings, and we have
used one of them successfully in a separately published experiment on Google’s Sycamore device.

1. Introduction

With recent developments in quantum hardware, including the ability to perform select tasks faster than
classical supercomputers [1], the push toward practical applications on these devices has intensified.
Variational quantum algorithms are among the top candidates for early applications on noisy
intermediate-scale quantum computers [2—4]. These algorithms can be used to approximate ground
energies of Hamiltonians or find approximate solutions to discrete optimization problems. A main
component of these algorithms is the minimization of some function of a parameterized quantum state,
where that function is measured using the quantum computer. Commonly, the function is the expectation
value of a Hamiltonian, determined by the problem of interest. The presence of sampling error and gate
errors makes the function stochastic, and the stochasticity due to sampling error is fundamental to
measuring the values on a quantum device. The output of this stochastic function is fed to a classical
optimizer, and it is those optimizers and constraints presented by real devices that we will focus on here.

© 2020 IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/abb6d9
https://orcid.org/0000-0001-6459-6374
https://orcid.org/0000-0003-3963-1830
mailto:kevjsung@umich.edu
mailto:jmcclean@google.com

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

As the classical optimizers are at the core of variational quantum algorithms, their performance can
determine the resources required to solve a problem. Non-linear optimization of continuous functions of
the type that exist in variational quantum algorithms are commonplace in fields like machine learning, but
quantum systems offer unique trade-offs that must be considered to improve efficiency. Given the current
focus on these algorithms and the core role played by the optimizer, there have been a number of works
evaluating the performance of optimizers for different problems and contexts. For example, at least two
experimental implementations of variational algorithms [2, 5] used the Nelder—Mead simplex algorithm [6]
to optimize the objective function. Other experimental implementations [7—11] used algorithms including
simultaneous perturbation stochastic approximation (SPSA) [12], Bayesian optimization [13], particle
swarm optimization [14], dividing rectangles [15], and gradient descent. In addition, there have been a
number of numerical investigations of optimization in the context of variational quantum algorithms.
Several of these studies introduce novel heuristics and test them numerically on example problems [16-21].
Other work [22-29] has compared the performance of methods including Nelder—Mead, limited-memory
Broyden—Fletcher—Goldfarb—Shanno [30], constrained optimization by linear approximation [31], Powell’s
method [32], SPSA, RBFOpt [33], stable noisy optimization by branch and fit [34], bound optimization by
quadratic approximation [35], mesh adaptive direct search [36], implicit filtering [37],
policy-gradient-based reinforcement learning [38], and natural gradient [28].

There is a considerable body of work in evaluating optimizers for use in variational algorithms, but not
all of these works use cost metrics relevant to quantum experiments. For example, it is common to evaluate
a suite of optimizers based on number of optimizer iterations required for convergence to a local optima,
using noiseless function evaluations. However, the inherent quantum nature of the sampling procedure
implies that the first iteration could have taken an unbounded amount of experimental time in such a setup
(noiseless evaluation), and hence conclusions based on such studies may not be applicable to experiments.
A meaningful comparison of these methods must treat the stochastic nature of the objective function and
related costs in terms of experimental time to solution to properly compare methods. While some past
works do account for the effect of stochastic noise [20, 21, 25, 26], in this work we additionally incorporate
other experimental parameters into our cost models. In developing our models, we focus on the case of
superconducting quantum computers accessed through the internet, though our models can be easily
modified for other architectures. We account for parameters such as the sampling rate of the quantum
processor and the latency induced by communicating over the internet. The proper choice of optimizer
ultimately depends on the details of the experiment constraints.

In consideration of constraints we did not find satisfied in other methods, we introduce two surrogate
model-based optimization algorithms we call model gradient descent (MGD) and model policy gradient
(MPG) and numerically compare their performance against commonly used methods. In particular, we
target the tendency for local methods to under-utilize the existing history of function evaluations. We have
successfully used MGD in an experimental implementation of the quantum approximate optimization
algorithm [39] on a superconducting qubit processor [40]. We perform systematic tuning of optimizer
hyperparameters before comparison for all methods, and measure performance using estimates of actual
wall clock time needed in a realistic experimental setting. An important, though unsurprising, implication
of our results is that hyperparameter tuning under the correct cost models is crucial for performance in
practice.

The outline of this work is as follows. In section 2 we set up the example problems we study and
describe in more depth the problem of developing efficient cost models to allow comparison of methods. In
section 3 we describe the optimizers we study and how we tuned their hyperparameters. After this setup, we
compare the performance of optimizers numerically in section 4 using our developed cost models. At a
glance, our results highlight the importance of different cost model features, how constraints influence the
optimal choice of optimizer, and the importance of hyperparameter optimization. Stochastic optimizers
with hyperparameters permitting varying levels of noise in the objective are found to be generally more
robust and efficient. Finally, we end with some concluding thoughts in section 5.

2. Problems studied and cost models

2.1. Problems studied

As the performance of an optimizer can be intimately tied to the problem studied, it is important to look at
a range of problems in evaluating their relative performance. As two of the most common areas studied in
variational quantum algorithms are combinatorial optimization and ground state preparation of fermionic
systems, we select these for our sample problems. Here we aim to clarify the details of the systems, circuit
ansatz, and initial parameters modeled in our numerical tests.

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

While multi-modality of cost functions is an important consideration in variational quantum
algorithms, it turns out that even optimization within a single convex basin can be challenging enough to
warrant independent investigation due to constraints imposed by the quantum device. To this end, we
assume throughout that we have knowledge of an initial guess which is in the convex vicinity of an
optimum and our goal is simply to converge to that local optimum. Several strategies have been proposed
for choosing such an initial guess in contexts including optimization and chemistry [16, 17, 23, 41].

2.1.1. Max-Cut on 3-regular graphs

The maximum cut problem (Max-Cut) is widely studied and known to be NP-hard. It has been used in
several previous experimental implementations of variational quantum algorithms [8, 40] and hence allows
for straightforward performance comparisons. The problem is specified by an undirected graph on n
vertices and the goal is to label each vertex with either 41 or —1 in order to maximize the number of edges
whose vertices have different labels. This cost function is represented by the Hamiltonian

1
C=> 5U-22), (1)
(i)

where Z; is the standard Pauli Z operator applied to qubit j which is node j on the graph, and (3, j) ranges
over the edges of the graph. The goal is to find a computational basis state that maximizes the Hamiltonian.

We use the quantum approximate optimization algorithm (QAOA) [39] ansatz used to approximately
solve the Max-Cut problem on random 3-regular graphs. The QAOA ansatz depends on the number of
rounds, p > 0, and is parameterized by 2p real numbers v = (v,,...,7,) and 8 = (,, ..., 3,). The ansatz
is

17, 8) = U(B)Uc(p) - .. U(B1) Uc(y) | +) ™", (2)

where .
Ucty)=e ™S Up(®) =, B=3 X, (3)

=1

and |+)“" is the uniform superposition of all 2" computational basis states.

