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Abstract
Remote Direct Memory Access (RDMA) plays a key role in support-
ing performance-hungry datacenter applications. However, existing
RDMA technologies are ill-suited to multi-tenant datacenters, where
applications run at massive scales, tenants require isolation and se-
curity, and the workload mix changes over time. Our experiences
seeking to operationalize RDMA at scale indicate that these ills
are rooted in standard RDMA’s basic design attributes: connection-
orientedness and complex policies baked into hardware.

We describe a new approach to remote memory access – One-
Shot RMA (1RMA) – suited to the constraints imposed by our multi-
tenant datacenter settings. The 1RMA NIC is connection-free and
fixed-function; it treats each RMA operation independently, assist-
ing software by offering fine-grained delay measurements and fast
failure notifications. 1RMA software provides operation pacing, con-
gestion control, failure recovery, and inter-operation ordering, when
needed. The NIC, deployed in our production datacenters, supports
encryption at line rate (100Gbps and 100M ops/sec) with minimal
performance/availability disruption for encryption key rotation.
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1 Introduction
The scale, diversity, and performance requirements of modern data-
center applications, such as search, ads serving, video transcoding,
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and machine learning, demand networks that support high band-
width and operation (op) rates while achieving low tail latencies.
Remote Direct Memory Access (RDMA) is an attractive option for
such distributed systems because of the latency and op-rate benefits
provided by one-sided reads and writes, as these ops involve no
remote CPU and thus offer performance limited only by hardware
[1, 8, 12, 13, 17, 19–21, 24, 29, 41].

Industry-standard RDMA evolved from supercomputer environ-
ments and has been challenging to deploy in commercial datacen-
ters [17, 41]. RDMA assumes low-latency, reliable, ordered net-
works and supercomputing fabrics deliver on these expectations via
switch-enforced lossless link-level flow control, which allows an
RDMA-capable NIC (RNIC) to implement naive congestion control
and loss recovery schemes to react to congestion and drops. These
fabrics are commonly single-tenant (or statically partitioned), and
RDMA solutions for authorization, access control, fault recovery,
and privacy reflect single-tenant expectations.

In contrast, modern hyperscale datacenters are characterized by
multi-tenancy, wherein uncoordinated large-scale distributed ap-
plications share common infrastructure. A diverse, time-varying
application mix induces rapidly changing network traffic patterns.
Strong privacy and authentication are needed. These requirements
lead to tension with standard RDMA’s design choices:
• Standard RDMA offers connections in hardware, an abstrac-

tion that aligned well with early RDMA applications, but one
that places fundamental limits on at-scale isolation, perfor-
mance, and fault-tolerance. With modern serving and storage
systems [2–4, 6, 7, 10, 15, 37] operating beyond ten-thousand-
server scale, per-connection hardware resources are easily ex-
hausted. Workarounds (e.g., connection sharing) lead to broken
isolation, which is further exacerbated under failures (§2).
• In our experience, congestion control algorithms need constant

iteration in response to deployment and application considera-
tions. Standard RNICs (and switches) bake significant portions
of congestion response into hardware; this leaves little opportu-
nity to adapt post-deployment.
• As applications and infrastructure are mutually-untrusting,

multi-tenancy calls for line-rate encryption and application
support to manage provenance of encryption keys. Although
modern RNICs provide encryption, practical challenges arise:
encryption is intrinsically tied to the notion of connections; ap-
plications must trust lower levels of the stack to manage keys;
and there is no support for security-related management opera-
tions, such as encryption key rotation.
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Responsibility RDMA 1RMA
Inter-op ordering NIC Software
Failure recovery NIC Software
Flow and congestion NIC and NIC and
control Fabric Software
Security ops (e.g., Rekey) None NIC

Table 1: Division of responsibilities in standard RDMA and
1RMA. Moving a subset of functionality to software simplifies
hardware and enables more flexibility/rapid iteration.

We take a new approach to remote memory access (RMA) to
better match the constraints of our consolidated, multi-tenant data-
centers. Our approach delivers the performance advantages of stan-
dard one-sided RDMA—high bandwidth, high op rate, and low
latency—while also providing predictable tail performance, scalabil-
ity, fault tolerance, isolation, security features, and amenability to
rapid post-deployment iteration.

We achieve these goals by dividing responsibilities between hard-
ware and software, in a manner that represents a stark departure
from standard RDMA (Table 1). Our NIC hardware is extremely
simple, focused exclusively on fast, fixed-function primitives. We
offer no illusion of infinite resources (unlike RDMA; §2) and instead
manage the explicitly-finite hardware resources in software. To facil-
itate rapid iteration, software implements fault recovery, congestion
control, and ordering when needed.

Our clean-slate design – One-Shot RMA (1RMA) – embraces
several design idioms to achieve our objectives:
(1) No connections: 1RMA is connection-free. Hardware state does
not grow with the number of endpoint pairs. Freed from connection
semantics, the NIC can treat each op as independent of other ops,
leaving software to handle inter-op ordering when needed. 1RMA
assigns to software the duties of per-op retry and fault recovery
(hence, the name "One-Shot"), and instead provides simpler fail-fast
behavior: 1RMA hardware ensures timely completions (< 50𝜇s) and
delivers fast op failure notifications directly to applications, with
clean semantics.
(2) Small-sized ops, with solicitation as the basis for all trans-
fers: Each 1RMA op transfers at most a 4KB payload, which en-
ables isolation and prioritization. Furthermore, all data transfers are
solicited: 1RMA does not initiate a transfer unless it is assured to
land the data in on-NIC SRAM [36]. Hardware-enforced solicitation
prevents formation of large incasts by design. Solicitation, paired
with small ops, enables responsive congestion control and bounds
in-network queueing.
(3) Software-driven congestion control: 1RMA hardware assists
software congestion control, in contrast to contemporary proposals
that bake congestion control algorithms into hardware [25, 31, 41].
1RMA provides per-op delay information and explicit fail-fast notifi-
cation for congestion events, allowing software to easily distinguish
between local and remote congestion and take precise actions to
minimize congestion, timeouts, and drops.
(4) Software-defined resource allocation: 1RMA turns its
explicitly-finite resource pools to advantage via software resource al-
location that assigns resources based on business priority, and places
explicit bounds on the work applications can offer at a time. These
bounds, coupled with small ops, prevent low-priority applications
from monopolizing the network. Crucially, planning for operation

READ ATOMIC WRITE SEND/RECV
RC ✓ ✓ ✓ ✓
UC ✗ ✗ ✓ ✓
UD ✗ ✗ ✗ ✓

Table 2: Standard RDMA ops supported by each transport type.
In RC transport, the RNIC is responsible for retransmissions
following a loss.
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Figure 1: In standard RDMA (not 1RMA), (1) ops begin when
software posts a request to a send queue. (2) The RNIC DMAs
any data required for transfer and (3) sends it to the remote
RNIC, which looks up the memory in question, validates that
the connection belongs to the same protection domain, performs
the op, and (4) acknowledges.

within the explicitly-finite resource pools simplifies hardware, as
there is no need to provide the illusion of near-infinite resources.
(5) First-class security: All 1RMA transfers are encrypted and
signed in hardware with line-rate AES-GCM [14], designed in con-
cert with 1RMA’s connection-free architecture. 1RMA allows ap-
plications to directly manage encryption keys, without requiring
extending trust to infrastructure software, and enabling frequent
encryption key rotation with minimal availability disruption.

We evaluate 1RMA using a 40-node testbed and with simulations
against state-of-the-art alternatives. 1RMA offers predictable latency
even at high load and in failure cases. It ensures that high-priority
applications are not impacted by low priority ones; lack of isolation
in alternatives leads to >10× slowdown. 1RMA’s congestion control
converges to fair bandwidth shares in the presence of competing
applications almost immediately (25𝜇s); separately reacting to local
congestion improves convergence speed by 20×. First-class support
for security reduces the unavailability period during encryption key
rotations to <1𝜇s. These gains come at a minimal cost of 0.5 cores to
drive 100 Gbps line-rate, as 1RMA chunks large ops into 4KB ops,
and implements congestion control and op management in software.

