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Abstract— Depth sensing is important for robotics systems
for both navigation and manipulation tasks. We here present
a learning-based system which predicts accurate scene depth
and can take advantage of many types of sensor supervision.
We develop an algorithm which combines both supervised and
unsupervised constraints to produce high quality depth and
which is robust to the presence of noise, sparse sensing, and
missing information. Our system is running onboard in real-
time, is easy to deploy, and is applicable to a variety of robot
platforms.

I. INTRODUCTION

Predicting scene depth from input imagery is impor-
tant due to its application to autonomous navigation and
manipulation in robotics. Recent work on image-to-depth
prediction has demonstrated good quality depth prediction
from a monocular camera only, and without additional su-
pervision [1], or by imposing left-right consistency from
stereo inputs [2]. However, depth sensors are commonly
available, and while they may have missing values, they can
be used as supervision. We here propose to take advantage
of available supervision, when and if it is available, to obtain
more accurate depth prediction, crucial for navigation by
autonomous vehicles in the real world.

To that end we develop a visual learning algorithm which
combines both supervised and unsupervised sensors to obtain
higher quality depth, and which is applicable to a variety of
onboard systems regardless of the source of depth sensing
(Figure 1). Our approach demonstrates that incorporating
unsupervised constraints can additionally improve the super-
vised learning setup. We observe better, higher quality depth
and more reliable results on several datasets. While previous
approaches have similarly used sensor supervision [3], our
algorithm is specifically designed for practical use: it is real-
time, running onboard with a contemporary GPU, is accurate
and works with various sources of sensing. Furthermore, we
observe that training jointly successfully addresses learning
in areas of unknown or missing information. This is also
important from a practical standpoint, as sensors readings
for supervision may be unreliable, missing or noisy, or may
not be accessible in some areas.

We also demonstrate that the proposed method is much
more robust to both systematic and random noise. In fact, we
find that a moderate amount of random dropout of the sensor
is valuable, which makes sense as the sensor is noisy. We
further observe more robustness in the presence of systematic
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Fig. 1. Learning scene depth for onboard prediction. Top row: input image,
middle row - predicted depth, bottom row - sensor depth. Our approach can
take advantage of any sensor whenever available: left - an example from the
Cityscapes dataset with stereo depth, middle: KITTI dataset with LiDAR
ground truth, right: indoor robot manipulation dataset with an IRDS sensor.
The prediction covers the full images, whereas the sensor may be very
sparse (e.g. KITTI dataset in the middle, with the magnified area for better
visibility) or with areas of consistently missing information, e.g. on the
surface of the robot arm (bottom right).

Fig. 2. Depth learning when using standard supervised techniques (middle)
may not produce meaningful results for areas of no training data, which is
a common problem of applying learning algorithms to real-life systems.
Our algorithm counteracts that by combining supervised and unsupervised
constraints (right).

noise, i.e., in areas where sensor values are consistently miss-
ing (Figure 2). This result may sound surprising in its out-
come (Figure 2), but is expected – a well known phenomenon
in machine learning is that no meaningful prediction can be
made for parts of the domain not covered by any training
data [4]. In other words, learning systems are not guaranteed
to provide meaningful outputs for these inputs. While prior
robotics approaches address this problem with establishing
uncertainty on the prediction [5], practical robotics systems
will often encounter the problem in which areas of the image
or certain types of surfaces, e.g. specular or transparent
surfaces, are consistently unknown and return no signal.
Thus these areas will output values with zero or very low
confidence, which is not particularly useful. We address this
problem by combining an approach which is grounded in 3D
geometry and uses the underlying geometry during training,
and at the same time taking advantage of learning techniques
which efficiently extract information from large datasets and
available supervision, however sparse.