For our numerics, we focus on a randomly chosen instance to minimize the number of uncontrolled
variables. Moreover, for QAOA focusing on a single instance is justified because the optimization landscape
has been shown to concentrate for different randomly chosen instances [41]. To obtain an initial guess for
this problem, we classically computed a locally optimal parameter vector and then perturbed it with a
uniformly random vector of length 0.1. At p = 1 the optimal parameter vector had a length of 0.462, and at

p=5,1.285.
In our numerics we report the approximation ratio
(.8l C.B)
Ci, (4)
max

where Ciox = max; (z| C|z). The goal is to maximize this value, which falls in the range [0, 1].

2.1.2. Sherrington—Kirkpatrick model

Another model we consider is the Sherrington—Kirkpatrick (SK) model [42], which is a canonical example
of a frustrated spin glass. It has been used in at least one previous experimental implementation of
variational algorithms [40]. The Hamiltonian is given by

H = JiZZ, (5)

i<j

where Jj; is selected uniformly at random from {—1, 1}. We use the QAOA ansatz to approximate the
solution of this problem, by minimizing the expected cost.

Again, for our numerics we focus on a single randomly generated instance, where generality of
performance is supported by concentration results in QAOA. As an initial guess for this problem, we
classically computed a locally optimal parameter vector and then perturbed it with a uniformly random
vector of length 0.1. At p = 1 the optimal parameter vector had a length of 0.452, and at p = 5, 1.044.

For comparison between problems, we normalize energy values E to new values E’ by the formula

E— Emax

F=—""%
Emin - Emax

, (6)

where Eni, and Ena are the lowest and highest eigenvalues of the Hamiltonian, respectively. Thus we are in
fact maximizing this normalized energy value, which falls in the range [0, 1].

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

2.1.3. Hubbard model

We study the task of approximating the ground state energy of the two-dimensional Hubbard model [43], a
widely studied model that has resisted exact solution for decades in large size limits. It is believed to be
relevant to understanding high-temperature superconductivity [44]. The Hamiltonian of the Hubbard
model is

H= —tz (azaaj)g + a}’”ai’g) + Uzaj,/r“iﬁ“jﬂi’i (7)
(i),o i

=T+V (8)

= Th + TV +V, (9)

where the g;, are fermionic annihilation operators, (7, j) ranges over edges in the lattice, o € {1,]} is a spin
degree of freedom, and we have split the sum into the hopping term T and interaction term V. T is further
decomposed into sub-terms T}, and T, corresponding to horizontal and vertical edges, respectively. We set
t =1 and U = 4 for our numerical experiments, which corresponds to a regime of modest correlation
ill-suited for mean-field methods.

We use a ‘Hamiltonian variational’ ansatz similar to the one in reference [16]. It is inspired by the idea
of state preparation via adiabatic evolution. Similar to QAOA, our ansatz has a basic circuit repeated p
times, but for flexibility it is varied non-uniformly with respect to hopping. The basic circuit has three
parameters which we call 6y, 6y, and 6y, and it approximates a unitary of the form

eXP[—i(ehTh + evTv + GUV)] (10)

The approximation is achieved using a second-order Trotter step based on the fermionic swap network [45],
in which a swap network is used to apply the terms of the Hamiltonian and then the same network is
applied but in reverse order. Because the swap network can be implemented with only linear qubit
connectivity, this ansatz is amenable to implementation on near-term superconducting qubit hardware. The
ansatz is similar to the one used in reference [16] but corresponds to a different ordering of terms. In total
there are 3p parameters.

We study the model at half-filling. Our numerics are performed on the 2 x 2 system, which under
standard encodings corresponds to an 8 qubit system. For our initial state we use a ground state of the
hopping term that is precisely described in appendix C (https://stacks.iop.org/QST/5/044008/mmedia). This
state is easy to prepare on a quantum computer and is expected to be adiabatically connected to the ground
state of H for modest values of t/U. For our initial guess, we set the parameters so that the ansatz circuit
consists of a sequence of second-order Trotter steps approximating the dynamics of the time-dependent
Hamiltonian H(t) = T+ (+/A)V for ¢ € [0, A], where A = 0.1 - Up. This choice is motivated by the idea of
state preparation via adiabatic evolution.

As with the SK model, we normalize energy values E to new values E' by the formula

E— Emax

=~
Emin - Emax

, (11)
where Enin and Ep,y are the lowest and highest eigenvalues of the Hamiltonian, respectively. Thus we are in
fact maximizing this normalized energy value, which falls in the range [0, 1].

2.2. Cost models
An essential element of developing and improving optimizers for variational algorithms is an accurate cost
model that respects the quantum nature of the problem and imperfections of the device. Studies that
restrict evaluation of optimizers to abstract ‘number of iterations’ using perfect function queries can yield
faulty conclusions and hide the implication that a single function evaluation to that precision could have
taken years or more. A core challenge is the stochastic nature of the function evaluation and shot limited
precision in the estimates. Moreover, imperfections in the device and implementation can complicate
matters. Unfortunately, without a quantum device, precise simulation of the impact of noise can be
prohibitively expensive, and so a balance must be struck between accuracy and cost effectiveness of the
simulations to maximize applicability. Here we detail how we construct our models to strike this balance.
We restrict our interest to minimizing the expected energy of a Hamiltonian H with efficient Pauli
expansions H = Zj «;P; (in the case of the Hubbard model (7), the Jordan—Wigner transformation [46] is
applied to obtain the Pauli expansion), so the objective function is

f(6) = (6|H|0), (12)

https://stacks.iop.org/QST/5/044008/mmedia

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

where |0) represents the ansatz state with parameters 6. Most of the optimizers that we present results for
use queries to the objective function without any additional kinds of queries, but we also present results for
stochastic gradient descent, which queries the gradient.

2.2.1. Objective function queries

The exact estimator used to query the objective function on the quantum device can take a wide variety of
forms depending on factors in the device and the problem of interest. At a glance, however, a query to the
objective function is often answered by measuring the expectation values of the terms P; and using the
coefficients o; to form an estimate of f(6). When simulated in the most accurate way, the measurement of
each individual term implies a variance on the estimate which is state-dependent, and functions like a
Bernoulli random variable. Moreover, the variance of that measurement can be influenced by parallel
measurements being performed, even when they commute [3]. Trade-offs in the influences of these factors
have inspired recent research in developing more efficient estimators with a given number of samples
[47-51]. However, perfect emulation of these proposals can be prohibitively expensive, even in classical
simulation of small systems, and hence it is desirable to develop models of the process that strike a good
balance between accuracy and simulation cost so that the full variational process can be simulated on a
range of systems.

