
Automatic Prevention of Accidents in Production
Chang-Seo Park

Google LLC
Mountain View, CA, USA

parkcs@google.com

ABSTRACT
We present a framework for automatically testing functional cor-
rectness of back-end servers. We created a pre-production envi-
ronment where traffic between servers can be reconfigured dy-
namically. Production requests are sampled and replayed in our
framework so that we can cover many corner cases of the system
without having the developer manually write test cases. We also
describe how to handle mutate requests and support checking the
validity of back-end rewrites.

ACM Reference Format:
Chang-Seo Park. 2020. Automatic Prevention of Accidents in Production.
In AST ’20: International Conference on Automation of Software Test (AST
’20), October 7–8, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3387903.3389318

1 INTRODUCTION
Faults in production can be costly. Revenue is lost while the error
is unmitigated in production and many engineer-hours can be lost
while diagnosing and fixing the issue. If it is a potential recurring
issue, even more engineer-hours need to be put in to prevent a
similar issue from happening again.

Production errors are hard to catch pre-release even with tests.
With the popularity of agile methods increasing and more emphasis
being put on testing (e.g., Test Driven Development), most software
is well-tested with unit tests that aim to reach certain coverage met-
rics and integration tests for testing interaction between systems.
However, these tests may not reflect the actual circumstances of
the real production environment for the following (but not limited
to) reasons:

(1) Tests are using incorrect versions of dependent back-end ser-
vices. For a large system with multiple binaries, each binary
may be running at different versions and have different re-
lease schedules. Even if a test for a specific feature is passing,
it may actually be broken in production because of version
mismatches (e.g., a required feature is not yet deployed to
production).

(2) The system-under-test (SUT) is not configured identically
to the production system (e.g., different flags for features or
experiments).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AST ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7957-1/20/05.
https://doi.org/10.1145/3387903.3389318

𝐴1 𝐵1 𝐶1

Figure 1: Production environment for a three-tier service

𝐴1 𝐵1

𝐵2

𝐶1

Figure 2: Pre-production environment with routers can di-
vert traffic to different versions of a particular server

(3) Tests are running with incorrect or unrealistic data. The
test data may not exercise the system thoroughly, leading to
untested code paths.

To compensate for these limitations, we would like to have accu-
rate release tests that can determine if a new release of a server will
keep the system running as expected and not break. Take the exam-
ple three-tier service in Figure 1. If we want to release a new version
of server 𝐵, say 𝐵2, then we can start up a new environment with
the servers 𝐴 and 𝐶 running at version 1, and server 𝐵 at version 2.
Server𝐴 in the test environment has to be wired correctly to server
𝐵2. We would have to spin up separate environments for releasing
server 𝐴 and 𝐶 because the wiring would have to be different.

Instead of spinning up a separate environment for every server
each time release testing is necessary, we provide a pre-production
environment that is a faithful reproduction of the production sys-
tem, including configuration and data, to overcome the limits listed
above.

2 PRE-PRODUCTION ENVIRONMENT
The pre-production environment is a faithful replica of the produc-
tion system, using the same configuration flags and data sources.
To help with testing new release candidates for each server in the
system, we put a router in front of each server that can dynamically
control where to send the traffic to. In Figure 2, the pre-production
environment consists of the servers A, B, C running at their pro-
duction versions (𝐴1, 𝐵1,𝐶1 in this case) and the routers in front of
server B and C. In case we want to test a new version of server B
(𝐵2 in the figure), we can tell the router to divert traffic to server
𝐵2 for server B’s release test traffic.

By default, requests that go to the pre-production environment
go through servers that are the same versions as in production,
including data sources. For read only requests, this allows tests to
work with real data to examine the system based on real usage.
However, it is still up to the developer towrite good release tests that

https://doi.org/10.1145/3387903.3389318
https://doi.org/10.1145/3387903.3389318


AST ’20, October 7–8, 2020, Seoul, Republic of Korea Chang-Seo Park

cover a large fraction of use cases that can confidently determine
whether the new release is ready for production.

In the next section, we describe how to leverage production
traffic to come up with new test cases automatically. For requests
that mutate data, we need extra infrastructure, which we will cover
in section 4.1.

3 AUTOMATED RELEASE TESTINGWITH
SAMPLED REQUESTS

Release testing requires a good set of tests to exercise the production
system thoroughly. The system will only be tested on the parts that
the tests invoke. We need to cover the public API of the system
with variations in the method parameters. The tests would be in
the form of a request and expected response pair.