2 Background and Motivation
Standard RDMA offers three different transport types, each of which
supports a different subset of ops (Table 2). The prevalent transport
is RC, or "reliable connected".
Queue Pairs (QP), Connections. An application establishes con-
nected queue pairs (QPs) between application-pairs via out-of-band
exchange of tokens (e.g., via RPC or librdmacm). The server-side
determines access control rules by binding connections to logical
protection domains. A QP consists of a send queue and a receive
queue, and is bound to a completion queue (CQ). Connected trans-
ports (RC and UC) offer one-to-one communication between QPs
(called connections hereafter).
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Op Execution Flow. Applications post ops (called work queue
entries, or WQEs) to the relevant queue via a user-space library
(libibverbs). Figure 1 shows the steps in the remaining execution
flow. To improve performance, RNICs cache active connections’
state as well as the memory translation table (MTT) and memory
protection table (MPT). These tables contain metadata related to
memory available for remote access [33]; they reside authoritatively
in host memory.

2.1 Challenges with Standard RDMA
Standard RDMA’s architecture leads to several fundamental chal-
lenges for use in multi-tenant datacenters:
1. Connection exhaustion. Caching host-resident state allows
RNICs to provide an illusion of unbounded connection counts. How-
ever, RNIC caches can be overwhelmed by large workloads, leading
to performance cliffs as the cache is filled on demand [9, 12, 18–
21, 33]. Worse still, allocation policies oblivious to business priori-
ties can strand critical applications without connections, e.g., when
lower-priority applications have previously consumed all available
connections. Recent works [16, 19–21, 28] explore using Unreliable
Datagram (UD) to overcome scalability limitations, often implement-
ing connection abstractions in software. However, UD is two-sided,
and re-introduces CPU bottlenecks on the receiving host, falling
short of one-sided op rate and latency.
2. Induced ordering. Systems may attempt to address connection
exhaustion by multiplexing several independent workloads on the
same QP. However, standard RDMA requires FIFO execution of
ops of the same type within a single QP, thereby inducing false
ordering constraints among unrelated ops. Thus, this approach can
lead to priority inversion due to head-of-line blocking between large,
background ops and small, latency-sensitive ops [39]. Likewise,
op failures may cause connection teardown, imposing shared fate
for ops unluckily sharing a connection. Furthermore, the ordered-
execution requirement places a de facto near-in-order packet delivery
requirement on the network, significantly complicating deployment
of modern high-performance network capabilities, such as adaptive
routing [26]. And yet, the RNIC itself must still implement order
recovery in hardware [23, 31], exacerbating complexity.
3. Poor semantics. We have found that there is little semantic utility
from RDMA’s notions of ordering. In particular, it is not possible
to reason about RDMA write side effects under connection tear-
down cases: standard RDMA’s write op may still cause new side
effects (e.g., mutating memory at the destination) even after its fail-
ure has been reported (e.g., via retransmit timeout at the initiator;
see Figure 2). Such side effects make building reliable distributed
algorithms more difficult.
4. Connection-centric security. Standard RDMA ties access con-
trol to connections; a system that eliminates connections must solve
access control by other means. Although recent RNICs provide line-
rate encryption, these approaches also rely on connections, and do
not provide ready means to manage encryption keys. Applications
that seek to rotate encryption keys in standard RDMA are obliged to
reconnect, a costly and complex operation.
5. Rigid congestion control. RDMA over Converged Ethernet
(RoCE) allows RDMA traffic to coexist with traffic from other proto-
col stacks, but requires fabric switches to use Priority Flow Control
(PFC) to provide a near-lossless substrate. As is well known, using

Client ServerWrite

   Retry...

RMA Data

Delayed 
Arrival Write Data

Timeout

Completion              
with error

Figure 2: Delayed writes can cause future mutations after the
client receives a completion event with an error.

PFC is untenable in commercial scale networks [17, 41] due to head-
of-line blocking, poor at-scale failure isolation [30, 38, 41], and risk
of deadlock [17, 38]. Recent hardware congestion control schemes
reduce reliance on PFC [25, 41], but such techniques have limited
applicability in our environments, in which congestion control algo-
rithms are routinely updated and customized per deployment.
6. Firmware slow-paths. RNICs may rely on firmware to handle
corner cases that arise in congestion control and other sources of
complexity; at scale, firmware traps can create invisible and intolera-
ble bottlenecks, leading to goodput collapse in our datacenters. For
example, firmware’s handling of connection teardown can compete
with its ability to handle loss and maintain ordering.

3 1RMA Overview
1RMA overcomes the challenges of datacenter-scale remote mem-
ory access via a design philosophy that: (1) delegates to software
all actions whose full and correct realization requires application
intervention, such as ordering and failure recovery, as these funda-
mentally cannot be realized solely in the NIC; (2) implements in
hardware functionality that precludes software intervention, notably
DMA capabilities, host-wide incast bounding, authentication, and
encryption.

The resulting 1RMA NIC is simple, and focuses on providing
performant one-sided read, write, and management primitives im-
plemented entirely in hardware. Send and receive are not directly
supported, as these are easy enough to implement in software.

In 1RMA, software handles op pacing, congestion management,
and policy choices on when/how to retry failed ops (e.g., those that
time out). The 1RMA NIC assists software by providing timely op
completion (< 50𝜇s) including and especially in failure cases, and by
providing early indications of congestion build-up through precise
delay measures in each completion.

3.1 Example: 1RMA Read Op Execution
We illustrate the overall operation of 1RMA by means of an example
2KB-sized RMA read (see Figure 3).

Prior to executing any RMA op, the initiating client performs
an out-of-band RPC to obtain the necessary information to access
the remote memory region in question ( 1 – 2 ). These include an
encryption key, 𝐾𝑑 (i.e., a cryptographically-secure key bound to the
initiating client, difficult to guess and non-transferrable §4.2), and a
RegionId—the architectural name of the memory to be accessed—
established at memory-registration–time on the server. All protocol
messages are signed using a message authentication code generated
from 𝐾𝑑 . Similarly, all data is encrypted using 𝐾𝑑 .
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Figure 3: Execution of a 2KB Read op in 1RMA. (1 & 2) Client
performs out-of-band communication to obtain information to
access remote memory region. (3) The client initiates the 2KB
read op by writing a command into a command slot on the
1RMA NIC. (4) The op is sent over the network subject to
1RMA’s solicitation rules. (5) The request reaches the server-
side 1RMA NIC which reads the requested data via PCIe and
(6) streams read data as individual network responses. (7) Fi-
nally, once all the data arrives, a successful op completion is
written to the client software.

Having obtained the necessary information for remote access, the
client initiates its desired RMA op—in this example, a 2KB read—
by writing a command over PCIe with write-combining MMIO
stores into an on-NIC command slot, which enqueues the operation
for service ( 3 ). The request awaits execution, subject to 1RMA’s
solicitation rules. To enter service, an op requires 4KB of free space
in the on-chip solicitation window, which is an SRAM buffer that
lands inbound payloads. Arbitrating for 4KB regardless of op size
prevents small ops from starving large ops.

Once the op enters service, the NIC debits the solicitation window
by the actual size (2KB), signs the read request using 𝐾𝑑 provided
in the RMA command (§4.4), and sends it on the network ( 4 ).

Commonly, the request arrives at the server-side 1RMA NIC
shortly thereafter, which consults a fixed-size, on-chip table to look
up key information for the RegionId included in the request, de-
rives 𝐾𝑑 , and authenticates the inbound packet. The NIC then reads
the requested data via PCIe ( 5 ), and streams read completions as
individual network responses ( 6 ). Each response is encrypted and
signed with the previously derived key information. These responses
traverse the network, perhaps arriving out-of-order due to adaptive
routing.

