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Abstract

Recently, WaveNet has become a popular choice of neural net-
work to synthesize speech audio. Autoregressive WaveNet is
capable of producing high-fidelity audio, but is too slow for
real-time synthesis. As a remedy, Parallel WaveNet was pro-
posed, which can produce audio faster than real time through
distillation of an autoregressive teacher into a feedforward stu-
dent network. A shortcoming of this approach, however, is that
a large amount of recorded speech data is required to produce
high-quality student models, and this data is not always avail-
able. In this paper, we propose StrawNet: a self-training ap-
proach to train a Parallel WaveNet. Self-training is performed
using the synthetic examples generated by the autoregressive
WaveNet teacher. We show that, in low-data regimes, training
on high-fidelity synthetic data from an autoregressive teacher
model is superior to training the student model on (much fewer)
examples of recorded speech. We compare StrawNet to a base-
line Parallel WaveNet, using both side-by-side tests and Mean
Opinion Score evaluations. To our knowledge, synthetic speech
has not been used to train neural text-to-speech before.

1. Introduction

With the increasing use of personal assistants in our daily lives,
it has become more important than ever to deliver high-quality
speech synthesis. The deep neural network revolution has
caused a paradigm shift in research and development of text-
to-speech systems, outperforming previous statistical and para-
metric methods [1} 2| [3]. WaveNet [4] is a class of deep neural
networks known to generate seemingly realistic speech. The
original WaveNet is an autoregressive network that uses di-
lated convolutions to model the probability distribution of the
next speech sample to be generated. With sufficient training
examples, it has been demonstrated that this model can gen-
erate speech and music with high fidelity. However, a major
shortcoming of this network is that it is autoregressive and it
generates speech at about 172 timesteps/second [4], which is
prohibitively slow for synthesizing speech above 16kHz. Paral-
lel WaveNet [S] was introduced to mitigate these speed con-
cerns, and was shown to generate samples at about 500,000
timesteps/second. Yet, Parallel WaveNet too has limitations,
in particular when there is little recorded data to train it on.
The synthesis output can contain artefacts, like static noise,
which becomes more prominent with fewer training samples of
recorded speech.

A single-speaker WaveNet requires about 24 hours of
recorded speech [4} 5] for training a good voice. This also
holds true for other neural vocoders, for example [6] shows
that a single-speaker Tacotron model trained on 25k utterances
is substantially better than the ones trained on 15k and 8.5k
recordings. In a multi-speaker training scenario, [5] showed
that a high-quality voice can be obtained with about 10 hours
of recorded speech per speaker if the capacity of the network

is increased. However, it can be seen from their results that
the quality degrades when the number of recordings is further
decreased.

To reduce the voice artefacts observed in WaveNet stu-
dent models trained under a low-data regime, we aim to lever-
age both the high-fidelity audio produced by an autoregressive
WaveNet, and the faster-than-real-time synthesis capability of
a Parallel WaveNet. We propose a training paradigm, called
StrawNet, which stands for “Self-Training WaveNet”. The key
contribution lies in using high-fidelity speech samples produced
by an autoregressive WaveNet to self-train first a new autore-
gressive WaveNet and then a Parallel WaveNet model. We refer
to models distilled this way as StrawNet student models.

We evaluate StrawNet by comparing it to a baseline
WaveNet student model in side-by-side preference tests, and by
performing Mean Opinion Score (MOS) analysis. We show that
our approach alleviates the problems observed when distilling
student models in low-data regimes. Note that our approach
is applicable for a certain segment of the spectrum of avail-
able data: too few recordings might not yield an autoregressive
teacher network capable of synthesizing good data; too many
recordings might not bring out the efficacy of self-training.

