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Abstract— We propose a self-supervised approach for learn-
ing representations of objects from monocular videos and
demonstrate it is particularly useful for robotics. The main
contributions of this paper are: 1) a self-supervised model
called Object-Contrastive Network (OCN) that can discover
and disentangle object attributes from video without using any
labels; 2) we leverage self-supervision for online adaptation:
the longer our online model looks at objects in a video, the
lower the object identification error, while the offline baseline
remains with a large fixed error; 3) we show the usefulness of
our approach for a robotic pointing task; a robot can point
to objects similar to the one presented in front of it. Videos
illustrating online object adaptation and robotic pointing are
provided as supplementary material.

I. INTRODUCTION

One of the biggest challenges in real world robotics
is robustness and adaptability to new situations. A robot
deployed in the real world is likely to encounter a number of
objects it has never seen before. Even if it can identify the
class of an object, it may be useful to recognize a particular
instance of it. Relying on human supervision in this context
is unrealistic. Instead if a robot can self-supervise its under-
standing of objects, it can adapt to new situations when using
online learning. Online self-supervision is key to robustness
and adaptability and arguably a prerequisite to real-world
deployment. Moreover, removing human supervision has the
potential to enable learning richer and less biased continuous
representations than those obtained by supervised training
and a limited set of discrete labels. Unbiased representations
can prove useful in unknown future environments different
from the ones seen during supervision, a typical challenge
for robotics. Furthermore, the ability to autonomously train to
recognize and differentiate previously unseen objects as well
as to infer general properties and attributes is an important
skill for robotic agents.

In this work we focus on situated settings (i.e. an agent
is embedded in an environment), which allows us to use
temporal continuity as the basis for self-supervising corre-
spondences between different views of objects. We present
a self-supervised method that learns representations to dis-
entangle perceptual and semantic object attributes such as
class, function, and color. Assuming a pre-existing objectness
detector, we extract objects from random frames of a scene
containing the same objects, and let a metric learning system
decide how to assign positive and negative pairs of embed-
dings. Representations that generalize across objects natu-
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Fig. 1. The longer our model looks at objects in a video, the lower

the object identification error. Left: example frames of a work bench
video along with the detected objects. Right: result of online training on
the same video. Our model self-supervises object representations as the
video progresses and converges to 2% object identification error while the
offline baseline remains at 52% error.

rally emerge despite not being given groundtruth matches.
Unlike previous methods, we abstain from employing ad-
ditional self-supervisory training signals such as depth or
those used for tracking. The only input to the system are
monocular videos. This simplifies data collection and allows
our embedding to integrate into existing end-to-end learning
pipelines. We demonstrate that a trained Object-Contrastive
Network (OCN) embedding allows us to reliably identify
object instances based on their visual features such as color
and shape. Moreover, we show that objects are also organized
along their semantic or functional properties. For example,
a cup might not only be associated with other cups, but also
with other containers like bowls or vases.

Fig. 1 shows the effectiveness of online training: we
randomly selected frames of a continuous video sequence
(top), OCN can adapt to the present objects and thereby
lower the object identification error. The graph (bottom)
shows the object identification error obtained by training
on progressively longer sub-sequences of a 200 seconds
video. While the supervised baseline remains at a high error
rate (52.4%), OCN converges to a 2.2% error.

The key contributions of this work are: (1) a self-
supervised objective trained with contrastive learning that
can discover and disentangle object attributes from video
without using any labels; (2) we leverage object self-
supervision for online adaptation: the longer our model looks
at objects in a video, the lower the object identification
error, while the offline baseline remains with a large fixed



error; (3) we let a robot collect data, then train on it with
our self-supervised training scheme, and show the robot can
point to objects similar to the one presented in front of it,
demonstrating generalization of identifying object attributes.

II. RELATED WORK

Object discovery from visual media. Identifying ob-
jects and their attributes has a long history in computer
vision and robotics [39]. Traditionally, approaches focus
on identifying regions in unlabeled images to locate and
identify objects [36], [2]. Discovering objects based on the
notion of ’objectness’ instead of specific categories enables
more principled strategies for object recognition [40], [32].
Several methods address the challenge to discover, track,
and segment objects in videos based on supervised [42] or
unsupervised [18], [34], [11] techniques. The spatio-temporal
signal present in videos can also help to reveal additional
cues that allow to identify objects [43], [16]. In the context of
robotics, methods also focus on exploiting depth to discover
objects and their properties [22], [17].