Upon reaching the initiator, each response is individually authen-
ticated and decrypted, then streamed via PCIe writes to the initiating
host’s memory, each at an offset encoded in the inbound response. To
tolerate unordered responses, the NIC tracks byte arrivals, and once
all bytes arrive (in error-free cases), a successful op completion is
written to the initiating software ( 7 ). The completion also includes
hardware delay measures, indicating how long it took to execute
the operation (total_delay) and how long it took for the request to
enter service at the initiator (issue_delay).

Whereas we have described the failure-free case, the example
operation above can experience a variety of failures. For instance, the
read operation may not enter service at the initiator due to heavy local
congestion (e.g., due to a large number of queued ops). When the
request arrives at an overloaded server, the serving NIC might drop or
"NACK" the request (e.g., due to an over-long inbound request queue;
§4.5). Finally, responses from the server to the client may be dropped
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Figure 4: 1RMA Software consists of two components:
(1) CommandPortal provides a familiar command/completion
queue construct and (2) CommandExecutor provides support for
arbitrary large transfers and congestion management.

or delayed in the network. 1RMA generates precise fast feedback
in the form of explicit failure codes that indicate to the initiating
software which failure mode manifested (§4.5). Upon encountering
such failures, application software can take the appropriate action,
such as immediately retrying the operation, perhaps to a different
backend server replica in the scope of a broader system.

Our example focused on a small 2KB op. For larger transfers
(e.g., a 4MB read), a 1RMA per-client software module called
CommandExecutor (Figure 4) breaks large transfers into small up-to-
4KB ops (§4.4), and then batches, pipelines and paces these ops at a
rate determined by a software-based congestion control algorithm.
Congestion control relies on hardware delay measures and precise
failure outcomes reported with completions to modulate request rate
to avoid both local and network/remote congestion while keeping
utilization high (§6).

4 1RMA Design In Depth
This section describes the key ideas of 1RMA, its security model,
hardware components, and software abstractions.

4.1 Key Ideas
There are five key elements to 1RMA’s design:
• Connectionless security: 1RMA embraces security require-

ments as first-order. We use a novel, connection-free proto-
col that binds both encryption and authentication to the spe-
cific memory region being accessed; and to the accessing pro-
cess/host pair.
• Solicitation: 1RMA relies on solicitation to limit the sever-

ity of sudden, transient incasts, because software congestion
control cannot react instantaneously. 1RMA uses fine-grained
per-operation admission control, via a solicitation window main-
tained at each initiating NIC, which bounds the dynamic number
of inbound bytes. New requests will stall until sufficient window
capacity can be allocated. Window capacity frees as prior ops
complete.
• Writes via request-to-read: 1RMA implements write oper-

ations as a request-to-read: the writer asks a remote NIC to
retrieve data via a read operation. Although this approach adds
a round-trip, it unifies security and solicitation for reads and
writes and underpins our solutions to provide precise write fail-
ure semantics, replay protection, and incast avoidance.
• Explicitly-managed hardware resources: 1RMA offers no il-

lusions of unlimited resources. Instead, it leverages higher-level
resource allocation to apportion its finite hardware resources
according to application-level priority. This approach explicitly
bounds the work applications can offer at a time. Importantly,
offering no illusions of unlimited resources enables 1RMA to do

711



1RMA: Re-envisioning Remote Memory Access for Multi-tenant Datacenters SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Sign 
the op

using Kd

Client Server

SW NIC NIC SW

{Addrinitiator, PIDinitiator, OpType}

{RegionID, Kd}
Generate Kd

RegionID 
Addrinitiator

PIDinitiator

Generate Kd, 
authenticate and 
decrypt using Kd

1 2

3

4 5

6

Encrypted RPC

Figure 5: Derived region key generation and distribution. (1)
Client sends its address, PID, and OpType to the server via an
encrypted RPC. (2) Server software generates a derived region
key, 𝐾𝑑 , using the information provided by the client and the
region key, 𝐾𝑟 , corresponding to the memory region in question
and (3) sends 𝐾𝑑 to the client. (4) The client-side 1RMA NIC
signs the op using the obtained 𝐾𝑑 and (5) sends the request to
the server. (6) On receiving the request, the serving 1RMA NIC
regenerates the key and uses it for authentication and decryp-
tion.

away with on-NIC caches and the associated cache consistency
between the host and NIC, leading to simpler hardware and
avoiding performance pathologies of cache-oriented designs.
• Fast completions with precise feedback: Building on the pre-

dictability offered by solicitation and explicit resource manage-
ment, the 1RMA NIC imposes tight timeouts on op completions.
1RMA aggressively times out delayed ops—slow ops are con-
verted to failures—and provides unified timeout and failure
semantics. Fail-fast behaviors simplify reasoning about con-
gestion, ensure that operations do not consume the solicitation
window for an inordinate amount of time, bound the worst-
case operation latency, and allow applications to handle failures
responsively and in an application-appropriate way.

4.2 1RMA Security
Given that we target deployments with mutually untrusting endpoints
and an untrusted network fabric, security is built into and tied to
all basic aspects of 1RMA. Before delving into the details, we first
discuss the two attacks vectors 1RMA addresses:
A1 A malicious user process that attempts to access remote memory

regions owned by other tenants. Such an attacker can freely
initiate 1RMA ops of their choice (which must fail).

A2 An attacker with full access to network links and switches (e.g.,
root exploit of network control plane or physical/side-channel
observation). Such an attacker can observe, corrupt or inject
ciphertext in transit, and also inject arbitrary packets.

Similar to standard RDMA, 1RMA bootstraps remote access be-
tween a client and a server with an out-of-band encrypted RPC that
includes secure exchange of a key (Figure 5, 1 – 3 ). Specifically,
on memory registration, a region is assigned a RegionId. An ap-
plication specifies a region key, 𝐾𝑟 , that protects the corresponding
memory region. 𝐾𝑟 is a 128-bit value from which derived region
keys, 𝐾𝑑 , are computed, and these form the basis of 1RMA’s security
and protect individual transfers. Neither 𝐾𝑟 nor 𝐾𝑑 are ever sent over
the network as a part of a 1RMA op or its response.
Derived keys (Figure 5). 𝐾𝑑 is used to generate a message authen-
tication code to sign all protocol messages, and to encrypt all data

pertaining to a transfer ( 4 ). It is computed as follows:

𝐾𝑑 = 𝐴𝐸𝑆 (𝐾𝑒𝑦 = 𝐾𝑟 ,𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝑠 = 𝐴𝑑𝑑𝑟𝑒𝑠𝑠_𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟,

𝑃𝐼𝐷_𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒)

This function computes a key that is specific to each initiating
process (identified by the host address and the PID of the process)
and op type, and yet is rooted in a single, shared 𝐾𝑟 that easily
fits in on-NIC memory in a per-region table. When an application
allocates command slots (§4.3)—used to initiate RMAs—the 1RMA
driver stores the associated PID_Initiator immutably in the slots’
configuration. 1RMA hardware always includes PID_Initiator in
request packets along with the RegionId ( 5 ). Therefore, the serving
1RMA NIC can derive the assigned 𝐾𝑑 for each inbound request
( 6 ). Also, key derivation can be easily performed in server-side
software (which possesses 𝐾𝑟 ) — in the context of an authenticated
RPC, server software can compute 𝐾𝑑 for any potential initiator and
communicate 𝐾𝑑 to that initiator in the RPC response, without the
need to retain 𝐾𝑑 in any on-host or on-NIC tables ( 2 ). 1RMA salts
the encryption process with per-NIC ascending message counters,
which protects key integrity and guards against replays, covered in
detail in Appendix A. Critically, on-NIC security-related state does
not grow with the number of communicating endpoint pairs.
Returning to the two attack vectors: In A1, the attacker can easily
guess RegionId but has difficulty in acquiring a 𝐾𝑑 matching host
and process, absent a root-level exploit. In A2, the attacker can
observe ciphertext in transit, but not easily decrypt it without also
subverting a participating host.

