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ABSTRACT

Although neural network models enjoy tremendous advantages
in handling image and text data, tree-based models still remain
competitive for learning-to-rank tasks with numerical data. A ma-
jor strength of tree-based ranking models is the insensitivity to
different feature scales, while neural ranking models may suffer
from features with varying scales or skewed distributions. Feature
transformation or normalization is a simple technique which pre-
processes input features to mitigate their potential adverse impact
on neural models. However, due to lack of studies, it is unclear
to what extent feature transformation can benefit neural ranking
models. In this paper, we aim to answer this question by providing
empirical evidence for learning-to-rank tasks. First, we present a list
of commonly used feature transformation techniques and perform
a comparative study on multiple learning-to-rank data sets. Then
we propose a mixture feature transformation mechanism which can
automatically derive a mixture of basic feature transformation func-
tions to achieve the optimal performance. Our experiments show
that applying feature transformation can substantially improve the
performance of neural ranking models compared to directly using
the raw features. In addition, the proposed mixture transformation
method can further improve the performance of the ranking model
without any additional human effort.
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1 INTRODUCTION

Many machine learning models cannot easily handle features with
drastically skewed distributions or extreme scales. Unfortunately,
commonly used features often have these patterns. Particularly in
web-related applications such as search and recommendation tasks,
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data items are often represented by features with a peculiar statisti-
cal nature. For example, click counts can be in the scale of billions
for some items while other items only have a dozen clicks. Using
these numbers directly as input features can result in less optimal
models and introduce numerical instability during training. There-
fore, feature normalization or transformation is an essential step to
improve the effectiveness of many machine learning models [13].

In the learning-to-rank setting, tree-based models [6, 11, 17] have
been extensively studied in the past and remain competitive on
public data sets which primarily consist of numerical features. The
tree-based model architecture is generally immune to the adverse
impact of directly using raw features. Recently, neural network
based deep learning models attract lots of attention for learning-
to-rank tasks [1, 5]. However, few of them investigate the impact
of feature transformation. A possible reason is that neural rank-
ing models are regarded as universal function approximators [14],
which leads to the misconception that the optimal ranking func-
tion can be automatically learned by current algorithms without
feature transformation. Therefore, it is still unclear whether feature
transformation is important for neural ranking models.

While there are surveys providing empirical comparison of mul-
tiple feature transformation techniques in other domains [2, 19, 24],
to the best of our knowledge there is no systematic comparison
of feature transformation techniques for neural ranking models.
Moreover, the optimal transformation could vary by feature due to
different statistical nature. Possible solutions are either to manually
specify feature transformation technique for each feature based on
expert knowledge or to perform tedious empirical comparison for
every single feature. Both practices require significant time and
effort and become intractable when the number of features is large.

In this paper, we aim to evaluate the importance of feature trans-
formation for neural ranking models. We first enumerate three basic
feature transformation functions, including commonly used z-score
and CDF transformations, and a simple yet effective symmetric
logarithm transformation that has been less explored in prior work
on ranking. Then, we propose a mixture feature transformation
mechanism. In particular, it takes the set of basic feature trans-
formation functions and automatically derives a mixture of them
as the final transformation for each feature. The mixture feature
transformation module can be jointly trained with the neural rank-
ing model, which saves the human effort to choose transformation
functions for different features.

We perform experiments on multiple learning-to-rank data sets
to provide a thorough view of the effects of different feature trans-
formation functions. We show that applying feature transformation
can significantly improve the performance of neural ranking mod-
els compared to directly using the raw feature values. We also
show that our mixture feature transformation can further improve
the performance by selecting a proper transformation per feature
without any human effort.
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2 RELATED WORK

Feature scaling, normalization and transformation is one of the most
fundamental data preprocessing techniques in machine learning [12,
13]. There are surveys comparing different feature transformation
techniques in various applications, such as disease detection [24],
stock market prediction [19] and video classification [2].

In information retrieval, feature transformation is also a common
practice. For example, the YAHOO Learning to Rank Challenge data
set [8] applies cumulative distribution-based transformation on all
features; the LETOR [23] data set also applies query-level min-
max scaling on each feature. In traditional information retrieval,
feature transformation has been extensively studied on both term
frequency and inverse document frequency (e.g., BM25). However,
such a study is still missing for neural ranking models.

Automatically learning to perform feature transformation is a
relatively novel topic. There are only a few studies with similar
objectives [3, 7]. Their methods focus on a family of functions such
as linear or logistic ones and are not studied for ranking models. In
contrast, our methods focus on neural ranking models and work
with different forms of transformation functions.

3 PROBLEM FORMULATION

Learning to rank. We represent a learning-to-rank data set with
Nlistsas D = {(X, y)}f] Foralist (X, y) € D, X = {xi}f=1
a set of | data items, each represented by an n-dimensional feature
vector x; € Ry = {y,} are relevance labels of corresponding
data items, where y; € R. We also use the notation X to represent
all the data items in the entire data set, namely X = Uxep X.