In the cases of Max-Cut and the SK model, the Hamiltonian is diagonal and all of its terms can be
measured simultaneously in one shot. In our numerical experiments, we simulated these measurements
directly. However, for non-diagonal Hamiltonians such as the Hubbard model, we take a different strategy.

As there are many terms in the sum, which are typically evaluated by repeated and independent
measurement, a Gaussian random function query turns out to be a good and extremely cost effective
model. That is, in our simulations a query to the objective function is modeled as

f(8) = (6]H|0) + N(0, */M). (13)

(6|H|0) is evaluated exactly, N'(u, 0?) is a normal random variable with mean y and variance 0%, and M is
the number of repeated experiment repetitions. Note that even in the presence of hardware errors, the
expectation value of the Hamiltonian would be the sum of many independent random variables, so this
would still be a good model. Here, we estimate the variance is using a known lower bound for common
measurement strategies, previously derived for the general case

2

= ol | (14)
j

which empirically we have observed to be loose when compared with exact models, but qualitatively
matches the behavior and overestimates the number of measurements by a factor of 2 in many cases. We
note that a wealth of other strategies have been developed to shrink the effective variance for a fixed number
of queries M [47-51], but we do not consider them in detail here. Since the bound we use is a worst-case
bound that is independent of the quantum state, our cost estimates are likely to be conservative.

The dependence of the variance of the estimate on the number of samples represents a key trade-off we
consider in many algorithms here, as some optimizers can tolerate heavier amounts of noise than others,
and hence we take the number of shots at each iterate to be an important hyperparameter. In our numerical
experiments on the Hubbard model, we simulated queries by computing the exact expectation value and
then artificially adding noise drawn from a normal distribution, using this bound to determine the variance
of the distribution for a specified number of measurement shots.

2.2.2. Gradient queries

For optimizers that use analytic gradient queries, we assume that queries to the gradient of the objective
function are answered by applying the ‘parameter-shift rule’ [52—54]. This is a method of obtaining an
unbiased estimator of the gradient without using ancilla qubits, and applies to ansatz of the form

|0) = exp(—ib,A,) . ..exp(—ib Ay)[1)) (15)

where for our purposes each A; is a Hermitian sum of commuting Pauli matrices. The technique exploits
the fact that if A; has two eigenvalues £, then % 0) = r(f(0+) —f(07)) where 07 is 0 but with the jth
J

coordinate equal to ¢; + ;- and 6 is 6 but with the jth coordinate equal to 6; — 1-. If some parameters are
constrained to be the same, then the derivative is obtained by summing the results of this expression for
each parameter; the number of objective function queries needed is then two times the number of those
parameters. If A; = >, P for commuting Pauli operators Py, then we decompose

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

exp(—ibjA;) = [[, exp(—if;Px) and then apply the previous rule. Thus, the cost of evaluating the partial
derivative is proportional to the number of terms in the sum, in a loose way. In practice, this sum is
evaluated stochastically with a probability depending on the weight of the term in the sum [55].

2.2.3. Wall clock time

Ultimately, one is interested in minimizing the amount of time it takes to run a complete experiment to
some fixed precision. The models we develop here are meant to capture this in a cost efficient way, without
using a wildly inaccurate proxy like mere ‘number of optimizer iterations’. To this end, we not only consider
the sampling noise, but also constraints like latency concerns inherent to real experiments.

To estimate the running time of an experiment we develop a model based on superconducting qubits
[56, 57]. We also assume the user is executing the experiment through a cloud computing service,
potentially introducing network latency. We consider three scenarios regarding network latency: zero
latency, corresponding to the optimizer running completely on the server side; circuit batching, in which
the user is allowed to send multiple circuits to the service in one batch; and finally no circuit batching,
where the user is only allowed to send one circuit at a time.

The total running time of an experiment is equal to the number of queries made times the amount of
time it takes to satisfy a single query. The time needed to satisfy a single query can be split into the time
Tsample Used in sampling circuits on the quantum processor, the time Tyyich representing the overhead in
switching between different circuits, and Touq representing the latency in communicating over the Internet.
We have Tgumple = M/s where M is the number of measurements made to satisfy the query and s is the
sampling rate of the processor; Tqitch = X ¢ where 7 is the overhead in readying the quantum processor to
execute a circuit and ¢ is the number of different circuits executed; and Tgoug = £ X ¢/b where £ is the
network round-trip time for communicating with the cloud server and b is the number of circuits sent to
the server in a single round of communication. We use the values s = 10° Hz and r = 0.1 s. This sampling
rate has not yet been achieved experimentally but is plausible assuming an order of magnitude or two
improvement in current capabilities is possible; a recent experiment achieved a sampling rate of about
5 x 10° Hz [1]. When including network latency, we set £ = 4.0 s; this value is based on our own experience
executing experiments through an internal cloud interface. The value of b depends on the details of the
algorithm. We ignore as negligible the time taken by the classical optimization algorithm to select
parameters for querying, as the optimizers here use relatively simple classical updates.

3. Optimization strategies

3.1. Choice of optimizers

A wide range of optimizers now exist for continuous, non-linear optimizations, with different strengths and
weaknesses. One key element for consideration is the stochastic nature of our objective function and its
relation to the number of measurements made for each function evaluation. Some optimizers were designed
with noiseless (up to reasonable precision limits) function evaluations in mind, and are relatively unstable
with respect to even small amounts of noise. While one could insist on a number of measurements that
renders the function evaluations essentially exact, this incurs a huge overhead per iteration. We group
algorithms into two categories, distinguished by whether they have inherent hyperparameters that allow
them to adjust their resilience to noise. If an algorithm in practice requires that the input be given to a fixed
precision in order to be stable, we term it deterministic. If it has a hyperparameter that naturally allows it to
accept more or less noise, we call it stochastic.

The difference between the two classes can be subtle, and depend on the details of implementation. For
example, a gradient descent implementation that makes use of an exact line search can accidentally rule out
good regions of space from small wobbles in a query value, and is hence deterministic. However, if that
sample implementation substitutes a fixed step with a learning rate, it is not only more robust to noise, but
that learning rate can be adjusted to match noise levels in the objective queries. Hence we term that a
stochastic optimizer. Considering the costs of each with external hyperparameters (e.g. number of
measurements) and internal hyperparameters (e.g. learning rate) tuned for optimal performance will show
us these trade-offs.