Of note, 1RMA also protects against replay attacks: though
1RMA does not prevent replayed read requests from being admitted,
such attacks generate freshly-salted (by virtue of the server’s ascend-
ing counter) ciphertext, so that an attacker still requires the correct
𝐾𝑑 to decrypt the resulting responses (§5 discusses replay attacks on
mutating commands).

1RMA’s security model does not meaningfully change the behav-
ior of a host with a root-level compromise; a root-level attacker can
impersonate the processes on the host, and therefore can authenticate
by whatever means it chooses as one of those users. The primary de-
fenses against this threat are to accelerate detection, for example, by
enacting frequent encryption key rotation, forcing repeated authenti-
cation steps, which can be logged and inspected. 1RMA provides
explicit support for encryption key rotation to aid this objective (§5).
Authentication failures: 1RMA NICs drop responses that fail
their authentication steps. In contrast, inbound requests failing
authentication are sent an immediate failure notification in re-
sponse, signed with a well-known reserved key, and with outcome
REMOTE_AUTHENTICATION_FAILURE. It would be stronger to drop
such requests, thereby forcing an attacker to face a timeout rather
than a timely negative response. However, doing so penalizes non-
attack cases, as the REMOTE_AUTHENTICATION_FAILURE error code
is easily recognizable as a side effect of encryption key rotation, and
therefore recovery steps are obvious to client software. In contrast,
a dropped request manifests as a TIMEOUT, which does not immedi-
ately indicate that an encryption key rotation may have occurred.
Line-rate operation. Because 1RMA ops are independent and un-
ordered, we are able to deploy multiple copies of AES-GCM hard-
ware encryption blocks in our 100Gbps implementation of 1RMA
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Figure 6: 1RMA NIC hardware components. (1) The client ini-
tiates an op, it is written to a command slot in the CST, and (2)
the op is enqueued in a hardware FIFO, awaiting its turn for
dispatch. (3) The queue head waits for capacity in the solicita-
tion window after which the request is (4) signed with 𝐾𝑑 and
(5) sent to the remote side.

and freely load-balance among them. We assign work to these en-
cryption pipelines as they become free, irrespective of order, as the
underlying protocol and semantics allow this optimization.

4.3 Managing Hardware Resources
Given the inherent complexity, scalability, and performance limita-
tions associated with cache-oriented NIC designs, 1RMA builds its
finite resources into its execution model. The four main 1RMA NIC
components (Figure 6) are:
• Registered Region Table (RRT): The RRT is 1RMA’s mem-

ory translation table. Unlike standard RDMA, this table is main-
tained in fixed-size, on-NIC SRAM. A RegionId indexes this
table to indicate a specific host memory range and all corre-
sponding metadata—region key 𝐾𝑟 , PCIe address, bounds, per-
missions, etc. Every time 1RMA accesses host memory, it does
so on behalf of precisely one memory region in the RRT. Mem-
ory regions are managed via memory registration, similar to
ibv_reg_mr() in standard RDMA.
• Command Slots and Command Slot Table (CST): Com-

mand slots are 1RMA analogues of RDMA WQEs; each slot
represents a single in-flight operation and can be reused once
the op completes. The CST consists of a fixed-number of
slots in on-NIC SRAM. Each slot is uniquely identified by its
CommandSlotId, which the NIC encodes in the op completion.
This token indicates to the controlling software which command
has completed, because ops may complete out-of-order.
• SRAM Solicitation Window: The solicitation window is al-

located to inbound transfers and is the means to ensure that
solicited data is not dropped due to, for example, transient PCIe
backpressure. Because it is shared among outstanding opera-
tions, the solicitation window is sized proportional to bandwidth-
delay product, with slack to account for jitter or RTT variation.
• FIFO Arbiters: Capacity in the solicitation window is shared

dynamically by a pair of FIFO arbiters—one for each internal
1RMA class of service—which select among ready commands
in the CST. When an application issues an op to a command slot,
the CPU performs an MMIO write across PCIe to corresponding
hardware registers [35] ( 1 in Figure 6). This write causes the
1RMA hardware pipeline to enqueue the op in a hardware FIFO

based on its class of service ( 2 ), awaiting its turn for dispatch.
The queue head waits for capacity in the solicitation window
( 3 ) before sending a request to the remote side, designated by
address information in the command itself ( 4 – 5 ).

Each hardware structure’s capacity is implementation specific
and can change across 1RMA device generations. Capacity in the
RRT and CST is centrally managed for each datacenter application,
reflecting application needs. Unlike connections, the number of
memory regions for RMA use cases is typically proportional to
tasks, not task-pairs, and hence is manageable in finite resources.
Similarly, the number of command slots allocated to a process is
centrally managed, and caps how many outstanding operations a
process may initiate, effectively bounding its burst potential in the
network (e.g., for lower-priority applications). Applications request
command slot allocations from the host driver via an ioctl.

1RMA’s solicitation rules can cause ops to queue in the initiating
NIC while waiting for capacity in the solicitation window. Because
the number of command slots is bounded, these queues, too, can be
finitely sized and do not spill to the host. Because we desire highly
responsive ops, these queues shed load eagerly by timing out ops
that have been waiting too long to enter service. Timing out delayed
ops helps to mitigate head-of-line blocking and provides a useful
congestion signal to software congestion control (§6).

4.4 1RMA Software
Software layers: 1RMA software provides large-transfer abstrac-
tions and congestion management (see Figure 4). At the lowest layer,
a CommandPortal object manages a collection of command slots
and a memory region configured to accept completions, providing a
familiar command/completion queue construct. Because command
slots are memory-mapped registers in the NIC, the CommandPortal
handles the details of mmap() to insert these registers into appli-
cation memory; and provides routines to issue properly-formatted
commands via MMIO stores to the correct portion of the 1RMA
NIC’s PCIe BAR (details in Appendix B).

Building on CommandPortal, the next layer in the software stack,
CommandExecutor, provides support for arbitrary-sized transfers,
transparently chunked into up-to-4KB-sized operations and subject
to software pacing for congestion control (§6). Application software
layers above CommandExecutor bear no responsibility for chunking,
pacing, or congestion control. Applications can elect to manage
failures according to individual needs. For example, consider a repli-
cated key/value service in which a read op to a particular backend
fails; rather than retrying for an inordinate amount of time under
hardware control, the client software can opt to quickly redirect
traffic to another backend server replica.
Commands: As the 1RMA NIC retains no per-destination state,
each individual command fully encodes all metadata needed for the
op. Apart from the op type and size, each command includes:
• Remote host address and RegionId, which uniquely identify

the remote memory targeted by the operation.
• Two local RegionIds, one to source/sink data and another to

serve as a completion queue.
• The derived region key 𝐾𝑑 , used to sign the request and to

decrypt responses.
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Op Status Code Op Outcome
OK Op completed successfully and data was transferred.
REMOTE_AUTHENTICATION_FAILURE Command did not provide the correct derived region key 𝐾𝑑 .
NACK Op reached the remote 1RMA device, discovered the inbound request queue above configured

depth, and was NACKed, which signals congestion at the specific remote 1RMA device.
Receipt of NACK immediately refunds capacity in the solicitation window.

TIMEOUT Op timed out without transferring any data. TIMEOUT could arise due to a programming error
(e.g., wrong destination address), a network partition, a drop, or congestion.

DISPATCH_TIMEOUT The request was queued too long locally, awaiting capacity in the solicitation window, and
the op did not enter service. This outcome signals congestion local to the initiating NIC.