Many recent approaches exploit the effectiveness of con-
volutional deep neural networks to detect objects [31], [20],
[12]. While the detection efficiency of these methods is
unparalleled, they rely on supervised training procedures
and therefore require large amounts of labeled data. Self-
supervised methods for the discovery of object attributes
mostly focus on learning representations by identifying fea-
tures in multi-view imagery [6], [19] and videos [43], or
by stabilizing the training signal through domain random-
ization [7]. Some methods not only operate on RGB images
but also employ additional signals, such as depth [9], [29] or
egomotion [1] to self-supervise the learning process. It has
been recognized, that contrasting observations from multiple
views can provide a view-invariant training signal allowing to
even differentiate subtle cues as relevant features that can be
leveraged for instance categorization and imitation learning
tasks [35].

Unsupervised representation learning. Unlike super-
vised learning techniques, unsupervised methods focus on
learning representations directly from data to enable image
retrieval [27], transfer learning [47], image denoising [41],
learning dense representations [33], [9], [38] and other
tasks [8], [44]. Using data from multiple modalities, such
as imagery of multiple views [35], sound [24], [3], or other
sensory inputs [5], along with the often inherent spatio-
temporal coherence [7], [30], can facilitate the unsupervised
learning of representations and embeddings. For example,
[46] explore multiple architectures to compare image patches
and [26] exploit temporal coherence to learn object-centric
features. [10] rely of spatial proximity of detected objects
to determine attraction in metric learning, OCN operates
similarly but does not require spatial proximity for posi-
tive matches, it does however take advantage of the likely
presence of a same object in any pair of frames within a
video. [48] also take a similar unsupervised metric learning
approach for tracking specific faces, using tracking trajec-
tories and heuristics for matching trajectories and obtain

richer positive matches. While our approach is simpler in
that it does not require tracking or 3D matching, it could be
augmented with extra matching signals.

In robotics and other real-world scenarios where agents
are often only able obtain sparse signals from their envi-
ronment, self-learned embeddings can serve as an efficient
representation to optimize learning objectives. [25] introduce
a curiosity-driven approach to obtain a reward signal from
visual inputs; other methods use similar strategies to enable
grasping [28] and manipulation tasks [35], or to be pose
and background agnostic [14]. [23] jointly uses 3D synthetic
and real data to learn a representation to detect objects and
estimate their pose, even for cluttered configurations. [15]
learn semantic classes of objects in videos by integrating
clustering into a convolutional neural network.

III. LEARNING OF OBJECT REPRESENTATIONS

We propose a model called Object-Contrastive Net-
work (OCN) trained with a metric learning loss based on
the following steps: 1) we randomly extract two frames of
a video sequences, 2) we detect objects in these frames by
using an off-the-shelf objectness detector [31], 3) we use a
standard ConvNet (ResNet50) and individually embed each
object, 4) we use the embeddings to compute a distance
matrix of the objects of one frame against the objects of the
other frame and find the closest matching pairs of objects;
objects of one frame are selected as anchors and their closest
match from the other frame as positives, 5) we train our OCN
model with a metric learning loss (n-pairs loss [37]); nearest
neighbors in the embedding space are pulled together while
being pushed away from dissimilar objects. This training
scheme does not rely on knowing the true correspondence
between objects and therefore does not require any labels.
Fig. 2 shows the steps of our setup.

The fact that this works despite not using any labels
might be counter-intuitive. One of the main findings of
this paper is that given a limited set of objects, object
correspondences will naturally emerge when using metric
learning. One advantage of the self-supervised learning of
object representations is that objects are organized in a con-
tinuous and multi-dimensional (e.g. shape, color, function,
etc.) way; object properties are not biased by or limited to
a discrete set of labels determined by human annotators. We
show these embeddings allow us to discover and disentangle
object attributes and that they generalize to previously unseen
environments. Fig. 3 illustrates how objects of one frame
(anchors) are matched to the objects of another frame after
20K training iterations.