Opverall, we investigated six different optimizers. Four of these have been studied in past work, and the
last two are surrogate model-based optimizers that we introduce here. Surrogate model-based optimizers
construct a model of the objective function using previously evaluated points and use the model to
determine what points to evaluate next. They are popular choices for the optimization of objective
functions that are expensive to evaluate or noisy (or both) [58, 59].

Listed briefly, the optimizers we study here are:

10P Publishing Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

e Deterministic algorithms:

* The Nelder—Mead simplex method [6]. This method has been used in previous theoretical [22, 23]
and experimental [2, 5] works on variational algorithms. We used the implementation from SciPy
[60].

* Bounded optimization by quadratic approximation (BOBYQA) [35]. This is a surrogate model based
algorithm that uses an interpolating quadratic model to approximate the objective function, and has
been studied in a previous work on variational algorithms [26]. We used the implementation from
the Python package Py-BOBYQA [59].

e Stochastic algorithms:

* SPSA [12]. This method has also been used in previous theoretical [24] and experimental [7] works
on variational algorithms. We used our own implementation.

* Stochastic gradient descent using analytic gradient measurements obtained via the ‘parameter-shift
rule’ [52-54].
* MGD. This is a surrogate model-based algorithm we introduce here that uses a least-squares

quadratic model to estimate the gradient of the objective function. We give pseudocode in appendix
A.

* MPG. Building on the vanilla policy gradient method [25], this method additionally introduces a
least-squares quadratic model to reduce the variance in the estimation of the policy gradient. We
give pseudocode in appendix A.

3.2. MGD and policy gradient

In this section we describe and motivate the design choices of our new algorithms, MGD and MPG, which
are described in pseudocode in algorithms 1 and 2. These are surrogate model-based methods which use
least-squares regression to fit quadratic models of the objective function. A key expense in variational
quantum algorithms is the evaluation of the function at different points, which is costly due to the
underlying variance. Hence, it would be beneficial to reuse the history of point evaluations, rather than to
discard them at each iteration. For local optimizations where iterates proceed gradually, it seems intuitive
that this should be possible. Eventually, if one collected enough points in a small enough region, it should
be possible to construct a surrogate model that is more accurate than raw function evaluations at a fixed
number of measurements.

As a combination of this motivation and simplicity, we use a least-squares fit to a quadratic function.
However, it is also clear that if the region of sampled points is too large, the function may not be well
approximated by a quadratic, hence we use a trusted region of sample points, which may be new or reused
from previous iterates.

In each iteration, the algorithms sample a number of points randomly from the vicinity of the current
iterate. They fit quadratic models to these points and other previously evaluated points within the vicinity.
Finally, MGD uses the gradient of this quadratic model as an approximation to the true gradient and
performs gradient descent; MPG queries the model to evaluate a large batch of data points and performs
policy gradient optimization. The reason we did not use standard trust-region solution techniques after
building the quadratic model is that we found empirically that the eigenvalues of the Hessian of the
quadratic model built upon stochastic function evaluations may be slightly negative, which dictates in a
standard trust region solution method that the solution is on the exterior of the trust region. This constant
jumping to the exterior of the trust region represented a sort of fundamental inefficiency under stochastic
functions. In contrast, the gradient or policy gradient of the model, while stochastic, represented a reliable
estimator that, in conjunction with techniques like a fixed learning rate, combined the increased accuracy of
additional samples with the robustness of a stochastic gradient descent.

To enhance the performance and stability of the methods, we introduced several hyperparameters to our
algorithms. In particular, as algorithms approach an optimum, decreasing the radius of the neighborhood
from which points are sampled is expected to give a more accurate estimate of the function value and its
gradient. Thus, we introduce a hyperparameter £ for MGD which controls the rate at which the radius
decreases. As for MPG, we introduce the fixed sample radius ratio §, with respect to the maximal sample
radius of the policy. The selected sample radius adaptively shrinks along with the maximal sample radius as
the policy gradually becomes more confident. It may also be advantageous to decrease the learning rate of
both algorithms. Thus, we introduce hyperparameters o and A which control the rate of this decrease. The
parameters ¢ and « are exponents for geometric decay, which is a standard way to scale parameters like
learning rates throughout an optimization algorithm, used in methods such as SPSA. The details of how
these parameters enter can be found in the pseudocode of the algorithms.

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

0.7 1

0.6
>
2
205
G.)
e}
[
N
[}]
£ 0.4
(=}
=
0.3
—— Optimized
—— Unoptimized
0.2 1
0 10 20 30 40 50
Time (s)

Figure 1. Optimization progress of SPSA in simulated experiments on a SK model Hamiltonian using two different
hyperparameter settings: the ones used by default in the implementation from the software package Qiskit (unoptimized), and
ones that were found by searching for good settings (optimized). The solid line represents the mean energy over 50 runs with
different PRNG seeds, and the shaded region represents a width of one standard deviation of the mean. The dotted lines are 10
example trajectories. The dotted gray line corresponds to the ansatz optimum. SPSA fails to converge with the unoptimized
hyperparameters.

3.3. Hyperparameter selection

Each optimizer we considered here has a number of hyperparameters, and empirically we noted that the
choice of these hyperparameters had a great impact on performance. Strikingly, some optimizers that failed
completely with out of the box settings became competitive choices with even slight adjustments. Recalling
that many of the optimizers we consider are inherently deterministic, one important hyperparameter
external to all methods is the number of measurement shots per energy evaluation.

We tuned hyperparameters by grid search, and separately for each problem class and ansatz depth
considered. For each combination of hyperparameters considered in the search, we performed an
optimization run using the wall clock time model that includes network latency and circuit batching. The
optimal hyperparameters were those that minimized time to convergence with a precision target of 107>, To
avoid effects of overfitting, we restricted consideration to single realizations, where other runs are not
further optimized within a problem class. Note that the details of hyperparameter selection has a significant
effect on the performance of the algorithms. For example, choosing a more lenient precision requirement
while still minimizing time to solution leads to different performance characteristics on other problems. See
appendix B for more details, including descriptions of the hyperparameters.

As a simple demonstration of the importance of hyperparameter selection, we considered the
performance on a simple test case with two different hyperparameter settings. Figure 1 shows the
optimization progress of SPSA in simulated experiments on a SK model Hamiltonian with n =8 and p = 1,
using two different hyperparameter settings: the ones used by default in the implementation from the
software package Qiskit [61], and ones that we optimized for minimal time to solution with a fixed
precision cutoff. Depicted is the normalized energy versus wall clock time, using the wall clock time model
that includes network latency and circuit batching. With tuned hyperparameters, SPSA converges to the
solution rapidly, and without tuning it quite obviously does not. The erratic trajectory when using the
unoptimized default parameters can be attributed to the fact that the initial learning rate of the algorithm is
set to a value over 100 times larger than the optimized value. Hence, while SPSA is a powerful stochastic
method capable of dealing with variable function noise, hyperparameter tuning must be actively used to
make a proper comparison. Not taking advantage of this capability has led previous studies to
underestimate the performance of SPSA or outright conclude that it is not effective for these problems
[18, 24]. This demonstrates the importance of tuning hyperparameters in making a fair comparison
between optimization algorithms, and throughout this study we tune all methods under consideration.