Table 3: Op status codes and rationale.
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Figure 7: RMA write op execution flow. (1) Client sends a write
request to server-side remote NIC. (2) Remote NIC sends a read
request back to the client-side initiating NIC when 1RMA solic-
itation rules are satisfied. (3) The initiating NIC responds as
though it received a read request and (4) the remote NIC sends
a completion message.

4.5 Outcomes
Upon completion the 1RMA NIC returns a completion indicator to
the initiating command’s designated completion region. The com-
pletion includes the CommandSlotId of the completing slot, two
hardware delay measures, issue_delay and total_delay, and an
op status code, which conveys the nature of any errors (Table 3).
Notable status codes include NACKs, which signal remote congestion,
DISPATCH_TIMEOUTs, which signal congestion at the initiating NIC,
and TIMEOUTs, which signal other errors that cause the op to fail.

5 Other 1RMA Ops
Apart from RMA reads (exemplified in §3), 1RMA also offers: (1)
RMA writes, and (2) Rekey for use in regular rotation of encryption
keys with minimal availability impact. Unlike reads, writes and
Rekey use a four-hop protocol, thereby obeying solicitation and
providing resilience against failures and replay attacks.

5.1 RMA Write
1RMA implements RMA writes as remote-request-to-read: each
write solicits the remote node to read the initiator’s memory. The
sequence of steps (Figure 7) are: 1 send write request to remote NIC,
2 remote NIC sends a read request back to the initiating NIC when

1RMA solicitation rules are satisfied, 3 the initiating NIC responds
as though it received a read request (following the steps in §3), and
4 the remote NIC sends a completion acknowledgement message.

Both the remote and local 1RMA NICs can time out independently
if messages are dropped or experience overlong delay.

Implementing write as request-to-read incurs the downside of an
additional RTT, but offers several benefits:
(1) 1RMA writes obey solicitation, thereby providing incast burst

protection for writes as well as reads, even when they occur
concurrently.

(2) The additional protocol messages allow the server-side to in-
clude its own entropy as a salt, curried into the third- and fourth-
step signatures, which protect 4-hop transactions against replay
attacks.

(3) 4-hop write transactions have strong timeout semantics, like
their RMA read counterparts, and unlike those provided by stan-
dard RDMA (§2.1). Figure 7 depicts the behavior of timeouts in
4-hop transactions. After receiving the second-phase “read re-
quest” ( 2 ), the initiating NIC resets its own local timeout, to a
new, fixed time in the future, which is identical to the receiving-
side’s read timeout. Causality then guarantees that, if a timeout
condition occurs, the initiator will necessarily time out after the
receiver. Because the initiator always times out last, all 4-hop
transactions provide a guarantee that a client timeout happens
after any side effects in remote memory.

5.2 Rekey
1RMA offers a management operation, Rekey, to cheaply, and pos-
sibly remotely, install a new region key 𝐾𝑟 in the RRT. Rekey is
unique to 1RMA: no existing RMA implementation provides first-
class support for encryption key rotation. We built Rekey because
it is difficult to construct encryption key rotation primitives using
standard RDMA without introducing either high transient connec-
tion usage (to pre-establish new connections with new encryption
keys) or bursts of connection failure (which occurs when the server
abruptly closes a connection when rotating keys). Coupled with
1RMA’s connectionless nature, Rekey vastly simplifies encryption
key rotation and minimizes performance side effects.

Systems built above 1RMA can leverage Rekey by initiating an
RMA operation, which is no more expensive than an RMA write.
In the simplest case, there is no need to proactively notify remote
users of an upcoming rotation. Such users’ ops simply begin to fail
with outcome REMOTE_AUTHENTICATION_FAILURE, but only those
ops targeting the intended RegionId are affected; those ops target-
ing unrelated regions see no performance impact, and there are no
connections to fail. This makes Rekey an attractive means to unobtru-
sively install new encryption keys, without additional system-level
coordination needed to prevent disruptive access errors. Instead of
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avoiding them, such errors are tolerated in 1RMA. More sophis-
ticated rotation implementations can proactively notify users of
upcoming Rekeys and new 𝐾𝑑 s, which can reduce the period of
unavailability due to a Rekey to a single RTT.

Because it is treated as a normal RMA operation, Rekey even
allows a remote third party, in possession of the appropriate derived
region key 𝐾𝑑 , to change a region key 𝐾𝑟 . Remote Rekey enables
control planes to manage pools of remote memory with no local
CPU involvement.

6 Congestion Control
1RMA implements congestion control (CC) policies in software
(CommandExecutor), assisted by NIC support for hardware mea-
sured delays and precise failure outcomes, delivered with each op’s
completion. CC reacts to these signals by modulating offered load,
specifically the rate at which software issues up-to-4KB commands
to the 1RMA hardware.

Our objectives for CC are fourfold: (1) enable rapid iteration on
policy, (2) avoid wasted bandwidth (e.g., which occurs when reads
time out due to congestion), (3) allocate bandwidth fairly, and (4)
converge quickly in dynamic environments, as load comes and goes
from bursting applications. Our first objective is met by virtue of
1RMA leaving all policy decisions to software. We meet the second
objective by assigning target delays and modulating op issue rate
such that hardware delay measures hover near our targets. For the
remaining objectives, we leverage 1RMA’s load-shedding outcomes
to rapidly change op issue rates.

1RMA CC differs from traditional, packet-oriented schemes
in two critical ways. First, 1RMA’s software controls when indi-
vidual ops are initiated, not the timing of packet-send. Second,
all CC decisions are made on the initiating side only, because
1RMA is purely one-sided. 1RMA itself has no connections, so the
CommandExecutor tracks congestion state per remote 1RMA NIC
and per direction (inbound reads, outbound writes). Unlike hardware-
based CC, such state resides in relatively cheap host DRAM and is
never accessed or cached by the NIC.

Similar to Swift [22] and TIMELY [30], we use delay as a conges-
tion signal and implement a software control loop to react to changes
in delay. Delays are measured by hardware, broken down into two
components (§4.5): issue_delay and total_delay. The difference
between these two, which we call remote_delay, represents delay
contribution from network congestion and remote queuing. The
issue_delay signals local congestion at the initiating 1RMA NIC.

1RMA software uses the above delays to react separately to local
and remote congestion; contemporary schemes [5, 23, 31, 41] cannot
distinguish between these forms of congestion. 1RMA tracks a
congestion window (CWND) for each remote destination/direction
pair, and uses a single CWND for local congestion (because local
congestion affects all local transfers). CC assigns op rates based
on the more restrictive of the two CWNDs. Rising or falling delay
prompts CC to adjust each CWND using a simple additive-increase-
multiplicative-decrease control loop. Op failures trigger a more
substantial CWND decrease. Notably, a DISPATCH_TIMEOUT triggers
a 10× reduction in the local CWND (only), as this is a precise
indicator of local congestion.