2. Related Work

Self-training, or self-learning refers to the technique of using
an already trained system to generate outputs on unseen in-
put examples and using these generated outputs as targets for
subsequent re-training. Self-training has been shown to be
useful in certain applications like linguistic parsing [7l], sen-
timent analysis [8] and unsupervised neural machine transla-
tion [9]. Recently, a 2% increase in the top-1 accuracy in the
ImageNet classification task was achieved through noisily dis-
tilling EfficientNet, using artificial labels on unlabelled images
[10]. Our approach is similar to these approaches in that we
use self-training, albeit on a synthesis task and not a discrimi-
native one. An additional difference in our setup is that Parallel
WaveNet is obtained via knowledge distillation from a differ-
ent learning paradigm, i.e., an autoregressive WaveNet. This is
advantageous because, compared to the samples a feedforward
WaveNet student model produces, an autoregressive WaveNet
teacher model provides synthetic examples of higher quality for
self-training (cf. §5.1). Lastly, synthesized data has been em-
ployed before in speech domain in tasks including improving
speech recognition [11] and emotion recognition [12]. To the
best of our knowledge, training a neural acoustic model on syn-
thesized speech has not been done before.

3. StrawNet

Figure [I] shows a schematic overview of both the baseline and
the StrawNet approach. The conventional way of training a Par-
allel WaveNet [3]] is a two-step procedure. In the first step,
shown in the top-left corner of Figure [} an autoregressive
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Figure 1: Overview of the conventional way of training a Parallel WaveNet model and the proposed StrawNet approach.

WaveNet teacher is trained to model the probability distribu-
tion of the next sample given previous samples of the recorded
speech. This step is highly parallelizeable during training, as all
recorded speech samples are available, so teacher forcing can
be used [13]. The second step consists of distilling the density
distribution of the autoregressive teacher network trained in the
previous step, into a feedforward network. The feedforward stu-
dent network, unlike the autoregressive network, takes as input,
random noise sampled from a logistic distribution, along with
other linguistic features and log F conditioning.

Our proposed StrawNet approach uses the autoregressive
WaveNet trained in first step of the conventional approach to
generate synthetic speech, and further train additional WaveNet
models, referred to as StrawNet student and StrawNet teacher.
This approach differs from the conventional approach in the
crucial additional step of generating synthetic speech from the
autoregressive WaveNet model (Figure [T). Because this is a
one-time offline processing task, there are no limits (other than
practical ones) to the number of speech samples we can gen-
erate. It is important that we use the autoregressive WaveNet
teacher for generating this synthetic training data, rather than
the distilled student model, because the speech it generates is
of higher fidelity. The synthetic dataset obtained this way has
a more generalized speech distribution than the real recordings,
while being plentiful enough for distillation. It does come at
a computational cost, as an autoregressive network is used for
synthesis. We argue that the overall improvement in voice qual-
ity outweighs this computational investment. Furthermore, un-
like WaveNet, the StrawNet approach requires a prosody model
for the synthesis step. We use a pre-trained CHiVE model [[14]
to provide this prosody conditioning.

An important component of self-training is the unlabelled
data synthetic examples are generated from. For StrawNet, this
is the text used to synthesize speech, which is typically read-
ily available. However, script selection with regards to good
phonetic coverage is important to prevent the system becoming
biased to artefacts of the data. Lastly, noisy/corrupt synthetic
speech samples produced by the StrawNet teacher model are
pruned from the generated set of synthetic speech samples, as
they might affect the StrawNet student model. See §4.3| for fur-
ther details on the above two steps.

4. Experimental Setup

In this section, we detail the input features, network and its hy-
perparameters, and the methodology used in our experiments.

4.1. Features

The end-to-end text to speech system employed in the analy-
sis in following sections is composed of either a WaveNet, or
a StrawNet acoustic model, conditioned on features encoding
linguistic and prosodic information. The linguistic condition-
ing consists of phoneme, syllable, word, phrase and utterance
level features, derived by running a text normalization [15} [16]]
system followed by rule-base feature computations [17]. The
prosody conditioning is provided by a pre-trained hierarchi-
cal variational autoencoder as described in [14]. This prosody
model uses the linguistic conditioning as described above to
output the phoneme durations and log Fp per frame.