4. Results

To increase the applicability of our results to experiment, we consider both ideal and faulty operation of a
quantum device. In the first case, in order to isolate challenges pertaining only to sampling noise, we
assume an ideally functioning quantum computer, so that the only source of stochasticity in the objective
function is finite sampling effects. In the other case, we modeled the effect of gate rotation error as follows:
each time the optimizer queries the point 6, the objective function is evaluated at the point 8 + ¢ instead,

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

MPG

MGD

SPSA

SGD

BOBYQA
B No latency
B Batching

B No batching

Nelder-Mead

10° 10t 102 103 104
Time (s)

Figure 2. Wall clock time for optimization to achieve precision 1 x 107> for the SK model at p = 1. Times are averaged over 50
experiments with different PRNG seeds. The black lines at the tips of the bars represent a width of one standard deviation. The
best choice of optimizer can depend on the wall clock time model, with MGD, MPG, and SGD benefiting greatly from the ability
to request execution of a batch of circuits.

where each component of € is chosen from the normal distribution with mean 0 and standard deviation ¢
(for some gate error level). Since this error model does not straightforwardly translate to the calculation of
gradients for SGD, we did not perform simulations of gate error with SGD. This error model is a simplified
model of coherent control error, an important source of errors on actual hardware [1], and which is
especially pertinent to the case of quantum computers accessed through cloud services which are used often
but calibrated only periodically.

Each simulation we perform is characterized by four attributes: the problem (3-regular Max-Cut, SK, or
Hubbard), the ansatz depth p, the choice of optimizer, and gate error level € (possibly 0). For each set of
attributes considered, we performed 50 statistically independent simulations. For each numerical simulation
we performed, we estimate the wall-clock time of actually performing the experiment on a quantum
computer accessed through a cloud service using the various cost models described in section 2.2, and set a
limit to the total amount of time allowed. We are interested in how quickly a given optimization algorithm
converges to the optimal energy to within a target precision. By ‘optimal energy’ we mean the energy of the
ansatz state at the nearest local optimum as determined from a classical optimization of the noiseless
objective function.

4.1. The case of p = 1 and no gate errors

First, we present the results of simulations with p = 1 and no gate errors. Figure 2 shows the wall clock time
for different optimizers to achieve precision 1072 for the SK model at # = 8 and p = 1. We define this time
to be the earliest time at which the current and all future evaluated points have an approximation ratio or
normalized energy close to the optimal value to within 1073, We show the results for the three different
wall-clock models described in section 2.2: no network latency, network latency present but with circuit
batching, and network latency present with no circuit batching. Note that Nelder—-Mead converged in only
44 out of 50 runs; the other algorithms converged in all of them.

These results show that the proper choice of optimizer depends on the situation. SPSA performed the
best under the wall clock time model with no latency, but was outperformed by MGD, SGD, and BOBYQA
under the model that included latency and circuit batching. Under the model that included latency but did
not have circuit batching, BOBYQA performed the best.

The importance of the wall clock time model, and in particular the effect of network latency, is evident.
In the presence of network latency, MPG, MGD and SGD benefit much more from circuit batching than the
other algorithms do. Both algorithms work by obtaining an estimate of the objective function gradient in
each iteration. Circuit batching provides a benefit because multiple different circuits are needed to estimate
the gradient, and these circuits can be sent over the network in one batch, reducing total network latency
costs. SPSA also estimates the gradient, but it only uses 2 different circuits for that purpose. In contrast, the
hyperparameters of MGD and MPG were chosen so that they both used 10, while SGD used 72. Indeed, the
plot shows SGD benefiting from batching to a greater degree than MGD.

As an illustration of the ability of the various optimizers to tolerate different amounts of variance in the
objective function, we note that the optimal hyperparameters dictates that SGD uses 1000 measurement
shots per evaluations, MGD and SPSA use 5000, MPG uses 20 000, Nelder—Mead uses 25 000, and BOBYQA
uses 125 000. This makes clear our distinction between deterministic and stochastic optimizers. While one

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

3-regular graph SK model Hubbard model
-‘ ; i *++ ;:v $:3.%4, 1.0T“‘”“T":_v‘“‘“";"‘:,‘. $:9. $¢ .__" 1.07—--0—--—4--‘»---—:-—4-;:?”;0,.‘::

=
o

o
®

o
o

4. "
*: 0.8 1 L +-¢ P 0.8 1 * *

+* *?+ L 06 Ti + r+ T * 0.6 1
ol LN

L%

e ':"».........:.':

o
'S

Probability of success
o
N

* ﬁ + E v:." 0.2
o 4 4.
t bg .}-v..,......:Iz..4g...4...4: 0.0

o
)

103

,_\
1)
™
K
.
*

=
£

Nelder-Mead
BOBYQA
SPSA

MGD

MPG

SGD

Nelder-Mead
BOBYQA
SPSA 5 -
MGD 10°7 o7 _9-"
MPG &

SGD boo®

Nelder-Mead
BOBYQA ki §
SPSA e g
MGD 1024747,
MPG P oo

SGD

1072 1073 1074 107 1072 1073 1074 1075 1072 1073 1074
Precision cutoff Precision cutoff Precision cutoff

Time to solution (s)

ssbdsam
R T
et

Figure 3. Success probability and time to solution for varying levels of required precision at p = 5. Top: the probability of
converging (out of 50 trials) to the optimal value of the ansatz at the given precision. Bottom: the average wall clock time the
optimizer took to reach the given precision. Error bars represent 1 standard deviation. Time to solution is only reported if the
probability of convergence was at least 75% (dotted horizontal gray line). We see that Nelder—Mead and BOBYQA are the least
likely to converge and often the slowest to converge when they do succeed. Meanwhile, MGD and MPG have the highest
probability of converging as well as usually the fastest convergence times.

can find external hyperparameter settings that allow Nelder—Mead and BOBYQA to succeed, the lack of
internal hyperparameters for noise tolerance means the number of measurements grows wildly. In contrast,
stochastic methods like MPG, MGD and SPSA can find balanced settings using far fewer measurements per
point while remaining stable. In larger systems beyond the scope of simulation, it may not be easy to a
priori determine the required measurements to make a deterministic method stable, and hence the
flexibility of naturally stochastic methods is likely to be preferred. For all cases, however, some amount of
hyperparameter tuning is a necessity for good performance.