Algorithm 1 describes how 1RMA CC reacts to local congestion.
The control loop probes for the correct congestion window, adjusting

Algorithm 1: 1RMA CC reaction to local congestion.
Input: issue_delay, RTT
Output: cwnd_local
On Successful Op Completion
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙_𝑜𝑙𝑑 ← 𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙
if issue_delay < TARGET_DELAY then
⊲ Additive Increase (AI)
if 𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ≥ 1 then
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ← 𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 + 𝐴𝐼

𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ⊲ 𝐴𝐼 = 0.25
else
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ← 𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 +𝐴𝐼

𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ←𝑚𝑖𝑛(𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙,𝐶𝑊𝑁𝐷_𝑀𝐴𝑋 )
else
⊲ Multiplicative Decrease (MD)
if no decrease in the last RTT time then
𝑑𝑒𝑙𝑡𝑎 ← 𝑖𝑠𝑠𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 −𝑇𝐴𝑅𝐺𝐸𝑇_𝐷𝐸𝐿𝐴𝑌 ;
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ← ⊲ 𝑀𝐷 = 0.5, 𝛽 = 0.8
𝑚𝑎𝑥 (1 − 𝛽 · ( 𝑑𝑒𝑙𝑡𝑎

𝑖𝑠𝑠𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 ), 𝑀𝐷) · 𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ;
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ←𝑚𝑎𝑥 (𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙,𝐶𝑊𝑁𝐷_𝑀𝐼𝑁 );

On Dispatch Timeout
if no decrease happened in the last RTT time then
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ← ⊲ 𝑇 𝐼𝑀𝐸𝑂𝑈𝑇_𝐷𝐸𝐶𝑅 = 0.1
𝑇 𝐼𝑀𝐸𝑂𝑈𝑇_𝐷𝐸𝐶𝑅 · 𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ;
𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙 ←𝑚𝑎𝑥 (𝑐𝑤𝑛𝑑_𝑙𝑜𝑐𝑎𝑙,𝐶𝑊𝑁𝐷_𝑀𝐼𝑁 )

CWND up additively (down multiplicatively) when issue_delay is
beneath (above) a target value. We choose the reduction factor to be
proportional to the deviation between issue_delay and our target
delay, bounded by half (0.5). DISPATCH_TIMEOUT causes a more
drastic reaction, accelerating convergence when new local transfers
begin (§7.4). The policy to control the CWND corresponding to
remote congestion is similar, although remote_delay is compared
against a distinct delay target, and TIMEOUT and NACK cause a 10×
reduction in remote CWND, as these explicitly signal congestion
specific to the network or a remote NIC.

1RMA uses the more restrictive of the two CWNDs to: (1) set
a limit on the number of outstanding ops in the network, and (2)
compute the ops’ issue rate as 𝑂𝑝𝑆𝑖𝑧𝑒×𝐶𝑊𝑁𝐷

𝑅𝑇𝑇
, which 1RMA en-

forces through the CommandExecutor in Figure 4. We are yet to
investigate how 1RMA interacts with other transports. As such, we
assign 1RMA its own traffic class on our production fabric.

6.1 Parameter choices
1RMA has several key parameters that impact CC effectiveness as
well as 1RMA’s overall performance and CPU overhead.
(1) Op Size: The 1RMA NIC bounds the size of individual ops. A
small size ensures frequent feedback to, and precise reaction from,
1RMA CC. But, too small a size imposes high CPU overhead. Our
benchmarks indicate that a single core can drive 6M ops/sec with
our full software stack, which is twice what is needed for 100Gbps
line rate with 4KB-sized ops. For large transfers, 4KB-sized chunks
strike a balance between CPU overhead and CC responsiveness.
(2) Dispatch Timeout: An overly-full solicitation window can lead
to a DISPATCH_TIMEOUT, signalled when an op cannot enter service
locally within a bounded time interval. To software, this outcome
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signals local congestion. We tune the timeout value to 10𝜇s, so
that it is comparable to the block/wake time of a CPU thread. This
timeout ensures local feedback is delivered immediately, and it
enables timely CC responsiveness.
(3) Timeout: Delays and drops due to congestion trigger a more
generic TIMEOUT outcome on affected operations. The bounded size
of the solicitation window calls for shorter timeouts to help quickly
reclaim window capacity. On the other hand, longer timeouts help
ensure that delayed transfers are accepted at the receiving side and
do not waste the sender’s bandwidth. Because CC is effective at
making timeouts rare, we tune these timeouts to 4-5× the fabric RTT.
Timing out early is tolerable in 1RMA, because small op size bounds
wasted work in the event of a false positive.
(4) NACK Threshold: The 1RMA NIC generates NACKs when the
depth of inbound request queues cross above a configured threshold.
We set the threshold to (𝑇 𝐼𝑀𝐸𝑂𝑈𝑇−𝑅𝑇𝑇−𝐷𝐼𝑆𝑃𝐴𝑇𝐶𝐻_𝑇 𝐼𝑀𝐸𝑂𝑈𝑇 )

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
, so

that NACKs are generated when a data response is unlikely to reach
the initiator prior to a TIMEOUT, thereby preventing bandwidth waste
at the serving NIC.

7 Evaluation

We evaluate 1RMA’s distinctive features via testbed experiments
and simulations. We report absolute performance (e.g., 100Gbps) for
context, but raw throughput is mostly a function of hardware genera-
tion. We designed our prototype hardware while 100Gbps network
speeds were state of the art. We expect our approach will generalize
to higher speed networks. To highlight the architectural choices in
the 1RMA NIC, much of our evaluation focuses on choices relating
to stability, utility, and predictability. We show that:
• 1RMA offers excellent performance in common cases, but re-

mains stable and predictable under less-common (but important)
failure cases (§7.1).
• 1RMA’s intrinsic support for isolation and prioritization via

independent, small-sized ops and software-driven resource allo-
cation effectively prevents applications from monopolizing the
network (§7.2).
• 1RMA’s hardware support for encryption key rotation mini-

mizes client-observable disruption (§7.3).
• Supported by hardware, 1RMA’s CC converges to fair band-

width shares in the presence of competing applications almost
immediately (§7.4).
• 1RMA’s solicitation rules prevent goodput loss due to tran-

sients (sudden dynamic changes), reacting at hardware speeds
as software CC converges (§7.5).

Baselines. We compare against standard RDMA and Pony Express
(Pony) [28]. With RDMA, our purpose is to highlight the implica-
tions of the required and standard behaviors of any compliant RNIC,
with Mellanox NICs as examples. Pony, Google’s software-defined
NIC, represents a state-of-the-art datacenter networking alternative,
most similar to 1RMA in its objectives. Pony supports one-sided ops
by means of a userspace networking stack on the hosts. In all our
experiments, we limit each networking stack to (at most) a single
host CPU for network transport processing; this tends to limit Pony
to 40Gbps maximum throughput (bidirectional). With larger CPU
allocations, Pony performance scales commensurately.
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Figure 8: Latency vs. offered load for KVCS.

R2 Failure

Figure 9: Observed latency during KVCS replica failure.

Testbed. Our 1RMA and Pony testbed consists of 40 Intel Skylake-
based servers connected via the lowest-latency switches available
to us. To study standard RDMA, we use 40Gbps Mellanox CX-3s
for at-scale and 100Gbps CX-5s for point-to-point experiments. Our
40-node CX-3 testbed is from an older production generation, based
on Intel Haswell. RDMA experiments run with PFC between the
NIC and top-of-rack switch. Our evaluation uses a 1RMA hardware
implementation that uses region keys, not derived region keys, for
encryption and authentication.
Simulation. We augment our testbed findings with simulations cov-
ering various behaviors otherwise difficult to isolate.

7.1 Applications and Workloads
As performance is typically the goal of systems built atop RMA
infrastructures, we first evaluate the extent to which 1RMA improves
performance of (a) a key/value caching system and (b) a synthetic
uniform random workload.
In-Memory Key/Value Caching Service (KVCS). We modified a
Google production caching system (similar to [29]) to use 1RMA
and Pony for cache lookups. Although the production KVCS op-
erates at larger scales, for this controlled study we constrain it to
ten nodes and evaluate its performance under varying load. The
servers in this setting are outnumbered by the clients, such that the
bottleneck is the serving-side NIC. Figure 8 plots performance per
server, which ramps to the maximum practical throughput of each
underlying RMA implementation.

1RMA outperforms (two-sided) Pony; with 1RMA we even ob-
serve tail improvement with load due to warming effects in client
CPUs. 1RMA benefits from an all-hardware serving path, whereas
software eventually bottlenecks Pony in this workload. The zero-
load mark also highlights the effects of 1RMA design choices for
command issue. Because 1RMA uses MMIO, it skips several PCIe
RTTs (~400ns each) that software solutions built on UD [21] incur
on the critical path (see Appendix B).