In summary, this paper presents an onboard system for
depth prediction which combines supervised signals with
unsupervised constraints which are grounded in the 3D
geometry of the world. It provides high quality depth predic-



tions and runs in real-time and onboard. More specifically,
our approach alone takes only 12ms on a Geforce 1080Ti for
standard image sizes of 416x128, used in prior depth pre-
diction work. When running onboard our robot, concurrently
with other perception modules, it takes 112ms ± 16ms for
image sizes of 640x512 on a GV100 GPU. It is applicable
to many sources of sensor supervision, e.g. LiDAR, IRDS
and stereo and is much more robust to noise especially for
systematically missing values.

II. RELATED WORK

Scene depth estimation has been an active research topic
due to its importance for navigation and manipulation in
robotics [6], [7], [8]. Many previous methods for depth
estimation exist, e.g. stereo, active sensing and so on,
while learning-based methods have been proposed only
recently [8], [9], [10], [11]. In these, a depth estimation
function is learned from data, and then depth is predicted
from input images. Supervised learning can be supplemented
by sensor fusion [12], where a subset of sensor points are
additionally available at test time. Such fusion techniques
are complementary to ours and can be applied in addition
for more robustness.

More interestingly, unsupervised image-to-depth learning
has also been proposed recently [1], [13], [2], [14], [15],
where the only supervision is obtained from a monocular
video. The work of Garg et al. [13] introduced joint learning
of depth and ego-motion in a neural based framework. Zhou
et al. [1] proposed a neural based approach which is fully
differentiable and showed it outperforms prior approaches
which used depth sensors as supervision. These works have
established the methods for unsupervised depth and ego-
motion learning and many subsequent works have improved
the initial results in the same monocular setting [14], [16],
[17], [18]. Furthermore, learning from stereo inputs has
shown success. For example stereo pair videos have been
used during training [2], [15], [19], [20] to also produce
a single high quality image-based depth estimation. These
methods tend to achieve better quality results, due to the
extra camera input. The abovementioned learning based ap-
proaches, whether supervised, unsupervised or supervised by
stereo have demonstrated that learning is a viable approach
and an alternative to purely geometric approaches. This is
because learning has the opportunity to ‘see’ a lot of data
and thus forms priors from the large amounts of previously
observed data, scenes and objects to make a decision. While
our approach is related to all of the above, it combines
elements of purely geometric constraints with the learning-
based setting. That is, it combines both supervised and
unsupervised techniques, taking advantage of unsupervised
constraints where no supervision is available and vice versa.

Our work belongs to the large class of semi-supervised
methods, see [21] for review. Whereas standard techniques
assume the input datasets belong to the same domain or
(in the case of domain adaptation) at least comply with the
same input and output format, our approach is different as it
combines inherent scene geometry with learning techniques.

In the context of depth prediction, semi-supervised learning
has been spearheaded by [3] who use sparse LiDAR depth
and apply a combination of supervised and unsupervised
losses by enforcing photoconsistency. Their work, however,
used an additional stereo input for training. Also related
to our work is learning with weak supervision [22], as the
approach addresses learning with largely missing supervision
information. Furthermore an additional depth sensor can be
used during testing for online ‘fusion’ [12].

III. MAIN METHOD

In this section we describe the approach. Overview is
shown in Figure 3. The input to the system during inference
is a single RGB image. The desired output is the depth of the
scene corresponding to the image. In order to learn depth,
naturally we can apply standard supervised techniques and
define a loss

Lgt,I = minθ
∑
i

|Di(θ)−Di
a| (1)

where the above is the loss per image I and Di and Di
a

are the predicted and actual depths per pixel, and θ are the
learnable parameters. The loss above is naturally summed
over all the training images available Lgt =

∑
I Lgt,I .

Importantly, since the ground truth produced by a sensor
is noisy and will always have missing values, we need to
apply a validity mask and effectively switch off the loss for
the missing ground truth values. If we do not do that, the
function will try to fit to an incorrect fixed value e.g. 0,
which is not desired. Similarly, if during training we wish
to eliminate some inputs, e.g. to counteract noisy sensors
(which, as seen later, is useful), the same mechanism is used.