We propose a self-supervised approach to learn object
representations for the following reasons: (1) make data
collection simple and scalable, (2) increase autonomy in
robotics by continuously learning about new objects without
assistance, (3) discover continuous representations that are
richer and more nuanced than the discrete set of attributes
that humans might provide as supervision, which may not
match future and new environments. All these objectives
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Fig. 2.
(b). We embed the detected objects with a ConvNet (c) and compute a distance matrix of the objects in one frame against the objects of the other frame (d).
We select the objects of one frame as anchors and the closest objects of the other frame as positives (d). We use n-pairs loss to train an OCN embedding
without any labels (e). Each object is attracted to its closest neighbor while being pushed away from all dissimilar objects. Object pairs may be wrong
(e.g. the same object in two different frames is not matched with itself), however the training still converges toward disentangled object representations.

require a method that can learn about objects and differ-
entiate them without supervision. To bootstrap our learning
signal we leverage two assumptions: (1) we are provided
with a general objectness model so that we can attend to
individual objects in a scene, (2) during an observation
sequence the same objects will be present in most frames.
Given a video sequence of a scene containing multiple
objects, we randomly select two frames [ and I in the
sequence and detect the objects present in each image. Let
us assume the objects N and M are detected in images
I and I, respectively. Each of the n-th and m-th cropped
object images are embedded in a low dimensional space,
organized by a metric learning objective. Unlike traditional
methods, which rely on human-provided similarity labels to
drive metric learning, we use a self-supervised approach to
mine similarity labels (Fig. 2).

Objectness Detection: To detect objects, we use Faster-
RCNN [31] trained on the COCO object detection
dataset [21]. Faster-RCNN detects objects in two stages:
first generate class-agnostic bounding box proposals of all
objects present in an image (Fig. 2, a, b), second associate
detected objects with class labels. We use OCN to discover
object attributes, and only rely on the first objectness stage
of Faster-R-CNN to detect object candidates.

A. Metric Loss for Object Disentanglement

We denote a cropped object image by x € X and compute
its embedding based on a convolutional neural network
f(z) : X — K. Note that for simplicity we may omit x
from f(x) while f inherits all superscripts and subscripts.
Let us consider two pairs of images / and I that are taken
at random from the same contiguous observation sequence.
Let us also assume there are n and m objects detected in [
and [ respectively. We denote the n-th and m-th objects in
the images I and I as 2! and xL , respectively. We compute

(fI—fIy2 nel.N, me
1..M. For every embedded anchor fL, n € 1..N, we select
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Object-Contrastive Networks (OCN): we use two randomly selected frames of a video sequence (a) to detect objects based on their objectness
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Fig. 3. View-to-view object correspondences: the first column shows all
objects detected in one frame (anchors). Each object is associated to the
objects found in the other frame, objects in the second column are the
nearest neighbors (positives). The third column shows the embedding space
distance of objects. The remaining objects (negatives) are shown from left

to right in descending order according to their distances to the anchor (not
all objects shown).
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a positive embedding f,i with minimum distance as positive:
! 4 = argmin(Dy, ). Given a batch of (anchor, positive)
pairs {(z;, z;)}¥,, the n-pair loss is defined as follows [37]:
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The loss learns embeddings that identify ground truth
(anchor, positive)-pairs from all other (anchor, negative)-
pairs in the same batch. It is formulated as a sum of softmax
multi-class cross-entropy losses over a batch, encouraging
the inner product of each (anchor, positive)-pair (f;, f;“) to
be larger than all (anchor, negative)-pairs (f;, f ;;i). The final
OCN training objective over a sequence is the sum of npairs
losses over all pairs of individual frames:

Locn = Ly —pair({(z], x£+)},]j:1; f)

+LN—pair ({(xiw 1:7In+) %:1; f)

B. Network Architecture and Embedding Space

OCN uses a standard ResNet50 architecture until layer
global_pool (which can be initialized with ImageNet pre-
trained weights). We then add three additional convolutional
layers and a fully connected layer to produce the final



embedding. The network is trained with the n-pairs metric
learning loss as discussed in Sec. III-A; our architecture is
depicted in 2 (e).

Object-centric Embeding Space: By using multiple
views of the same scene and by attending to individual
objects, our architecture allows us to differentiate subtle
variations of object attributes. Observing the same object
across different views facilitates learning invariance to scene-
specific properties, such as scale, occlusion, lighting, and
background, as each frame exhibits variations of these fac-
tors. The network solves the metric loss by representing
object-centric attributes, such as shape, function, or color,
as these are consistent for (anchor, positive)-pairs, and dis-
similar for (anchor, negative)-pairs.