To demonstrate how 1RMA’s fail-fast behavior can support fast
application-level failure response, Figure 9 reflects the system under
duress by injecting a failure into one of the KVCS server replicas,
which we label R2. To KVCS, this manifests as an immediate op
failure (i.e., not delayed by even a network transport timeout). In re-
sponse, KVCS immediately shifts load to replica R1. Increased load
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Figure 10: Latency vs. offered load for a uniform random traffic
pattern.
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Figure 11: (a) Achieved throughput vs. offered load for reads
and writes; (b) Load bounding via command slot allocation.
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workload.
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Figure 13: Impact of head-of-line blocking for a uniform ran-
dom traffic pattern.

causes growth in latencies of ops serviced by R1 as it absorbs the new
traffic, stabilizing in < 100𝜇s and without a period of unavailability.
Synthetic Workloads. Figure 10 plots latency slowdown in a syn-
thetic, 40-node uniform random traffic pattern. Each node initiates
4KB ops according to a Poisson arrival distribution and randomly
selects a destination node for the initiated op. The arrival distribu-
tions are configured to generate the required network load. For each
baseline, slowdown is the ratio of the actual round trip latency of an
op divided by the best possible latency for an op of that size on an
unloaded network (slowdown of one is ideal). As before, one-sided
RDMA and 1RMA have a performance advantage. At this scale, the
RNIC operates well within its connection cache.

Figure 11a plots accepted load for 1RMA reads and writes, in a
same-rack, point-to-point configuration. RMA writes diverge from
reads near peak throughput as 1RMA begins to enforce solicitation
rules, an effect also evident for reads at larger scale (§7.5). 4-hop
writes consume solicitation window capacity longer than do 2-hop
reads; hence RMA writes begin to saturate earlier, by design.

7.2 Application Isolation Benefits
1RMA builds isolation and prioritization into its design through
transfer chunking and software-defined resource management.
Impact of independent, small-sized ops. Consider a simple point-
to-point workload consisting of small (64B) foreground ops, driven
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Figure 14: Client-observed unavailability during an encryption
key rotation.

by 10K Poisson arrivals/sec, and one outstanding large transfer,
sharing the connection in the case of RDMA (to forestall connection
exhaustion). Ideally, the small ops should not be delayed by the large
transfer. Figure 12 plots the latency slowdown of the small ops as
we vary the size of the competing background op. Because 1RMA
software chunks large transfers, the smaller ops experience a delay
comparable to the service time of a single 4KB chunk. In contrast,
the RNIC delay is proportional to the service time of a background
op, and potentially severe. Such delays will occur on all RNICs, as
they arise from RDMA’s induced ordering.

The same behavior holds in uniform random patterns. Figure 13
plots slowdown experienced by small operations in a heavy-tailed
workload. Ops are bimodally distributed among 4KB and 200KB-
sized Reads (i.e., 85% of ops are 4KB, but 90% of bytes are from
200KB-sized operations) and follow a Poisson arrival distribution
configured to generate the required network load. 1RMA slows the
smaller ops minimally, compared to baselines. Even at moderate
50% load (i.e., 50 Gbps for 1RMA and 20 Gbps for the baseline),
1RMA median and tail slowdowns remain 6×-10× smaller than the
other two baselines.
Software-defined resource allocation. 1RMA assigns finite hard-
ware resources—command slots and memory regions—to appli-
cations according to their business priorities, a practice not possi-
ble with dynamically-allocated connections in RDMA. Figure 11b
shows the effect: the transfer rate (measured within a rack) available
to an application scales with the number of command slots it may
allocate.
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Figure 15: (a) Fast convergence of 1RMA CC - 0 to 100Gbps
in 40us; (b) Fast convergence from single flow at full rate to
two flows at fair-share rates; (c) Slower convergence when we
configure 1RMA to not separate local congestion from remote;
(d) issue_delay over time as reported by the NIC for (b).

7.3 1RMA Support for Encryption Key Rotation
We next consider the performance disruption of routine encryption
key rotation, as in systems like KVCS. We arrange for a client
process to continually probe (via RMA read ops) a server as the
latter enacts an encryption key rotation. Ideally, performance and
availability are impacted minimally. Figure 14 plots latency timelines
under three rekeying design variants.

Standard RDMA provides no mechanism to rotate keys on
an open connection; clients must switch connections to change
keys. Consequently, upon server encryption key rotation, client
connections break, typically via a timeout. Whereas connec-
tion re-establishment delay varies by implementation, it neces-
sarily involves out-of-band communication, and disrupts the user
(>2ms, bottommost line). In contrast, encryption key rotation via
1RMA’s driver (topmost) reduces the unavailability period to only
~27𝜇s. During this period, the client observes fast op failures
with REMOTE_AUTHENTICATION_FAILURE outcome. Clients react by
switching to new, pre-distributed keys. 1RMA’s op independence
property ensures rapid resumption of service. Compared to the driver-
based mechanism, 1RMA’s Rekey op (middle line) accomplishes
the same rotation in a handful of hardware cycles (< 1𝜇s) without
needing to extend trust to the driver to manage the new key.

7.4 1RMA Congestion Control Efficacy
We now focus on 1RMA congestion control (CC). We use crafted
workloads to answer the following questions: (a) How quickly does
1RMA respond (e.g., saturate a 100Gbps network link for a point-
to-point transfer)? (b) Do applications quickly reach a fair share of
bandwidth? and (c) How important is response to both local and
remote congestion?
Ramping to line rate. We inspect 1RMA’s ramp-up behavior using
a single client that initiates 4MB read transfers from a single server.
Figure 15a plots the achieved op submission rate over time. With
an idle RTT of 5𝜇s in the testbed fabric, 1RMA is able to quickly
converge to and maintain 100Gbps (with a CWND of 15 outstanding

operations). Convergence is reached in ~8 RTTs, without incurring
any non-OK outcomes.
Bandwidth Sharing. Using one client and two servers, each con-
nected by a 100Gbps link, we initiate a single long-running transfer
comprised of 4MB reads between the client and one server. At
around T=400𝜇s (Figure 15b), the client initiates another transfer
with the second server, creating an incast condition at the client.
1RMA immediately detects the increase in local congestion, as sig-
nalled by a sharp increase in issue_delay (Figure 15d) and adjusts
the local CWND appropriately, leading to a quick convergence (~5
RTTs) of both transfers to a fair share.
Local congestion reaction. To show the importance of reacting
to local congestion specifically, we repeat the same experiment as
above, but modify CC to react only to total_delay, plotted in
Figure 15c. Failure to react specifically to local congestion leads to
20× slower convergence.

7.5 Benefits of Solicitation
To provide software control loops ample time to react, 1RMA’s
hardware-enforced solicitation mechanisms forestall drops and time-
outs during transients (dynamic sudden changes). Remote NICs
emit NACKs when inbound queues are full. This ensures that ops
fail quickly under extreme congestion, rather than occupy scarce
hardware resources for long durations.

Because software CC works well, pathological outcomes like
TIMEOUT are rare in prior experiments. To study the benefits of solic-
itation and NACKs in 1RMA without reaction from CC, we evaluate
1RMA in hypothetical network conditions not reflected in our testbed
using simulations. We study specifically the performance effects of
RTT and jitter on solicitation. We also quantify the importance of
NACKs.

Unless otherwise specified, read size is 4KB, RTT = 5𝜇s,
DISPATCH_TIMEOUT = 2 * RTT, and TIMEOUT = 4 * RTT.

1RMA’s solicitation rules ensure that 1RMA does not initiate
a transfer unless it is assured to land the data in the solicitation
window. Crucially, the solicitation window size decides the number
of outstanding ops (and thereby governs the achievable goodput).
In an ideal network (no jitter or drops), sizing the window to the
bandwidth delay product (BDP) would suffice. In practice, jitter is
unavoidable. Figure 16a plots goodput as a function of jitter, for a
point-to-point workload. The simulated client initiates ops at a static
rate of 100Gbps. We plot three window sizes; 48KB (less than BDP),
64KB (equal to BDP), and 96KB (greater than BDP). Goodput drops
with jitter, but larger-sized solicitation windows are generally more
tolerant.