Lgt = minθ
∑
I

∑
i

Mi|Di(θ)−Di
a| (2)

The depth prediction itself is done by a neural network (depth
network) which is a dense prediction, fully convolutional
network. This choice is made so that it can take advantage
of large amounts of training data, including for pre-training.

In our approach we propose to additionally use geometric
constrains during training, which are available for free as
the supervision is derived from the input and neighboring
images. Such geometry-grounded constraints are important
to incorporate because the sensor may be noisy or missing
in large areas of the image (e.g. Figure 1 middle, right).
Crucially, these sensors may introduce systematic errors and
consistently fail to produce accurate (or any) results on
certain types of surfaces, e.g. specular, reflective, on moving
objects etc.

To that end we additionally incorporate unsupervised
learning constraints for scene depth, similar to prior
works [1], [14], [18], by utilizing the scene geometry and
apply photometrics consistency to impose that the scene
corresponding to an image, when transformed and projected,
should match the next image. The key insight is that unsu-
pervised learning relies on information from images only and
thus areas which are often missed by depth sensors will be



Fig. 3. Main method overview (the depth sensor supervision is hardly visible as it is sparse, top right)

predicted correctly by unsupervised depth methods. There-
fore areas which are consistently missed by a sensor will
have depth from unsupervised methods which is reconciled
throughout learning with supervised losses for areas when
supervision is available.

In order to incorporate unsupervised losses, during training
two neighboring overlapping images are used and the ego-
motion of the vehicle between these two frames is estimated
as a sub-product. It is estimated by another deep neural
network which is designed to output the rotation and trans-
lation of the vehicle in 3D. Thus using the depth of the
scene D, and its corresponding point cloud Ds and the 3D
ego-motion vector E, one can rotate and translate the point
cloud to the next scene TE ∗Ds, and project it to the image
space Iwarped = P (TE ∗Ds) which corresponds to warping
the current image to what it should look like at the next
frame Iwarped (here TE is the transformation derived by ego-
motion E, P is the projection matrix, Ds = P−1K ∗D, i.e.
inverse projecting or rendering the scene from depth, and
K is the calibration matrix, only the focal length is used).
This is a differentiable transform as shown by [1] and thus
if the next image Inext is available, can be added as a loss
in the image space. This loss is referred to as photometric
consistency, and naturally can be applied to the previous
frame as well.

Lunsupervised = minθ
∑
I

∑
i

|Iiwarped(θ)− Iinext| (3)

where Iwarped is the current image warped to the next frame.
Note that the sensor availability mask is not used here.

Since these principles are both responsible to produce
depth they are trained simultaneously (combined via a hy-
perparamter λ), and a depth output is provided as a result.

Ljoint = Lgt + λLunsupervised (4)

In addition both the ground-truth (GT) only approach and
the joint one have additionally depth smoothness loss and
weight regularization loss, as described in [2].

A. Network architectures

Targeting onboard use, we picked a network architecture
whose backbone is very efficient. Both depth and ego-motion
networks are based on the struct2depth code [18]. More

specifically, the depth network uses a ResNet-18 architec-
ture [23]. Due to this choice of main network architecture,
we are able to run the algorithm efficiently onboard. Other
architectures are also possible, e.g. stemming from the pop-
ular U-net or FlowNet architectures. However they do not
provide such computational speed as ours.

IV. EXPERIMENTS

We test the proposed approach on three datasets, both
outdoors and indoors and with diverse sensor inputs (LiDAR,
stereo, IRDS). We first test on two popular outdoor naviga-
tion datasets - KITTI [24] and Cityscapes [25], as well as,
on an indoor dataset collected for the purposes of object
grasping. The evaluation protocol for depth estimation has
been well established and used for both supervised and unsu-
pervised settings [1], [13]. We use the same set of metrics and
scripts that many prior authors have used, for example abs rel
error is defined as follows (Di and Di

a are the ground truth
and predicted depth): abs rel= 1

N

∑N
i=1 mean(‖D

i−D̂i
a‖

Di
a

).