Writing tests for every corner case is tedious and time consum-
ing. Furthermore, specifying the expected response for each given
request is not an easy task. It would be helpful if we can fully or
even partially automate the effort of writing tests.

One way to cope with the problem is to generate the test cases.
We can have regression tests set up from the previous N days worth
of requests. The current live system would act as the baseline and
be used for the expected responses.

Combining the pre-production system with request sampling,
we have an automated system for testing whether a new release
candidate is fit for production. By sampling from production traffic,
we have test cases that will thoroughly cover common use cases.
With smarter sampling to bias towards rarermethods and parameter
values, we can also increase coverage for the uncommon cases.

We call our system (𝐴𝑃)3: Automatic Prevention of Accidents
in Production for AP1. When any part of the server stack is ready
for a new release, we run the set of sampled requests twice in the
pre-production environment: once where the requests go to the live
versions of all servers and again while diverting traffic to the new
release candidate but keeping the other servers at their live versions.
We collect the differences, filter out noise, and create a report that
helps the developer determine whether the release candidate is
working properly.

4 EXTENSIONS TO THE SYSTEM
4.1 Handling Mutate Queries
Testing for mutates beyond unit and functional testing is difficult
for the following reasons:

(1) Data setup: Some mutations require the state of an account
to be in a particular state for the mutation to be valid.

(2) Destructive writes: Mutations may have destructive effects
that cannot be easily undone, so we need to be careful about
any changes (especially to the production database).

(3) Repeatability: Because of the above two, it is not easy to
run the same mutation test multiple times. Running the same
test multiple times is crucial for version tests or latency tests.

In (𝐴𝑃)3, we address the above difficulties by diverting traffic to
a recorder / replayer as needed. For a sampled mutate request, we
first run in capture mode to create a test case that can be repeatedly
run in testing mode.
1AP stands for Advertiser Platform, but (𝐴𝑃 )3 can be used for any other product.

In capture mode, we collect all the data that is required for
replaying a mutate request. A typical mutate request will read the
current state from the data store and possibly make some external
calls before writing back to the data store. We capture all the read
requests and responses (or mock them if they are irrelevant) made
to the external servers and data stores for replaying later. We use
a data store that supports reading at an earlier timestamp, equal
to when the original query was made, such that we can faithfully
recreate the state when the original mutate request was made. Since
we are replaying a mutate request and don’t want the changes to
be made again, we block the write request to the data store such
that no data is altered in capture mode.

In testing mode, we replay the mutate request by using the
recorded data during capture mode. Any requests that were mocked
will be mocked in the sameway, and the requests that were captured
will be responded with the recorded responses. The final write
request to the data store is also blocked but saved for comparison.
For version testing, we send the same request to the live version
and the release candidate and then compare the two write requests
for equivalence.

4.2 Back-end Refactoring and Rewrites
Oftentimes, back-end code needs to be refactored or rewritten with
changes in the API. We need to make sure that from the client’s
perspective, the responses from the new system do not differ unin-
tentionally from the old system. Automatic validation of the new
system against the old would make code migrations easier. It lessens
the burden of the developer to write tests and check for differences,
and it could do a better job of being more thorough than manually
written test cases.

Comparing the two systems is very similar to version testing,
except that the APIs may be different. We cannot send the same
requests to the old and new systems without a translation layer.
With a translator that can convert requests from the old system
to the new system and convert back the responses from the new
system to the old system, we can use (𝐴𝑃)3 to automatically check
the new system for functional parity.

5 FUTUREWORK
In (𝐴𝑃)3, we use the live version of the system under test for the
expected responses of the requests. This is a good approximation of
the expected responses, but does not work well for bug fixes or new
features. For these cases, we could use predicates for specifying
expected results and still take advantage of the wide coverage
brought by production request sampling. We may even be able
to automatically infer invariants as in Korat [1].

Another issue with version tests is when there all too many
differences in the results. Some of these changes are intentional
(bug fixes) and some of them are irrelevant and can be ignored. We
can help the developers who need to look at long reports by using
machine learning to detect anomalies and only show the differences
that need to be checked manually.

REFERENCES
[1] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:

Automated Testing Based on Java Predicates. SIGSOFT Softw. Eng. Notes 27, 4 (July
2002), 123–133. https://doi.org/10.1145/566171.566191

https://doi.org/10.1145/566171.566191

	Abstract
	1 Introduction
	2 Pre-production Environment
	3 Automated Release Testing with Sampled Requests
	4 Extensions to the System
	4.1 Handling Mutate Queries
	4.2 Back-end Refactoring and Rewrites

	5 Future Work
	References