Critically, 1RMA’s solicitation sheds load eagerly rather than
risking wasted bandwidth. Figure 16b plots the rates at which ops
are shed under varying network conditions, again with CC response
disabled. DISPATCH_TIMEOUT—local load shedding—begins to man-
ifest as the solicitation window is taxed by unpredictable RTT. When
latency becomes unpredictable, some portion of ops time out, indicat-
ing that some of the sender’s bandwidth was wasted (as all response
bytes were sent, but late-arriving bytes are dropped). Importantly,
solicitation and shedding work in concert to keep goodput high in
all but the most pathological cases.

Similarly, NACKs defend servers and clients alike during sudden
load shifts. First, by NACKing inbound requests that are likely to
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Figure 16: Impact of jitter and solicitation window size - (a) Goodput Vs. jitter for different window sizes and (b) Timeout rate for
64KB solicitation window; (c) Impact of NACKs on goodput; (d) NACK threshold tuning.

time out at the initiator, we conserve server bandwidth. Second,
NACK eagerly refunds solicitation window capacity at the client, in
1 RTT instead of awaiting a TIMEOUT, allowing other ops to enter
service. To illustrate, Figure 16d plots goodput as a function of the
NACK threshold, wherein two clients each greedily demand 100Gbps
from a single server (i.e., total demand 200Gbps), irrespective of
congestion signals. The server can only provide 100Gbps. Such
behavior can occur transiently when load shifts. When NACKs are
not timely (i.e., the threshold is too high), goodput collapses, as the
server’s request queue grows without bound. To defend against this
behavior, NACKs shed the portion of load that is not sustainable at the
server-side. NACKed ops see higher apparent latency, because NACKed
ops may be retried—thus, at lower NACK thresholds, more ops may
see retries, leading to higher median latency but no loss of goodput.

8 Related Work
Several past works attempt to improve RDMA congestion control
and loss recovery [23, 25, 27, 31, 41], both key issues that deter-
mine the performance of RDMA operations at scale. For example,
DCQCN [41] implements a simple ECN-based congestion control
protocol on the NIC. HPCC [25] relies on in-band telemetry to
directly estimate the flow rate to use. RoGUE [23] is a software
CC protocol that uses delay-based congestion window adaptation,
while delegating loss recovery to the RNICs’ existing strategies (i.e.,
go-back-N). IRN [31] (and, similarly, MELO [27]) advocates using
selective ACKs in hardware (as opposed to go-back-N) for loss re-
covery; congestion control continues to rely on hardware-supported
protocols such as DCQCN. While these techniques explore layer-
ing incremental software or hardware-based congestion control and
loss recovery mechanisms on standard RDMA, 1RMA derives sub-
stantial benefits from completely refactoring the hardware-software
division-of-labor.

iWARP [34] offloads all TCP stack functionality, including con-
nection management, flow control, congestion control, loss recovery
etc., to the NIC. This unfortunately makes the NIC design complex,
and requires intricate translation between higher-level ops and NIC
TCP actions.

All the above techniques are connection-oriented, and thus face
at least some of the challenges of standard RDMA (§2).

To mitigate connection scalability issues, Mellanox has intro-
duced DCT [11], which dynamically (and transparent to the appli-
cations) closes and opens connections to avoid queue pair exhaus-
tion. DCT may cause latency increase due to frequent connection
flips [21].

FaSST [21] and Scalable Connectionless RDMA [16] advocate
using connectionless (UD) RDMA, while Homa [32] champions
software-based solicitation and connectionless RPCs. Like Pony,
such designs enable rapid evolution in software, but ultimately yield
two-sided performance. Homa handles only the last-hop congestion,
while [16, 21] rely on near-lossless fabrics based on PFC pause
frames, leading to well-known issues [31, 41].

eRPC [18] is a fast RPC library designed for datacenter networks.
Similar to [16, 21], eRPC uses the UD transport to mitigate con-
nection scalability issues and is fundamentally two-sided. Thus,
eRPC—like all RPC abstractions and Pony—involves software on
both sides yielding two-sided performance. 1RMA instead focuses
on one-sided primitives.

Recent efforts explore performance anomalies when multiple
RDMA applications coexist and discover that they are caused by
head-of-line blocking in RNICs [39, 40]. To address the performance
anomalies, Justitia [40] adopts a software solution that uses shaping,
rate limiting, and pacing at the senders. However, it can only provide
latency guarantees in a best-effort manner as it enforces isolation via
sharing incentive. Moreover, Justitia is still connection-oriented and
does not address the broader set of issues of standard RDMA (§2).

9 Conclusion
This paper presents 1RMA, a ground-up rearchitecture of remote
memory access aimed at multi-tenant datacenters and rooted in a
principled division of labor between software and hardware. 1RMA’s
connection-free hardware treats each RMA operation independently;
and aids software by offering fine-grained delay measurements and
fast failure notifications. 1RMA software handles congestion con-
trol, and applications handle failure recovery and inter-operation
ordering as needed. 1RMA’s connection-free design supports con-
fidentiality, authentication, and integrity at line rate with minimal
performance/availability disruption for management actions such as
encryption key rotation. This work does not raise any ethical issues.
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Appendices
Appendices are supporting material that has not been peer-reviewed.

A Initialization Vectors for AES-GCM
AES-GCM requires a non-repeating Initialization Vector (IV) as
further input to cryptographic operations, as AES-GCM is subject
to attack when the combination of encryption key and IV repeats
for distinct payloads. IVs are commonly derived from connection
sequence numbers, which 1RMA lacks. However, unique IVs can
nonetheless be provided by maintaining a counter, per 1RMA NIC,
of all 1RMA protocol messages ever exchanged. Therefore, the com-
bination of 𝐾𝑑+Counter+SenderAddress never repeats. We therefore
use Counter+SenderAddress to seed the IV in request packets, which
satisfies uniqueness for requests. Unlike sequence numbers, IVs need
not be contiguous; only uniqueness is required.

When generating responses, serving 1RMA NICs also increment
and include their own Counter value and RMA offset to further salt
the IV, with the previous IV curried along as additional authenticated
data (AAD), which ties all protocol messages together in sequence.
The combination of currying and server-supplied re-seeding ensures
that mutations and other 4-hop transactions are not vulnerable to
replay attacks.

IVs and the various forms of AAD are memoized in command
slot metadata, not readable by software, such that they remain in use
for the duration of the command in question, and are then discarded.

B 1RMA Command Issue
Command slots correspond to a range of the 1RMA NIC’s PCIe
BAR, which is mapped into application virtual memory. Using
memory-mapped registers in this fashion both simplifies and op-
timizes the hardware. To access these registers, applications use
MMIO writes from the CPU to store commands directly into as-
signed slots, rather than relying on an on-NIC DMA-based command
fetch mechanism. Conventional wisdom suggests that CPU-initiated
writes across PCIe should be used sparingly because of their perfor-
mance side effects. While true for non-write combining doorbells, we
specifically architected 1RMA to leverage write-combining MMIO
stores, which have significantly improved performance on modern
CPUs over traditional doorbell writes. Such an operation is possible
because 1RMA does not guarantee ordering between operations, and
because we are willing to constrain software to issue commands
using only carefully curated primitives (in our most performant li-
brary, four 16-byte SSE2 stores, in sequence). Our implementation
achieves up to 87M commands/sec using eight Skylake CPU cores.

MMIO-based command issue also offers a latency benefit: com-
mands are never fetched from host memory. Such fetches would
incur a PCIe round-trip (hundreds of nanoseconds) on the critical
path, which is a non-trivial latency adder [20].
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