A. Datasets

KITTI. The KITTI dataset [24] is a popular benchmark
for developing various algorithms for autonomous driving,
such as object detection, tracking, visual odometry, stereo,
optical flow and others. It is the most common dataset for
depth estimation evaluation, using the sparse LiDAR point
cloud as ground truth. KITTI images are resized to 128x416.

Cityscapes. The Cityscapes dataset [25] is a newer urban
navigation dataset. It contains higher resolution, more diverse
images obtained in populated urban areas of multiple cities.
This dataset features many dynamic scenes with moving
vehicles and objects. While no ground truth depth sensor
is available, we use the stereo depth (disparity) information
provided by the dataset. This is in compliance with prior
methods [18], [26] which used the sensor and protocol for

Dataset Ground truth Train Test GT Coverage (percent)
KITTI LIDAR 39,835 697 4.11%
Cityscapes Stereo 38,675 1,525 95.78%

TABLE I
DATASETS OVERVIEW: KITTI HAS ONLY 4% GROUND TRUTH

COVERAGE.



Method Range Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Pilzer et al.[26] 80m 0.440 6.036 5.443 0.398 0.730 0.887 0.944
Pilzer et al.[26] 80m 0.467 7.399 5.741 0.493 0.735 0.890 0.945
Casser et al. [18] baseline 80m 0.2049 4.2477 9.0892 0.2543 0.7681 0.9165 0.9626
Casser et al. [18] (unsup) 80m 0.2218 5.7374 8.6133 0.2584 0.7738 0.9076 0.9542
Casser et al. [18] (unsup+motion) 80m 0.1511 2.4916 7.0237 0.2023 0.8255 0.9372 0.9721
Ours (unsup,) 80m 0.1787 2.9219 8.0368 0.2320 0.7839 0.9259 0.9690
Ours (gt-only, supervised) 80m 0.0952 0.9912 5.9879 0.1583 0.9013 0.9715 0.9891
Ours (joint, supervised) 80m 0.0936 0.9520 5.9191 0.1563 0.9024 0.9722 0.9897
Casser et al. [18] (unsup) 50m 0.1696 1.7083 6.0151 0.2412 0.7840 0.9279 0.9703
Casser et al. [18] (unsup+motion) 50m 0.1529 1.1087 5.5573 0.2272 0.7956 0.9338 0.9752
Ours (unsup) 50m 0.1543 1.5748 4.9975 0.2001 0.8264 0.9435 0.9763
Ours (gt-only, supervised) 50m 0.0787 0.5032 3.4518 0.1283 0.9328 0.9819 0.9934
Ours (joint, supervised) 50m 0.0773 0.4904 3.4190 0.1267 0.9337 0.9827 0.9937

TABLE II
EVALUATION OF DEPTH PREDICTION UP TO 50 AND 80 METERS RANGE. CITYSCAPES DATASET. STANDARD DEPTH PREDICTION METRICS ARE

SHOWN: FOR COLUMNS IN PURPLE, LOWER IS BETTER, FOR THE BLUE ONES: HIGHER IS BETTER.

Fig. 4. Depth prediction. From top to bottom, per panel: input image, unsupervised, gt-only, joint, ground truth sensor. Our joint method provides
continuous output everywhere (compared to the sensor readings) and is of better quality than the supervised one. Cityscapes dataset.

Fig. 5. Point clouds for depth prediction (joint method). Cityscape dataset.

evaluation. This makes our work directly comparable by
other approaches which can use the same set of sensors.
To unify the experimental setup, the Cityscapes images are
cropped centrally and resized to match KITTI image sizes.
Table I demonstrates the quantitative differences between the
ground truth quality and availability per each dataset. While
the Cityscapes dataset provides depth values for about 96%
of the pixels in an image, the KITTI dataset is much more
sparse providing only about 4 percent of the pixel values.