4.2. The case of p = 5 and no gate errors

At p = 5 there are a greater number of parameters to optimize. For the QAOA problems there are now 10
parameters, and for the Hubbard model there are 15. Here we fixed the wall clock time model to the one
that includes network latency and circuit batching, and plot the performance of the optimizers as a function
of the desired level of precision of convergence to the ansatz optimum. We present the results in figure 3.
The optimizers did not always converge within the time limit we allowed (1500 s for the QAOA problems
and 24 h for the Hubbard model). The top row depicts the probability of convergence to the desired
precision, out of 50 runs. The bottom row depicts the average wall clock time for convergence, with data
plotted only if the probability of convergence was at least 75%.

These simulations show that not only were Nelder—Mead and BOBYQA the least likely to converge; they
were also often the slowest to converge when they did succeed. Meanwhile, MGD, MPG, and SPSA
converged even at high levels of precision, with MGD and MPG consistently converging the most quickly in
this regime. This is again a symptom of the fragility of using deterministic optimizers in a stochastic setting.
Outside the regime of precise tuning, methods like Nelder—Mead and BOBYQA become unstable, whereas
even outside the regime of tuning, methods like MGD, MPG, and SPSA are able to succeed.

Note that the plots would look different if we had tuned the hyperparameters with a different strategy.
For example, we tuned the hyperparameters to minimize the time to convergence to a precision of 1073, If
we had instead used a less precise cutoff, such as 102, then we would expect the optimizers to converge
faster to less precise cutoffs, but perhaps more slowly or less robustly to higher precision cutoffs at smaller
ones. At a glance in these figures, one can see remnants of the hyperparameter selection cutoff. In appendix
B we highlight this effect with an example.

4.3. The impact of rotation errorsatp = 5
Finally, to understand the impact of gate error in addition to simple sampling noise, at p = 5 we consider
gate rotation errors as well. As described above, the model of gate rotation error that we used does not
simply translate to SGD, so we do not include results for it. Again, we fixed the wall clock time model to the
one that includes network latency and circuit batching. In running the optimization algorithms, we used the
hyperparameters that were optimized for the case of no gate errors.

Figure 4 shows the probability of convergence to a precision of 5 x 10~ for the various optimizers as a
function of the gate error level ¢, for the 3-regular graph model. The results show that in this scenario,

10

10P Publishing Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

3-regular graph

1.04 #- i::,’_-:g.—.-Q:Of.-;r.-.-’.-.-‘-:_z:; i: Rt AL 2P
5 05 bty }
g os '-.
° B
Py B
Z 0.4+ +
§ --#- Nelder-Mead 3 .
& -¥- BOBYQA + P
027 4. spsa "
-4 MGD Pt 4
0.04 ~® MPG L T IRUSRE R Y5 TP
103 102 10

Gate error level

Figure 4. Probability of convergence as a function of gate error level under a model of rotation error for the 3-regular graph
model. Shown is the probability, over 50 trials with different PRNG seeds, of converging to within a precision of 5 x 1072, as a
function of gate error level. Error bars represent one standard deviation. In this scenario, Nelder—Mead is the least resilient to this
noise, while MPG is the most, and MGD follows.

Nelder—Mead is the least resilient to this type of noise, while MPG performs the best and MGD follows. The
reason why MPG is particularly robust to noise is because it learns a stochastic policy. Its probability-based
optimization minimizes the objective function in the expectation sense and thus manages to handle various
levels of uncertainty. SPSA also showed good noise resilience in other scenarios; see section D in the
appendix for data for the other models.

Note that for a given gate error level, algorithmic improvements can increase the success probability
with respect to the ideal solution only up to a certain point. That is, beyond a certain level of noise, the
device cannot produce a more precise solution, and hence this is not a failing of the optimizer but rather
represents a device limitation. We do not differentiate between these circumstances in the presented data,
but merely note that it is a consideration when defining probability of success.

5. Conclusion

Variational quantum algorithms are a promising candidate for execution on near-term quantum computers,
and a number of experimental demonstrations of these algorithms have already been performed. These
algorithms rely on a classical optimization subroutine, and hence the efficiency of these algorithms can be
limited by the performance of these optimizers. Here, we saw that to accurately assess the performance of
these optimizers, it is crucial to develop a good cost model, and tune available hyperparameters to
operational specifications.

Given the unique considerations of quantum systems, we developed two new surrogate model-based
optimizers, MGD and MPG, to fill some of the gaps of previous methods. We numerically compared their
performance with other popular alternatives, and found it advantageous in several realistic settings. We also
probed how the cost model and presence of errors can significantly impact the choice of optimizer in a
practical setting.

Now that quantum computers are coming online, accessing superconducting qubits through a cloud
interface is an important scenario to consider. The latency of communicating over the Internet can cause
large increases in running times, but this can be mitigated by circuit batching, though the cost savings
depends on the optimizer.

We also observed that inherently stochastic optimizers, such as MPG, MGD and SPSA, were more
robust to variations in problems or setting once properly tuned. This extended to situations where finite
gate or circuit noise was present. In contrast, while it was sometimes possible to make deterministic
optimizers competitive through careful tuning, these tunings were fragile with respect to small variations in
the problem or the introduction of noise. Overall, MPG and MGD’s tolerance of noise, ability to take
advantage of circuit batching, and good overall performance make them good candidates for actual
experiments, but the best optimizer can depend on the processor’s wall-clock model, level of noise, number
of parameters, or the specific circuit ansatz.

In this work, we have shown how practical considerations can significantly affect the calculus of
choosing an optimizer for running variational algorithms. Future work will develop more accurate noise
and cost models, and further development of optimizers can take these unique considerations into account.

11

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

Acknowledgments
We thank Eddie Farhi and Bill Huggins for helpful discussions. This work was partially supported by the

Department of Energy under Grant No. DE-SC0017867 (JY, LL) and a Google Quantum Research Award
(LL).