4.2. Baseline WaveNet architecture

The model architecture, loss functions and training recipe for
both the autoregressive WaveNet teacher and the feedforward
WaveNet student components in Figurem is the same as men-
tioned in [3]. We use a mixture of 10 logistic distributions to
model the 16-bit audio samples in the 24kHz recordings. Both
the WaveNet teacher and the WaveNet student model have di-
lated residual blocks as their constituent units. Each dilated
residual block consists of 10 layers of dilated convolutions, in-
creasing by a factor of 2 in every layer and reaching a maximum
of 512 in the last layer. The WaveNet teacher has a stack of 3
such dilated residual blocks. The student network has 4 inverse
autoregressive flows [18]], each containing 1, 1, 1 and 3 dilated
residual blocks respectively.

The loss function for the WaveNet teacher is the nega-
tive log-likelihood of the predicted mixture distribution. For
the WaveNet student, the loss function is a weighted sum of
four components: the KL divergence between the student and
teacher distributions, mean squared error between the predicted
and target signal powers, phoneme classification error from a
WaveNet like classifier, and finally a contrastive loss that max-
imizes the difference between KL divergences of student and
teacher distributions obtained with correct and incorrect condi-
tionings, respectively. Both the component networks are trained
for 1M iterations with Adam optimizer using TPUs.

4.3. StrawNet

To generate synthetic data, we run the pipeline detailed in §4.1]
with the WaveNet teacher model trained as described in
Our objective is to generate as much data as possible. However,
it would be detrimental to the performance of the StrawNet stu-



dent and teacher networks for the synthetic dataset to contain a
high bias with regards to the phoneme distribution. In order to
avoid such a bias, we use a script selection methodology [20].
As the synthesis process can be very time consuming, we em-
ploy a parallelizable framework [21] for this computation.

Lastly, we train an HMM-based aligner to generate
phoneme alignments for the synthesized audio samples. This
aligner outputs a likelihood score for each utterance, where low
scores are correlated to bad phoneme alignment. To ensure that
the synthetic dataset is of good quality, we reject utterances that
produce a bad alignment score because they are likely to be un-
intelligible or noisy. After pruning the phoneme-aligned utter-
ances, we train a StrawNet by firstly training an autoregressive
teacher network on this synthesized dataset, and then distilling
it into a feedforward StrawNet student. The configuration and
training procedures of the autoregressive teacher and feedfor-
ward student networks are as described in

4.4. Evaluation

We run two sets of experiments: one on a single-speaker voice
and one on a two-speaker voice.

In the experiments on a single-speaker voice, to understand
what a “low-data regime” for WaveNet training means, and how
StrawNet can help overcome that, we analyze the difference in
voice quality between a WaveNet teacher, a WaveNet student
and a StrawNet student. We train models on subsets of different
sizes of single-speaker recordings, and investigate the variation
in voice quality as we increase the subset size. We use an en-
US male speaker, referred to as speaker A, for which a total
of 24k recorded utterances is available. We generate subsets
of these recordings of sizes 3k, 5k, 7k, 10k, 15k and 24k. For
the synthesis step in StrawNet, we always generate 40k utter-
ances as this was found to be optimal (cf. §5.2). Note that the
effective number of utterances available for training StrawNet
teacher and student networks is less than 40k, due to the screen-
ing (cf. §53).

In the second set of experiments, we train a two-speaker
voice. In text-to-speech, it is uncommon to have a large num-
ber of recordings (> 10k utterances) from a single speaker.
For speakers with an insufficient number of recordings, the
preferred approach is to train a voice using a multi-speaker
WaveNet, instead of a single-speaker WaveNet, so the speech
characteristics common to all speakers can be jointly learnt.
In our second set of experiments, we compare the voices of a
data-deficient speaker trained using two-speaker WaveNet and
StrawNet models. For this task, we use the recordings from an-
other male en-US speaker, referred to as speaker B, for whom
2500 utterances are available, and train it jointly with 24k utter-
ances of speaker A. To determine the optimal amount of syn-
thesized speech required, we analyze the effect of varying the
number of synthesized examples on the voice quality.