Indoor robot dataset. We also test the algorithm on
an indoor dataset for manipulation, collected by our robot.
The depth ground truth is provided by an IR-based depth
sensor (IRDS) similar to Microsoft’s Kinect [27]. This
dataset too has portions of missing values due to areas
which are consistently not covered by the sensor, or due to
specular, transparent and other challenging surfaces. It has

about 11,700 training and 540 test images of size 640x512
(experiments below are conducted on sizes 256x320).

B. Experiments on the Cityscapes dataset: stereo inputs

We first experiment with the Cityscapes dataset in which
the supervision comes from stereo. We compare the main
algorithms: unsupervised, ground-truth-only (denoted as gt-
only) and our proposed joint approach which combines
supervised and unsupervised constraints. Table II shows the
results and compares to prior methods which have reported
results on this dataset. For this dataset no supervised ap-
proaches exist, but there are strong performers using motion
in addition to depth. In compliance with prior results we eval-
uate depth up to 80 and 50 meter ranges. As seen, for both
ranges, the proposed methods are outperforming the state-of-
the-art. While the proposed supervised and joint approaches
both use supervision to achieve more accurate depth, such a
solution is naturally preferred for a real-world robot system,
rather than ignoring this source of more accurate results.
We further note that the joint method is consistently better
than the ground-truth only one, even though they use the
same training data and run within the same computational
budget. The improvement is consistent and is also preserved
across all metrics, and across all datasets, as also seen later
in Table III and Figure 11 for both KITTI and for the indoor
robot dataset.



Figure 4 provides qualitative results on Cityscapes. Both
supervised methods are of very good quality and more
accurate than the unsupervised one. The learned approaches,
compared to the raw supervision, also have the advantage of
providing values anywhere, whereas the ground truth may
have missing values. The joint method is better, also qualita-
tively, due to occasional erroneous high intensity values for
the gt-only method. This is observed at object boundaries,
which may be due to sensor errors in these areas. Figure 5
shows the predicted depth in a point cloud representation,
where we can see that objects (including moving ones) are
correctly placed in the scene. We further note that our ap-
proach, being semi-supervised, is able to adequately predict
depth of moving objects (Figure 4), which is a well known
deficiency for unsupervised methods [28]. In conclusion, we
observe that the jointly-supervised approach outperforms the
supervised-only one quantitatively and qualitatively. Both
achieve better accuracy than other methods and are better
suited for onboard depth estimation. With real-time runtime
they are particularly suitable in practice.

C. Experiments on KITTI: LiDAR inputs

We further test the approach on the KITTI dataset, where
the ground truth is provided by a LiDAR sensor and is sparse.
Table III shows the results on the KITTI dataset when evalu-
ating on range up to 80 meters. For this dataset there are both
supervised and unsupervised prior approaches to compare
to. Our results are compared to prior works, most of which
are unsupervised learning methods; they are technologically
more advanced than (older) supervised methods and achieve
better performance. We here too observe improved accuracy
by both the gt-only and the joint approach, and similarly
to the Cityscapes dataset, the joint method outperforms the
gt-only one. At the bottom of the table we also compare
to results which are in a similar setting to ours, but which
use additional stereo inputs during training [3]. As seen, our
method obtains comparable results. Furthermore, we include
comparison with a method that obtains and uses an additional
depth sensor at test time [12]. While this is not directly
comparable to ours, it is included for completeness, and as
seen outperforms all methods. We also note that none of the
prior methods we are aware of, are designed for faster speeds
or report their runtimes, e.g. [3] used much more powerful
networks e.g. ResNet50, which are known to be very slow.

We can conclude here that our method is competitive to
prior work on this benchmark, and at the same time has the
advantage of real-time execution.