Code Availability

Implementations of MGD and MPG are available at https://github.com/quantumlib/ReCirg.
ORCID iDs

Kevin J Sung @ https://orcid.org/0000-0001-6459-6374
Nicholas C Rubin @ https://orcid.org/0000-0003-3963-1830

References

[1] Arute F et al 2019 Quantum supremacy using a programmable superconducting processor Nature 574 50510

[2] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 A variational
eigenvalue solver on a photonic quantum processor Nat. Commun. 5 1-7

[3] McClean] R, Romero J, Babbush R and Aspuru-Guzik A 2016 The theory of variational hybrid quantum-classical algorithms
New J. Phys. 18 023023

[4] Preskill] 2018 Quantum computing in the NISQ era and beyond Quantum 2 79

[5] Hempel C et al 2018 Quantum chemistry calculations on a trapped-ion quantum simulator Phys. Rev. X 8 031022

[6] Nelder J A and Mead R 1965 A simplex method for function minimization Comput. J. 7 308—13

[7] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow] M and Gambetta] M 2017 Hardware-efficient variational

quantum eigensolver for small molecules and quantum magnets Nature 549 242—6
[8] Otterbach] S et al 2017 Unsupervised machine learning on a hybrid quantum computer (arXiv:1712.05771 [quant-ph])
[9] Colless] I, Ramasesh V'V, Dahlen D, Blok M S, Kimchi-Schwartz M E, McClean J R, Carter J, de Jong W A and Siddiqi I 2018

Computation of molecular spectra on a quantum processor with an error-resilient algorithm Phys. Rev. X 8 011021

[10] Kokail C et al 2019 Self-verifying variational quantum simulation of lattice models Nature 569 355—60

[11] Pagano G et al 2019 Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator
(arXiv:1906.02700 [quant-ph])

[12] SpallJ C 1992 Multivariate stochastic approximation using a simultaneous perturbation gradient approximation IEEE Trans.
Autom. Control 37 332—41

[13] Shahriari B, Swersky K, Wang Z, Adams R P and de Freitas N 2016 Taking the human out of the loop: a review of Bayesian
optimization Proc. IEEE 104 148-75

[14] Parsopoulos K E and Vrahatis M N 2002 Recent approaches to global optimization problems through particle swarm
optimization Nat. Comput. 1 235-306

[15] Jones D R, Perttunen C D and Stuckman B E 1993 Lipschitzian optimization without the Lipschitz constant J. Optim. Theory
Appl. 79 157-81

[16] Wecker D, Hastings M B and Troyer M 2015 Progress towards practical quantum variational algorithms Phys. Rev. A 92 042303

[17] Zhou L, Wang S-T, Choi S, Pichler H and Lukin M D 2018 Quantum approximate optimization algorithm: performance,
mechanism, and implementation on near-term devices (arXiv:1812.01041 [quant-ph])

[18] Nakanishi K M, Fujii K and Todo S 2019 Sequential minimal optimization for quantum-classical hybrid algorithms
(arXiv:1903.12166 [quant-ph])

[19] Parrish R M, Tosue J T, Ozaeta A and McMahon P L 2019 A Jacobi diagonalization and Anderson acceleration algorithm for
variational quantum algorithm parameter optimization (arXiv:1904.03206 [quant-ph])

[20] Kiibler] M, Arrasmith A, Cincio L and Coles P] 2019 An adaptive optimizer for measurement-frugal variational algorithms
(arXiv:1909.09083 [quant-ph])

[21] Arrasmith A, Cincio L, Somma R D and Coles P] 2020 Operator sampling for shot-frugal optimization in variational algorithms
(arXiv:2004.06252 [quant-ph])

[22] Guerreschi G G and Smelyanskiy M 2017 Practical optimization for hybrid quantum-classical algorithms (arXiv:1701.01450
[quant-ph])

[23] Romero J, Babbush R, McClean J, Hempel C, Love P and Aspuru-Guzik A 2018 Strategies for quantum computing molecular
energies using the unitary coupled cluster ansatz (arXiv:1701.02691 [quant-ph])

[24] Nannicini G 2019 Performance of hybrid quantum-classical variational heuristics for combinatorial optimization Phys. Rev. E 99
013304

[25] Yao J, Bukov M and Lin L 2020 Policy gradient based quantum approximate optimization algorithm (arXiv:2002.01068
[quant-ph])

[26] Lavrijsen W, Tudor A, MAijller J, Iancu C and de Jong W 2020 Classical optimizers for noisy intermediate-scale quantum devices
(arXiv:2004.03004 [quant-ph])

[27] Leng Z, Mundada P, Ghadimi S and Houck A 2019 Robust and efficient algorithms for high-dimensional black-box quantum
optimization (arXiv:1910.03591 [quant-ph])

[28] Stokes J, Izaac J, Killoran N and Carleo G 2020 Quantum natural gradient Quantum 4 269

[29] Wierichs D, Gogolin C and Kastoryano M 2020 Avoiding local minima in variational quantum eigensolvers with the natural
gradient optimizer (arXiv:2004.14666 [quant-ph])

12

https://github.com/quantumlib/ReCirq
https://orcid.org/0000-0001-6459-6374
https://orcid.org/0000-0001-6459-6374
https://orcid.org/0000-0003-3963-1830
https://orcid.org/0000-0003-3963-1830
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/physrevx.8.031022
https://doi.org/10.1103/physrevx.8.031022
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://arxiv.org/abs/1712.05771
https://doi.org/10.1103/physrevx.8.011021
https://doi.org/10.1103/physrevx.8.011021
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1038/s41586-019-1177-4
https://arxiv.org/abs/1906.02700
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/9.119632
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1109/jproc.2015.2494218
https://doi.org/10.1023/a:1016568309421
https://doi.org/10.1023/a:1016568309421
https://doi.org/10.1023/a:1016568309421
https://doi.org/10.1023/a:1016568309421
https://doi.org/10.1007/bf00941892
https://doi.org/10.1007/bf00941892
https://doi.org/10.1007/bf00941892
https://doi.org/10.1007/bf00941892
https://doi.org/10.1103/physreva.92.042303
https://doi.org/10.1103/physreva.92.042303
https://arxiv.org/abs/1812.01041
https://arxiv.org/abs/1903.12166
https://arxiv.org/abs/1904.03206
https://arxiv.org/abs/1909.09083
https://arxiv.org/abs/2004.06252
https://arxiv.org/abs/1701.01450
https://arxiv.org/abs/1701.02691
https://doi.org/10.1103/physreve.99.013304
https://doi.org/10.1103/physreve.99.013304
https://arxiv.org/abs/2002.01068
https://arxiv.org/abs/2004.03004
https://arxiv.org/abs/1910.03591
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.22331/q-2020-05-25-269
https://arxiv.org/abs/2004.14666

10P Publishing

Quantum Sci. Technol. 5 (2020) 044008 K] Sung et al

(30]
(31]
(32]

(33]

(54]
(55]

(56]
(57]

(58]
(59]

(60]
(61]
(62]

Byrd R H, Lu P, Nocedal J and Zhu C 1995 A limited memory algorithm for bound constrained optimization SIAM J. Sci.
Comput. 16 1190-208

Powell M] D 1994 A direct search optimization method that models the objective and constraint functions by linear
interpolation Advances in Optimization and Numerical Analysis ed S Gomez and J-P Hennart (Berlin: Springer) pp 51-67