In a supervised learning-to-rank setting, we are usually given a
training data set Dy, where all the relevance labels y are known.
We aim to develop a scoring function f : R" — R such that for any
list X = {x;}! i=» the ranked list predicted by scoring and sorting
items based on f(x;) can be similar to the ground-truth ranked list
obtained by sorting items based on y;.

denotes

Feature transformation. We denote the feature transformation
function for the k-th feature as oy : R +— R. For a feature vector x; =
(i1, xi2, - - , xin), we apply the feature transformation function on
each feature vector and obtain the transformed feature vector as
o(x;) = (o1(xi1), 02(xi2), - - - , on(xin)). The scoring function f in
the neural ranking model will be trained and evaluated based on
the transformed feature vectors, i.e., the predicted ranked list will
be obtained by sorting items based on f(o(x;)).

4 FEATURE TRANSFORMATION

In this section, we first introduce several basic feature transforma-
tion techniques for single features. Then, we introduce a mixture
feature transformation mechanism to automatically derive a mix-
ture of multiple transformed values for each feature.

4.1 Basic Transformation

Gaussian transformation (z-score). We fit a Gaussian distribu-
tion for all the data items x; € X in the given data set. We denote
each data item as x; = (xj1, - - , Xin). For the k-th feature, we can
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Figure 1: An illustrative example of mixture feature trans-
formation module (shaded) in a neural ranking model.

estimate the mean and standard deviation by:

B = A
Ak = 1x7 lek, Sk = \/IXI Z(xzk fii)?

x;eX x;€X

And the derived transformation function is
x- Hk
OGauss,k (X) = —— (1)
We denote the vector containing all transformed features as
0Gauss (Xi) = (0Gauss,1(¥Xi1) " **  0Gauss,n (Xin)). We will use similar
notation for other feature transformation techniques.
CDF transformation. Another idea is to estimate the cumulative
distribution function (CDF) for each feature and use the CDF value
to represent the feature. Concretely, we still use X as the set of all
data items in the data set. For any value x of the k-th feature, the
transformation function is:

X; € I i
ocpEk(X) = %ﬁkm (2)

Symmetric loglp transformation. We also use a symmetric
logarithm function as a transformation function. A regular log(x)
function cannot be directly applied to any function as it is undefined
for x < 0. Moreover, when x is close to 0, the absolute value of
the transformed feature could be extremely large. Hence, we use a
symmetric version of log(1 + x):

OLogip,k (¥) = sgn(x) - log(1 + [x|) (3)

where sgn(x) is the sign function which returns 1 for positive
numbers, —1 for negative numbers and 0 for x = 0.

4.2 Mixture Transformation

There may not be a single optimal feature transformation technique
applicable for all scenarios. The effect of different feature trans-
formation techniques depends on both the overall feature value
distribution and the model structure. Hence, we introduce a mixture
feature transformation module.

Suppose for the k-th feature, we have m feature transformation
functions available as a “basis”, denoted as {oyk,..., ok} We



derive the mixture transformed feature value of the k-th feature
ox (x) as:

OMixture,k (x) = Z PmkOmk (x) 4
m

where px = (P14 > Pmk) is a weighting vector. We derive the
weighting vector from an embedding of each feature by

Px = softmax(Wey)

where ey, is the d-dimensional embedding vector of the k-th feature
and W is an m X d matrix to be learned. Notice that e}, is not related
to any feature value x;i, but rather an embedding vector of k-th
feature per se. There are only n such embedding vectors where n is
the number of features.

Note that the mixture feature transformation layer can be jointly
trained with the ranking model to automatically determine the best
mixture of feature transformations for each feature.

4.3 Ranking Model

The ranking model we employ is a feed-forward network where
the first layer takes the transformed feature as input. Formally, for
a data item x, we can derive the final ranking score g by:

z1 = ReLU(W104(x) +b1)
z2 = ReLU(W3z1 + bg)

ZH = ReLU(WHZ(H_l) +by)
§=WHi1zg + bEe

where zj, is the output of the hA-th hidden layer; W}, and by, are
weight matrix and bias vector of the h-th hidden layer to be trained;
ReLU(:) refers to the Rectifier [18] activation function; and 7 is
the final output. Notice that o, (x) is the transformed input vector,
where we can plug in any feature transformation methods men-
tioned above. For basic feature transformations such as CDF and
Log1p, the transformed value ocpp(x) or opog1p (%) will be fed into
the model. For the mixture feature transformation, the module will
be jointly trained with the entire model, as shown in Figure 1.

We insert a batch normalization [15] layer in front of the input
of each layer. We also apply a dropout layer for the output of each
hidden layer. The model is trained with an approximate NDCGs
loss [5, 22] with a stochastic treatment as described in [4].

5 EXPERIMENTS
5.1 Data Sets

We use two public learning-to-rank data sets with numerical fea-
tures in our experiments. Another well-known public data set from
YAHOO [8] is not used as its feature values are already transformed.

WEB30K. WEB30K [21] is a public learning-to-rank data set re-
leased by Microsoft. The original data contains 5 folds. We only
use Fold1 of the data. The data set is partitioned into three subsets:
training, validation and testing. Each document is represented by
136 numerical features. In addition, a label with a 5-level relevance
grade varying from 0 to 4 is provided for each document.