The LiDAR sensor for this dataset has large missing areas
for the top half of the image (Figure 6). When comparing
our joint method to learning with gt-only we observe that
the results are quite close quantitatively. However, due to
large blind spots for the sensor, the gt-only technique, despite
obtaining accurate results in the supervised region does not
generalize very well to other regions. This is visualized in
Figure 6 which shows that areas at the top of the image,
where no LiDAR points are available in any image, are
predicted inaccurately for the gt-only method, whereas our

Fig. 6. Quality comparisons between ground-truth only (second row)
and our joint approach (third row). KITTI dataset. Our proposed method
provides much more accurate results for the top areas of the image, which
are not covered by the sensor. The LiDAR sensor is in the bottom row and
is very sparse (see also Figure 1 for a magnified example sensor image).

joint method provides much better depth prediction in the
whole image. At the same time the quantitative results are
close because evaluation is done with respect to the LiDAR
sensor on test images, which are missing any values in
the top half of the image. That is, the sensor has a blind
spot and thus cannot evaluate the methods well in these
areas. Our results in the next section (Section IV-D), show
similar results when systematically ignoring sensor readings.
In these cases too, our proposed joint method is much more
accurate and adequate than the gt-only approach.

As mentioned earlier, these largely inaccurate values for
the ground truth-only method are due to consistently missing
data during training. This is also easy to see, given the
optimization criteria imposed. Namely, the model is required
to fit the ground truth well (its loss and in our case its
evaluation is only estimated for these areas of the input),
therefore there really is no mechanism to require the system
to output specific or consistent values in the areas where
information is missing. When measuring the accuracy of
the approach, trained on KITTI, but evaluated on an out-of-
sample dataset, e.g. the Cityscape dataset, where evaluations
are done with respect to another sensor (stereo), we can
confirm the above findings too. Figure 7 shows the perfor-
mance of the model trained on the KITTI dataset, when
evaluated on KITTI and Cityscapes. While we should not
have high expectations in accuracy for another dataset, this
clearly demonstrates the robustness of our approach and the
overfitting that the ground-truth-only approach exhibits. At
the same time we observe the consistent improvements of
the joint method over the gt-only on KITTI itself, as training
progresses. As seen, the ground-truth-only method exhibits
notable overfitting tendencies and despite seamingly accurate
results when evaluated on KITTI does not perform well on
an out-of-sample dataset.

Here, while in general uncertainty values for predictions
are helpful, our joint approach is much more usable in
practice because it provides reliable depth estimates for large
missing areas, instead of providing areas with unknown or
highly uncertain value. The joint approach provides values
anywhere especially in areas where no sensor data is avail-
able. This makes it more relevant in practice.



Method Supervised? Additional Use? Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train set mean - - 80m 0.361 4.826 8.102 0.377 0.638 0.804 0.894
Eigen et al.[8] Coarse GT Depth - 80m 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al.[8] Fine GT Depth - 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al.[9] GT Depth - 80m 0.201 1.584 6.471 0.273 0.68 0.898 0.967
Zhou et al.[1] - - 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yang et al.[16] - - 80m 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Yang et al.[29] (Lego) - Motion 80m 0.162 1.352 6.276 0.252 0.783 0.921 0.969
Yin et al.[17] (GeoNet) - Motion 80m 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Wang et al.[30] (DDVO) - - 80m 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Casser et al.[18] - Motion 80m 0.1412 1.0258 5.2905 0.2153 0.8160 0.9452 0.9791
Godard et al.[23] - - 80m 0.133 1.158 5.370 0.208 0.841 0.949 0.978
Yang et al.[19] - - 80m 0.137 1.326 6.232 0.224 0.806 0.927 0.973
Yang et al.[19] - Motion 80m 0.131 1.254 6.117 0.220 0.826 0.931 0.973
Ours (gt-only, sup.) GT Depth - 80m 0.1173 0.7810 4.7069 0.1912 0.8615 0.9565 0.9823
Ours (joint, sup.) GT Depth - 80m 0.1159 0.7667 4.6652 0.1892 0.8618 0.9575 0.9834
Kuznietzov et al.[3] unsup. - Stereo 80m 0.308 9.367 8.700 0.367 0.752 0.904 0.952
Kuznietzov et al.[3] sup. GT Depth Stereo 80m 0.122 0.763 4.815 0.194 0.845 0.957 0.987
Kuznietzov et al.[3] semi sup. GT Depth Stereo 80m 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Ma and Karaman [12] semi sup. GT Depth - 80m 0.208 - 6.266 - 0.591 0.900 0.962
Ma and Karaman [12] semi sup. GT Depth Online Depth 80m 0.073 - 3.378 - 0.935 0.976 0.989