Powell M] D 1964 An efficient method for finding the minimum of a function of several variables without calculating derivatives
Comput.]. 7 155-62

Costa A and Nannicini G 2018 RBFOpt: an open-source library for black-box optimization with costly function evaluations
Math. Prog. Comp. 10 597-629

Huyer W and Neumaier A 2008 SNOBFIT—stable noisy optimization by branch and fit ACM Trans. Math. Softw. 35 9

Powell M] D 2009 The BOBYQA algorithm for bound constrained optimization without derivatives

Le Digabel S 2011 Algorithm 909: Nomad: nonlinear optimization with the mads algorithm ACM Trans. Math. Softw. 37 44
Kelley C T 2011 Implicit Filtering (Philadelphia, PA: STAM)

Williams R J 1992 Simple statistical gradient-following algorithms for connectionist reinforcement learning Mach. Learn. 8
229-56

Farhi E, Goldstone] and Gutmann S 2014 A quantum approximate optimization algorithm (arXiv:1411.4028 [quant-ph])

Arute F et al 2020 Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
(arXiv:2004.04197 [quant-ph])

Brandao F G S L, Broughton M, Farhi E, Gutmann S and Neven H 2018 For fixed control parameters the quantum approximate
optimization algorithm’s objective function value concentrates for typical instances (arXiv:1812.04170 [quant-ph])

Sherrington D and Kirkpatrick S 1975 Solvable model of a spin-glass Phys. Rev. Lett. 35 1792—6

Hubbard J 1963 Electron correlations in narrow energy bands Proc. R. Soc. A 276 23857

Dagotto E 1994 Correlated electrons in high-temperature superconductors Rev. Mod. Phys. 66 763—840

Kivlichan I D, McClean J, Wiebe N, Gidney C, Aspuru-Guzik A, Kin-Lic Chan G and Babbush R 2018 Quantum simulation of
electronic structure with linear depth and connectivity Phys. Rev. Lett. 120 110501

Jordan P and Wigner E 1928 iiber das Paulische dquivalenzverbot Z. Phys. 47 63151

Jena A, Genin S and Mosca M 2019 Pauli partitioning with respect to gate sets (arXiv:1907.07859 [quant-ph])

Izmaylov A F, Yen T-C and Ryabinkin I G 2019 Revising the measurement process in the variational quantum eigensolver: is it
possible to reduce the number of separately measured operators? Chem. Sci. 10 374655

Huggins W], McClean J, Rubin N, Jiang Z, Wiebe N, Birgitta Whaley K and Babbush R 2019 Efficient and noise resilient
measurements for quantum chemistry on near-term quantum computers (arXiv:1907.13117 [quant-ph])

Izmaylov A F, Yen T-C, Lang R A and Verteletskyi V 2020 Unitary partitioning approach to the measurement problem in the
variational quantum eigensolver method J. Chem. Theory Comput. 16 190—5

Verteletskyi V, Yen T-C and Izmaylov A F 2020 Measurement optimization in the variational quantum eigensolver using a
minimum clique cover J. Chem. Phys. 152 124114

Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Quantum circuit learning Phys. Rev. A 98 032309

Schuld M, Bergholm V, Gogolin C, Izaac] and Killoran N 2019 Evaluating analytic gradients on quantum hardware Phys. Rev. A
99 032331

Crooks G E 2019 Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition
(arXiv:1905.13311 [quant-ph])

Harrow A and Napp J 2019 Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical
algorithms (arXiv:1901.05374)

Barends R et al 2014 Superconducting quantum circuits at the surface code threshold for fault tolerance Nature 508 500
Coreoles A D, Magesan E, Srinivasan S J, Cross A W, Steffen M, Gambetta] M and Chow] M 2015 Demonstration of a quantum
error detection code using a square lattice of four superconducting qubits Nat. Commun. 6 6979

Jones D R 2001 A taxonomy of global optimization methods based on response surfaces Journal of Global Optimization 21 345-83
Cartis C, Fiala J, Marteau B and Roberts L 2019 Improving the flexibility and robustness of model-based derivative-free
optimization solvers ACM Trans. Math. Softw. 45 32

Virtanen P et al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 26172

Abraham H et al 2019 Qiskit: an open-source framework for quantum computing doi: 10.5281/zenod0.2562110

Kingma D P and Ba] 2014 Adam: a method for stochastic optimization (arXiv:1412.6980 [cs.LG])

13

https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1145/1377612.1377613
https://doi.org/10.1145/1377612.1377613
https://doi.org/10.1145/1916461.1916468
https://doi.org/10.1145/1916461.1916468
https://doi.org/10.1007/bf00992696
https://doi.org/10.1007/bf00992696
https://doi.org/10.1007/bf00992696
https://doi.org/10.1007/bf00992696
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2004.04197
https://arxiv.org/abs/1812.04170
https://doi.org/10.1103/physrevlett.35.1792
https://doi.org/10.1103/physrevlett.35.1792
https://doi.org/10.1103/physrevlett.35.1792
https://doi.org/10.1103/physrevlett.35.1792
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/revmodphys.66.763
https://doi.org/10.1103/revmodphys.66.763
https://doi.org/10.1103/revmodphys.66.763
https://doi.org/10.1103/revmodphys.66.763
https://doi.org/10.1103/physrevlett.120.110501
https://doi.org/10.1103/physrevlett.120.110501
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://arxiv.org/abs/1907.07859
https://doi.org/10.1039/c8sc05592k
https://doi.org/10.1039/c8sc05592k
https://doi.org/10.1039/c8sc05592k
https://doi.org/10.1039/c8sc05592k
https://arxiv.org/abs/1907.13117
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1063/1.5141458
https://doi.org/10.1063/1.5141458
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physreva.99.032331
https://arxiv.org/abs/1905.13311
https://arxiv.org/abs/1901.05374
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1023/a:1012771025575
https://doi.org/10.1145/3338517
https://doi.org/10.1145/3338517
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.2562110
https://arxiv.org/abs/1412.6980

	Using models to improve optimizers for variational quantum algorithms
	1. Introduction
	2. Problems studied and cost models
	2.1. Problems studied
	2.1.1. Max-Cut on 3-regular graphs
	2.1.2. Sherrington–Kirkpatrick model
	2.1.3. Hubbard model

	2.2. Cost models
	2.2.1. Objective function queries
	2.2.2. Gradient queries
	2.2.3. Wall clock time

	3. Optimization strategies
	3.1. Choice of optimizers
	3.2. MGD and policy gradient
	3.3. Hyperparameter selection

	4. Results
	4.1. The case of and no gate errors
	4.2. The case of and no gate errors
	4.3. The impact of rotation errors at

	5. Conclusion
	Acknowledgments
	Code Availability
	ORCID iDs
	References