We employ two types of tests to evaluate the StrawNet
approach against the baseline WaveNet. Firstly, MOS (Mean
Opinion Score) tests are carried out, where raters are asked to
score an audio sample on a scale of 1 to 5. Secondly, side-by-
side tests are employed, where raters are presented with two au-
dio files of the same utterance, and are asked to indicate which
one sounds better. We test for statistical significance using a
two-sided t-test with e of 0.01.

We use 1000 sentence test sets, selected to be typical TTS
assistant use cases. Each rater is allowed to rate a maximum of
6 sentences, to reduce personal bias.
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Figure 2: Variation of MOS with the number of input recordings,
for three different models: WaveNet teacher, WaveNet student
and StrawNet student.

Table 1: Numerical comparison of models for different dataset
sizes. Preference scores for StrawNet student over WaveNet stu-
dent are all statistically significant with a p-value < 0.01

Subset ~ WaveNet WaveNet StrawNet % Preference
size teacher student student StrawNet
3k 143 +£0.06 1.55+£0.04 1.66+0.04 58.5%

Sk 336 +0.07 2.05+0.05 3.69=+0.05 98.7%
7k 3.80£0.06 3.28£0.06 3.68 % 0.05 83.2%
10k 393+0.06 3.59+0.05 3.88+0.05 72.7%
15k 4.14 +£0.05 3.82£0.05 4.00+0.05 69.4%
24k 427+£0.04 393+£0.05 4.00=£0.05 55.5%

5. Results and discussion

In this section, we present the results of our experiments com-
paring StrawNet to the baseline WaveNet. We present results
for single-speaker training first, followed by the results of the
two-speaker training scenario.

5.1. Single-speaker experiments

Figure[2]shows graphically the MOS for models trained on sub-
sets of single-speaker recording data of various sizes. We show
the results for the autoregressive WaveNet teacher, feedforward
WaveNet student and feedforward StrawNet student. Table [I]
shows the same comparison numerically, where we also show
these MOS values with 95% confidence interval, and the side-
by-side preference scores for StrawNet student vs WaveNet stu-
dent. We include a WaveNet teacher in our results because that
is the data source for StrawNet. As can be seen from the fig-
ure, the better the synthetic data generator, the better the result-
ing StrawNet, as its training dataset is of higher quality. Audio
samples from the three models in our analysis are available at
https://google.github.io/StrawNet/.

From Figure 2] we can see that there is a remarkable
difference between the MOS of speech synthesized from the
WaveNet teacher and the WaveNet student. This difference is
primarily because of different modelling assumptions of an au-
toregressive network vis-a-vis a feedforward network.

When the number of recordings is below 5k, the WaveNet
teacher is incapable of producing intelligible speech and hence
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Figure 3: Variation of MOS for voice quality of speaker B from
StrawNet trained with increasing number of synthetic examples.
StrawNet can be trained with (light green bar) or without (dark
green bar) speaker A.

Table 2: Side-by-side preference for speaker B’s voice for
StrawNet models (trained jointly with speaker A) on different
number of synthetic examples. The value in row © and column
J represents the percentage of times when model in row 1t is
preferred to model in column j. Preference scores are all sta-
tistically significant with a p-value < 0.01, except 20k-vs-10k*.