C. Discussion

One might expect that this approach may only work if it
is given an initialization so that matching the same object
across multiple frames is more likely than random chance.
While ImageNet pretraining certainly helps convergence as
shown in Tab. II, it is not a requirement to learn meaningful
representations as shown in Tab. III. When all weights are
random and no labels are provided, we estimate that the co-
occurrence of the following hypotheses drives this conver-
gence: (1) objects often remain visually similar to themselves
across multiple viewpoints, (2) limiting the possible object
matches within a scene increases the likelihood of a pos-
itive match, (3) the low-dimensionality of the embedding
space forces the model to generalize by sharing abstract
features across objects, (4) the smoothness of embeddings
learned with metric learning facilitates convergence when
supervision signals are weak, and (5) occasional true-positive
matches (even by chance) yield more coherent gradients than
false-positive matches which produce inconsistent gradients
and dissipate as noise, leading over time to an acceleration of
consistent gradients and stronger initial supervision signal.

D. Training

OCN is trained based on the detected objects of two views
of the same synthetic or real scene. We randomly pick two
frames of a video sequence and detect objects to produce
two sets of cropped images. The distance matrix D, .,
(Sec. III-A) is constructed based on the individually detected
objects for each of the two frames. The object detector
was not specifically trained on any of our datasets. As the
number of detected objects per view varies, we reciprocally
use both frames to find anchors and their corresponding
positives as discussed in Sec. III-A. Across our experiments,
we observed an embeddings size of 32-64 provides optimal
results; training converged after 600k-1.2M iterations.

IV. EXPERIMENTAL RESULTS

We evaluated the effectiveness of OCN embeddings on
identifying objects through self-supervised online training, a
real robotics pointing tasks, and large-scale synthetic data.

Fig. 4. The environments we used for our self-supervised online experi-
ment. Top: living room, office, kitchen. Bottom: one of our more challenging
scenes, and two examples of the Epic-Kitchens [4] dataset.

Fig. 5.
110 object for training (left), 43 objects for test (center), and 34 objects for
validation (right). The degree of similarity makes it harder to differentiate
these objects.

We use 187 unique object instance in the real world experiments:

A. Online Object Identification

Our online training scheme enables to train and to evaluate
on unseen objects and scenes. This is of utmost importance
for robotic agents to ensure adaptability and robustness in
real world scenes. To show the potential of our method
for these situations we use OCN embeddings to identify
instances of objects in multiple views and over time.

We quantitatively evaluate the online adaptation capabil-
ities of our model through the object identification error
of novel objects. We use sequences of videos showing
objects in random configurations in different environments
and train an OCN on the first 5, 10, 20, 40, 80, and 160
seconds of a 200 seconds video. Our dataset provides object
bounding boxes and unique identifiers for each object as
well as reference objects and their identifiers. The goal of
this experiment is to assign the identifier of a reference
object to the matching object detected in a video frame.
We evaluate the identification error (ground truth index vs.
assigned index) of objects present in the last 40 seconds of
each video and for each training phase to compare our results
to a ResNet50 (2048-dimensional vectors) baseline.

We train an OCN for each video individually. Therefore,
we only split our dataset into validation and testing data. We
used 42 videos of the six categories kids room, kitchen, living
room, office, work bench, and Epic-Kitchens [4] (Fig. 4).
For each category we used 4 videos for validation and 3
for testing. We jointly train on the validation videos to find
meaningful hyperparameters across the categories and use
the same hyperparameters for the test videos.

In Fig. 1 we show that a model observing objects for a
few minutes from different angles can self-teach to identify
them almost perfectly while the offline supervised approach
cannot. The supervised offline baseline stays at a 52.4%
error, while OCN improves down to 2% error after 80s, a 25x
error reduction. Fig. 6 shows the same video frames of two
scenes from our dataset. Objects with wrongly matched in-



Fig. 6. Comparison of identifying objects with ResNet50 (a, ¢) and OCN
(b, d) embeddings for the environments kids room and challenging. Red
bounding boxes indicate a mismatch of ground truth and associated index
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Fig. 7. Evaluation of online adaptation: we train an OCN on the first 5,
10, 20, 40, 80, and 160 seconds of each 200 second test video and then
evaluate on the remaining 40 seconds. Here we report the lowest average
error of all videos (over 1000K iterations) of online adaptation.

dices are shown with a red bounding box, correctly matched
objects are shown with random colors. In Fig. 7 we report
the average error of OCN object identification across our
videos compared to the ResNet50 baseline. As the supervised
model cannot adapt to unknown objects without providing
labels, OCN outperforms this baseline by a large margin.
Furthermore, the optimal result among the first S0K training
iterations closely follows the overall optimum obtained after
1000K iterations. Fig 10 shows a t-SNE plot of the generated
embeddings for one of the EpicKitchens scenes.