TABLE III
EVALUATION OF DEPTH PREDICTION. KITTI DATASET. COMPARISON TO PREVIOUS MONOCULAR METHODS. A SEMI-SUPERVISED APPROACH WHICH

USES STEREO [3] AND ONE WHICH USES DEPTH INFORMATION AT TEST TIME [12] ARE ALSO COMPARED AT THE BOTTOM. PURPLE COLUMNS -
LOWER IS BETTER, BLUE COLUMNS - HIGHER IS BETTER.

Fig. 7. Comparison between depth prediction results for the gt-only and
joint methods on the test set, while training on KITTI. Evaluating on
KITTI (left) and on the Cityscapes dataset (right). While the differences
are small the joint method consistently improves performance on KITTI.
When evaluating on Cityscapes (right), it is seen that the joint method is
much more robust, which is primarily due to incorrectly predicted values
in the top areas of the image.

D. Experiments with missing sensor values

In this section we experiment with the KITTI dataset by
introducing experimentally noise in the sensor in the form
of missing values. We here test if the joint model and the
ground-truth only one are robust when a subset of the images,
or large areas in the images miss supervision. The following
two sources of missing values are introduced:

Consistently missing values. Consistently missing values
are introduced by removing the sensor signal from contigu-
ous areas in the image before training. For the purpose of the
experiment, we remove a rectangular area to the right of the
image, which covers the image top to bottom; in particular
10, 20, 30, and 50 percent of the image are removed. While
simple, this experiment intends to test a scenario in which
the sensor is missing frequently or always in some areas of
the image, as is the case with KITTI (Section IV-C) and with
the indoor dataset (Section IV-E).

Values missing at random. Missing values can also be
introduced by removing them at random locations in the
image. We do that at several levels, effectively reducing 10,
20, 30 and 50 percent of ground truth values. Since this data
has about 4 percent coverage for ground truth, this reaches

Fig. 8. Performance with introduction of noise in the form of missing
values. Random noise (left), consistent noise (right). As seen, our joint
approach is more robust in both cases, and especially so for the consistent
noise case. The absolute error metric is shown. KITTI dataset.

about 2 percent ground truth values.
We note that each sensor itself has additional sources of

noise, e.g. as evident in some of our visualizations (e.g.
Figure 4, bottom), additional noise can be further introduced
to the sensor measurements.

Figure 8 summarizes the results of training with removing
portions of the available ground truth data by either removing
values consistently, or at random, as described above. While
the proposed joint model is quite robust to both types of
noise, the gt-only model quickly deteriorates for systematic
noise and is not as robust as the joint model for random
noise. Figure 8 (left) shows the results of training a model
in the case of randomly removed values, i.e., 10%, 20%,
30%, 50% pixels are removed at random from the ground
truth values. As seen, with the exception of very large noise,
50%, where the ground truth model is not performing well,
both models are robust to this noise, with the joint model
performing consistently better for all values. Furthermore,
we find that our joint model performs a little better when
trained with some random noise. That is, moderate amounts
of random noise makes the model more robust. We observed
the same behavior when testing on out of sample data e.g.
Cityscapes, where models trained with random noise perform



Fig. 9. Quality comparisons between ground-truth only (middle row) and our joint approach (bottom row), when consistent noise is introduced on the
right side of the image. KITTI dataset. Our proposed method provides much more accurate results for areas not covered by the sensor.