ISTELLA. Istella released several learning-to-rank data sets to
the public. We use the Istella full data set [9]. Each document is

Table 1: Performance comparison (%). The best perfor-
mances are bolded. Performances statistically significantly
better (a = 0.05) than Raw or Loglp are marked with T and #
respectively.

l Data set [ Method H NDCG; [ NDCGgs [ NDCGjg ]

Raw 45.43 45.25 47.26

Gauss 48.187 | 46.817 48.68"

WEB30K CDF 49.177 47.757 49.457
Loglp 49.127 | 48.017 49.887
Mixture || 50.55' | 48.54'F | 50.167%

Raw 65.81 62.32 67.09

Gauss 66.31 62.41 67.22

ISTELLA | CDF 65.94 62.627 67.55"
Loglp 66.607 | 63.297 68.127
Mixture || 66.917 | 63.57'F | 68.427%

represented by 220 numerical features. The data set is also labeled
with graded relevance judgments from 0 to 4. We remove 2 features
which contain illegitimate values and only use the remaining 218.

5.2 Parameter Configurations

In all of our experiments, the ranking model network contains
3 hidden layers with 1024, 512, 256 units respectively. We set the
momentum of the batch normalization layers as 0.4 and the dropout
rate as 0.5. For all experiments, we set the training batch size to 128
and run for 100,000 steps. We use AdaGrad [10] as the optimizer and
tune the learning rate on each data set. The learning rate is set to
0.5 for WEB30K and 0.1 for ISTELLA respectively. The experiments
are implemented based on the open-sourced TensorFlow Ranking
library [20] and trained on TPU.

5.3 Comparison Settings

We apply each basic feature transformation and compare the per-
formance to the practice of directly using raw input features (rep-
resented by “Raw”). We also include the performance of applying
the mixture feature transformation function into the comparison.
For each feature x;ji, the mixture transformation takes the raw
feature value along with all the three transformed feature values
{Xik: 0Gauss,k (Xik ), 0CDE & (Xik ), OLog1p,k (Xik )} as the basis and gen-
erates the mixture transformation.

We adopt normalized discounted cumulative gain (NDCG) [16]
as the evaluation metric. In our experiments, we utilize NDCGy. to
measure the quality of the top-k ranked items where k € {1, 5,10}.

5.4 Results

The overall results are shown in Figure 1. As one can observe, ap-
plying feature transformation techniques to neural ranking models
substantially improves the performance, varying from +1% to +3%
(NDCGs) on both data sets. This verifies the importance of utilizing
feature transformation methods for neural ranking models.
Among all the basic feature transformation methods, Loglp
seems to outperform the other two transformation methods. We
believe that Loglp is especially effective to transform features with
a power law distribution, which are prevalent in web-related data
sets like WEB30K and ISTELLA. The distribution of the transformed
feature values will no longer be as skewed as raw feature values,
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Figure 2: Visualization of the mixture weights p; of a
selected set of features derived by Mixture method on
WEB30K data set. Each row represents a feature, and each
column corresponds to a basic feature transformation.

allowing neural ranking models to better handle these features in
training.

Another observation is that the Mixture method outperforms all
the basic feature transformation methods on both data sets. On the
WEB30K data set, the Mixture method improves NDCG1 by more
than +1% compared to the best basic feature transformation method.
It shows the effectiveness of the proposed mixture mechanism
to automatically derive a better transformation function for each
feature from the basic transformation functions.

In-depth analysis of the Mixture feature transformation. We
also take a deeper look into the mixture weights derived by the
mixture feature transformation. We select a few features in WEB30K
and plot their learned weighting vector pg. By default we select the
feature for “body”. We visualize these weighting vectors in Figure 2.

First, for some features that are sophisticated ranking scores per
se (e.g., Sum of TF*IDF, BM25 and LMIR.DIR), the model only uses
their raw scores, suggesting no further transformation is needed.
For features with potentially extremely large values and/or power
law distribution (e.g., Sum of TF and PageRank), the model learns
that applying Loglp transformation methods is beneficial. The
mixture method also applies CDF transformation for some features
with smaller values (e.g. Sum of Stream Length Normalized TF) or
sparse distributions (e.g., Outlink Number).

6 CONCLUSIONS

In this paper, we study the effect of feature transformation for
neural ranking models. Through empirical evidence on multiple
learning-to-rank data sets, we show that appropriate input feature
transformation is crucial to improve the performance of neural
ranking models. More importantly, we propose a mixture feature
transformation model that can automatically select the optimal
transformation given a set of basic transformation functions.
Based on our study, a further examination of feature transforma-
tions in the context of neural ranking models can be appropriate.
Although our experiments are only conducted on a feed-forward
network ranking models, as the focus of this paper is on feature
transformation, the techniques studied and proposed in this work
are applicable to any neural ranking models. It would be interesting

to see whether they can achieve better performances with feature
transformations. Moreover, our current work mainly looks into
numerical features. It is also intriguing to study how to conduct
effective feature transformation for embedding-based features (e.g.,
text features) in the future.
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