B. Robotic Pointing

To evaluate OCN for real world robotics scenarios we
defined a robotics pointing task. The goal of the task is to
enable a robot to point to an object that it deems most similar
to the object directly in front of it (Fig. 8). The objects on the
rear table are randomly selected from the object categories
(Fig. 5). We consider two sets of these target objects. The
quantitative experiment in Tab. I uses three query objects per
category and is ran three times for each combination of query
and target objects (3 x 2 x 18 = 108 experiments performed).

We collect data with a real robot by looking at a table
from multiple angles and then train OCN. The robot is then
tasked to point to objects similar to the one presented in
front of it. Objects can be similar in terms of shape, color or
class. If able to perform that task, the robot has learned to

Fig. 8. The robot experiment of pointing to the best match of a query
object (placed in front of the robot on the small table). The closest match
is selected from two sets of target objects, placed on the table behind the
query object. The first and the second row correspond to the experiment
for the first and second target set. Images with green frame indicate cases
where both the ‘class’ and ‘container’ attributes are matched correctly. Blue
frames show where only the ‘container’ attribute is matched correctly and
red frames indicate neither attribute is matched.

distinguish and recognize these attributes. The robot is able
to perform the pointing task with 72% recognition accuracy
of 5 classes, and 89% recognition accuracy of the binary
is-container attribute.

We report errors related to ‘class’ and ‘container’ at-
tributes. While the trained OCN model is performing well
on the most categories, it has difficulty on the object classes
‘cups & mugs’ and ‘glasses’. These categories are generally
mistaken with the category ‘bowls’. As a result the network
performs much better in the attribute ‘container’ since all the
three categories ‘bowls’, ‘bottles & cans’, and ’glasses’ refer
to the same attribute. At the beginning of each experiment
the robot captures a snapshot of the scene. We then split
the captured image into two images: the upper portion of
the image that contains the target object set and the lower
portion of the image that only contains the query object. We
detect the objects and find the nearest neighbor of the query
object in the embedding space to find the closest match.

TABLE I

EVALUATION OF ROBOTIC POINTING
Objects | Class Error | Container Error
Balls 11.1 £7.9% 1.1 £7.9%
Bottles & Cans | 0.0 £0.0% 0.0 £0.0%
Bowls 222 +15.7% | 16.7 £0.0%
Cups & Mugs 88.9 £7.9% 16.7 +£13.6%
Glasses 389 £7.9% 5.6 £7.9%
Plates 5.6 +7.9% 11.1 £2.3%
Total 27.8 £3.9% 11.1 £2.3%

C. Object Attribute Classification and Offline Analysis

To analyze what our model is able to disentangle, we
quantitatively evaluate performance on a large-scale synthetic
dataset. We used 12k object models of the ModelNet40
dataset [45] to generate 100K object arrangements (Fig. 9)
and use a 80-20-20 split for training, validation, and testing
data. In Tab. II we find that our self-supervised model closely
follows its supervised equivalent baseline when trained with
metric learning. The cross-entropy/softmax supervised base-
line approach performs best and establishes the upper-bound
error while the ResNet50 baseline is the lower-bound.

One way to evaluate the quality of unsupervised embed-
dings is to train attribute classifiers on top of the embedding
using labeled data. Note however, that this may not entirely
reflect the quality of an embedding because classification
is only measuring a discrete and small number of attributes



Fig. 9.

Synthetic data: two frames of a synthetically generated scene of
table-top objects (a) and a subset of the detected objects (c). To validate our
method against a supervised baseline, we additionally render color masks
(b) that allow us to identify objects across the views and to associate them
with their semantic attributes after object detection. Note that objects have
the same color id across different views. The color id’s allow us to supervise
the OCN during training.
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Fig. 10. t-SNE plots of Epic-Kitchens object embeddings. The plots show
each object of the 600 frames used for evaluation with their ground truth
index as color. Compared to the ResNet50 baseline, OCN trained on 160
seconds of video produces a cleaner seperation of clusters, which indicates
an improved disentanglement of object features.

while an embedding may capture more continuous and larger
number of visual object features.