Fig. 10. Examples of depth prediction from the indoor robot dataset.

better, than the model trained without noise. When the noise
is on the large size, e.g. 30 to 50 percent then some small
deterioration is observed.

Figure 8 (right) shows the results of training a model
in the case of consistently missing values, i.e. when a
portion of pixels on the side of the image are removed.
As seen, systematic errors are harder to overcome than
randomly missing values. We here see that the joint model is
again much more robust, degrading performance gracefully,
whereas the gt-only model is not able to converge to good
results for any values of 20% or above. Figure 9 visualizes
example depth estimation of both models with consistently
missing values, in which the performance degradation is
obvious for the gt-only model (at the right side of the image).
This shows similar behavior to issues predicting depth in
missing sensor areas when training on the full KITTI dataset
as seen in Section IV-C. While both supervised and jointly-
supervised approaches are immune to portions of randomly
missing values, the joint approach is much more robust to
systematically missing values, which is a common scenario
for physical depth sensors. Skipping values at random (which
can easily be accomplished in practice) provides a sense of
regularization by obtaining a more robust solution.

E. Experiments for a robot arm: IRDS sensor

We apply the proposed algorithm for the purposes of
an arm end-effector manipulating objects. Here the goal
is to obtain depth for table top objects for grasping. This
experiment is done in real environments, on naturally oc-
curring office spaces, which have not been specially set up
or modified for the experiment. The ground truth depth is

Fig. 11. Quality comparisons between ground-truth only and our joint
approach for the Robot arm dataset. Results are shown as a function of
range, where the error is evaluated for both methods up to that specific range.
The joint approach is consistently outperforming its supervised counterpart.

provided by an IRDS sensor which may have some missing
values. The sensor produces estimates within 20 meters and
the most accurate estimates within 10 meters. Its behavior is
in-between the sensors from the previous two experiments,
as the sensor readings are dense, but areas of the image may
be missing, for example portions to the left of the image are
often not available; the robot arm itself is reflective, which
often is lacking sensor values (Figure 1).

Figure 10 shows the estimated depth for the robot arm.
While the robot is intended to work on table-top surfaces, we
collected images from afar as well in order to have a more
challenging and diverse test set. Similar to other datasets,
here we have continuous depth estimation, providing depth
everywhere, closing the gaps of systematic missing values.
Figure 11 shows depth prediction error as a function of range.
Depth is evaluated up to 3, 5, 10, 20 and up to 50 meters
where available by the sensor, whereas training is done on
ground truth up to 15 meters. Here too, we can observe
that the joint model outperforms the gt-only one consistently.
Figure 12 further shows comparison of the joint and ground-
truth only algorithms. As seen, they perform similarly. The



Fig. 12. Examples of depth estimation from the indoor robot dataset. Input
image (top), depth prediction from supervised-only learning (middle), depth
prediction from joint learning (bottom).

gt-only algorithm is sometimes more prone to errors to the
left of the image where there are consistently missing values
(right images). While the algorithm is intended to work at
short ranges (up to 15 meters) we can also see that it is able
to get depth beyond desks where objects are found. Here too,
for the indoor robot arm dataset with an IRDS sensor, we
see successful depth prediction and also consistently better
performance of the joint model compared to the gt-only on
all ranges.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a joint approach combining supervised
learning techniques with unsupervised constraints, which
obtain better onboard depth prediction. These constraints are
geometrically grounded and are available for free and are
beneficial for practical applications. Indeed we see consistent
improvements over the supervised-only solution on three
datasets, with a variety of supervisory sensors and sparsity
levels, when compared over the same dataset and the same
inference budget. It also produces a much more accurate
solution for areas of missing values and is a more robust
approach. Our approach is efficient and is deployed onboard
a robot platform. As future work we will consider training
across datasets, where one can consider using a global scale
per object as a prior e.g. a human or a soda can will have
respective sizes which are globally consistent in the world,
regardless of the dataset. Furthermore we would like to
combine this inference with semantics, namely using the
object and class information, as well.
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