' 1k 25k 5k 10k 20k

2.5k 59.8 -
Sk 750 624 - - -
10k 77.0 66.2 584 - -
20k 81.1 744 669 50.1*% -
40k 853 773 68.6 685 61.0

the MOS scores of the WaveNet student, WaveNet teacher and
StrawNet student models are all low. The teacher’s synthe-
sis quality improves as the number of recordings is increased,
whereas the student’s voice quality is consistently lower. This
reinforces our choice of using the autoregressive WaveNet for
synthetic data generation instead of the feedforward student.
From Table[T} we can see that there is a notable preference
for StrawNet over the baseline WaveNet student when the num-
ber of training recordings is between 5k and 15k. We call this
segment of dataset as the “low-data regime” where a Parallel
WaveNet fails to learn a good quality voice but the StrawNet
approach alleviates that. In this low-data regime, the number of
recordings available is plentiful enough to train a good autore-
gressive teacher network, but not enough to distill a good feed-
forward student network. Lastly, an interesting observation we
can draw from Table[Tlis that a StrawNet student model trained
on speech synthesized from an underlying AR model with only
5k recorded samples can provide a better voice quality than a
WaveNet student model trained on 10k recorded samples.

5.2. Two-speaker experiments

The comparison of MOS test results for a two-speaker StrawNet
with a baseline WaveNet is shown in Figure[3] The autoregres-
sive WaveNet teacher is trained using both speakers. Results are
provided for the StrawNet components trained with, and with-
out speaker A. We can see that both the modes are equally effec-

tive and can supersede the baseline WaveNet MOS of 3.5, once
a sufficient number of synthetic utterances is available. Train-
ing a StrawNet on two speakers is beneficial when we have 10k
or fewer synthesized utterances. However, for a greater number
of synthetic examples, a StrawNet trained with just the synthe-
sized speech from speaker B is found to be slightly better. We
hypothesize the reason for this is that mixing synthetized speech
with recorded speech creates confusion for the model.

Since the MOS differences in Figure [3] for StrawNet mod-
els trained on two speaker subsets of different sizes can appear
indecisive, we show side-by-side preference scores in Table 2}
We can see from that table, except for the 10k-20k synthetic
utterances model pair, a larger synthetic dataset is always sig-
nificantly better than a smaller synthetic dataset.

We conclude from the findings in this section that StrawNet
can achieve superior performance to the baseline WaveNet in
a two-speaker training scenario, given a sufficient number of
synthetic examples. Although we did not find an upper bound
on the amount of synthesized speech beyond which StrawNet’s
performance starts plateauing, it would be interesting to see the
comparison for synthetic datasets beyond 40k examples.

5.3. Additional observations

1. When training StrawNet on a mixture of synthetic speech
and recorded speech from the same speaker, we found that
the voice quality was slightly worse than when training on
only synthesized speech. This is also partly observed when
we train a mixture of synthesized speech from speaker B and
recorded speech from speaker A in §5.2}

2. Training a different prosody model for each of the subsets in
§5.1] causes only a small variation in the MOS (= 0.1). To
disregard even this little variation due to prosody, we used a
common prosody model for all subsets, both for the synthe-
sis step and the final evaluation.

3. The effective number of utterances used for training
StrawNet in §5.1] was 40k minus the number of rejected ut-
terances. About 60% utterances were rejected for Sk record-
ings case, and 5% for 40k, which is consistent with the qual-
ity of corresponding WaveNet teachers.

6. Conclusion

We proposed StrawNet — a Self-Training WaveNet that
leverages high-fidelity audio generated by an autoregressive
WaveNet to generate synthetic dataset used to distill a Paral-
lel WaveNet. We showed that StrawNet can be used to im-
prove the voice quality of speech in low-data regimes, where
not enough recordings are available. We argue that this is be-
cause the speech synthesized using an autoregressive WaveNet
is a good proxy for actual recordings if these are not available.
‘We showed that the voice quality is enhanced when we increase
the amount of synthetic training data.

StrawNet could be a useful technique for developing TTS
for low-resource languages. Future work would be to compare
the performance of StrawNet against a fine-tuned multi-speaker
WaveNet model. Finally, an interesting application of StrawNet
would be to improve prosodic variety by training on synthetic
speech generated with paced or expressive prosody.
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