Classifiers: we consider two types of classifiers to be
applied on top of existing embeddings in this experiment:
linear and nearest-neighbor classifiers. The linear classifier
consists of a single linear layer going from embedding space
to the 1-hot encoding of the target label for each attribute. It
is trained with a range of learning rates and the best model
is retained for each attribute. The nearest-neighbor classifier
consists of embedding objects of an entire ‘training’ set.
For each object embedding of the evaluation set we then
assign the labels of the nearest sample from the training
set. Nearest-neighbor classification is not an ideal approach
because it does not necessarily measure generalization as
linear classification does and results may vary significantly
depending on how many nearest neighbors are available.
It is also less subject to data imbalances. We still report
this metric to get a sense of its performance because in an
unsupervised inference context, the models might be used in
a nearest-neighbor fashion (e.g. as in Sec. IV-B).

Baselines: we compare multiple baselines (BL) in Tab. II.
The ‘Softmax’ baseline refers to the exact same architecture
as for OCN except that the model is trained with a supervised
cross-entropy/softmax loss. The ‘ResNet50’ baseline refers
to using the unmodified outputs of the ResNet50 model [13]
(2048-dimensional vectors) as embeddings and training a
nearest-neighbor classifier as defined above. We consider
‘Softmax’ and ‘ResNet50’ baselines as the lower and upper
error-bounds for standard approaches to a classification task.
The ‘OCN supervised’ baseline refers to an OCN trained

TABLE I
ATTRIBUTES CLASSIFICATION ERRORS

Class (12) | Color (8) Binary

Attribute Attribute | Attributes | Embedding
Method Error Error Error Size
[BL] Softmax 2.98% 0.80% 7.18% -
[BL] OCN sup (linear) 7.49% 3.01% 12.77% 32
[BL] OCN sup (NN) 9.59% 3.66% 12.75% 32
[ours] OCN unsup. (linear) 10.70% 5.84% 13.76% 24
[ours] OCN unsup. (NN) 12.35% 8.21% 13.75% 24
[BL] ResNet50 embed. (NN) 14.82% 64.01% 13.33% 2048
[BL] Random Chance 91.68% 87.50% 50.00% -

TABLE III
RESULTS WITH RANDOM WEIGHTS (NO IMAGENET PRE-TRAINING)

Class (12) | Color (8) Binary

Attribute Attribute | Attributes
Method Error Error Error Finetuning
[BL] Softmax 23.18% 10.72% 13.56% yes
[BL] OCN sup. (NN) 29.99% 2.23% 20.25% yes
[BL] OCN sup. (linear) 34.17% 2.63% 27.37% yes
[ours] OCN unsup. (NN) 35.51% 2.93% 22.59% yes
[ours] OCN unsup. (linear) 47.64% 4.43% 35.73% yes
[BL] Softmax 27.28% 5.48% 20.40% no
[BL] OCN sup. (NN) 37.90% 4.00% 23.97% no
[BL] OCN sup. (linear) 39.98% 4.68% 32.74% no
[ours] OCN unsup. (NN) 43.01% 5.56% 26.29% no
[ours] OCN unsup. (linear) 48.26% 6.15% 37.05% no
[BL] ResNet50 embed. (NN) 59.65% 21.14% 34.94% no
[BL] Random Chance 91.68% 87.50% 50.00% -

with ground truth matches that provided rather than discov-
ered automatically. ‘OCN supervised’ represents the metric
learning upper bound for classification. Finally we indicate
the error rates for random classification.

Results: we quantitatively evaluate our unsupervised mod-
els against supervised baselines on the labeled synthetic
datasets. Note that there is no overlap in object instances
between the training and the evaluation set. The take-away is
that unsupervised performance closely follows its supervised
baseline when trained with metric learning. As expected
the cross-entropy/softmax approach performs best and es-
tablishes the error lower bound while the ResNet50 baseline
are upper-bound results.

V. CONCLUSION AND FUTURE WORK

We introduced a self-supervised objective for object rep-
resentations that is able to disentangle object attributes, such
as color, shape, and function. We showed this objective can
be used in online settings which is particularly useful for
robotics to increase robustness and adaptability to unseen
objects. We demonstrated a robot is able to discover sim-
ilarities between objects and pick an object that matches
the visual features to one presented to it. In summary, we
find that within a single scene with novel objects, the more
our model looks at these objects, the more it can recognize
them and understand their visual attributes, despite never
receiving any labels for them. Current limitations include
relying on all objects to be present in all frames of a video.
Relaxing this limitation would allow to use the model in
unconstrained settings. Additionally, the online training is
currently not real-time as we first set out to demonstrate
the usefulness of online-learning in non-real-time. Real-time
training requires additional engineering that is beyond the
scope of this research.
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