
überSpark†: Practical, Provable, End-to-End
Guarantees on Commodity Heterogenous
Interconnected Computing Platforms

Amit Vasudevan
SEI/Carnegie Mellon University

amitvasudevan@acm.org

Petros Maniatis
Google Research

maniatis@google.com

Ruben Martins
CSD/Carnegie Mellon University

rubenm@andrew.cmu.edu

Abstract
Today’s computing ecosystem, comprising commodity het-
erogeneous interconnected computing (CHIC) platforms, is
increasingly being employed for critical applications, con-
sequently demanding fairly strong end-to-end assurances.
However, the generality and system complexity of today’s
CHIC stack seem to outpace existing tools and methodolo-
gies towards provable end-to-end guarantees. This paper
describes our on-going research, and presents überSpark†,
a system architecture that argues for structuring the CHIC
stack around Universal Object Abstractions (üobjects), a fun-
damental system abstraction and building block towards
practical and provable end-to-end guarantees.

überSpark is designed to be realizable on heterogeneous
hardware platforms with disparate capabilities, and facili-
tates compositional end-to-end reasoning and efficient im-
plementation. überSpark also supports the use of multiple
verification techniques towards properties of different fla-
vors, for development compatible, incremental verification,
co-existing and meshing with unverified components, at a
fine granularity, and wide applicability to all layers of the
CHIC stack.

We discuss the CHIC stack challenges, illustrate our design
decisions, describe the überSpark architecture, present our
foundational steps, and outline on-going and future research
activities. We anticipate überSpark to retrofit and unlock a
wide range of unprecedented end-to-end provable guaran-
tees on today’s continuously evolving CHIC stack.

1 Introduction
Today’s commodity heterogeneous interconnected comput-
ing (CHIC) platforms encompass laptops, mobile phones, IoT
devices, robots, drones, and self-driving cars. Such platforms
redefine the way we interact not only for convenience (e.g.,
regulating home temperature and lighting, ordering gro-
ceries) but increasingly for critical applications as well (e.g.,
†In the fictional Transformers universe, the AllSpark is a powerful object
capable of creating a new Transformer by retrofitting ordinary machin-
ery with Sparks – the building blocks of a Transformer. In a similar vein,
überSpark (https://uberspark.org) retrofits the ordinary, commodity,
heterogenous, and interconnected computing platform stack with univer-
sal, verifiable objects (überobjects or üobjects) towards practical, provable,
end-to-end guarantees.

Vitals 

Monitor

Wearable

Health 

Scoring

System

Smart 

Door

Lock
Caregiver 

Tablet

Functional

Guarantees
Security 

Guarantees

Timing 

Guarantees

Information

Flow

Guarantees

Figure 1. ElderSafe, a hypothetical CHIC service for elders
who live in an assisted-care facility. ElderSafe illustrates an
exemplar CHIC stack application comprising heterogeneous
hardware, software, and properties, that make achieving
practical and provable end-to-end guarantees on the CHIC
stack very challenging.

autonomous driving, home security, health care). Conse-
quently, the CHIC stack demands fairly strong end-to-end
guarantees for security, correctness, and timeliness.
Formal verification is a powerful tool for realizing prov-

able guarantees. However, although progress in system ver-
ification technology is gaining momentum [26, 39, 42, 53,
60, 73, 109, 110, 124], the system complexity of today’s CHIC
stack (with a plethora of heterogeneous platforms, config-
urations, and interactions) is rapidly outpacing the arsenal
of current verification tools, most of which focus solely on
specific styles of properties and verification methodologies
(§8). Meanwhile, competitive markets with low cost of entry,
little regulation, and no liability will continue to produce
innovative, attractively priced, continuously evolving inter-
connected computing platforms comprising diverse-origin
and disparate hardware and large (untrustworthy) software
components. This makes achieving practical and provable
end-to-end guarantees on the CHIC stack very challenging.

1.1 Running Example
Consider ElderSafe, a hypothetical CHIC service for elders
who live in an assisted-care facility. For the purposes of

https://uberspark.org


this running example, we limit ElderSafe to a simple task:
collect readings of vital signs from the subject via a wrist
sensor, analyze those readings to classify them as normal
or abnormal (requiring assistance), and, in the latter case,
authorize staff to unlock the door and assist even if the door
is locked (Fig. 1).

We consider an illustrative, concrete ensemble of devices
providing the ElderSafe service: a wearable vitals monitor
(e.g., FDA-approved Caretaker [20] or KardiaBand [2]), an
automated early-warning health-scoring system (e.g., Philips
IntelliVue Guardian [97]) utilizing activity recognition mod-
els [96] (e.g., to predict the likelihood of mortality [100]), an
event-management system that runs on the caregiver phone
or tablet (e.g., Intellivue App [98]), and an off-the-shelf smart
lock (e.g., by Schlage [120]) on the subject’s entry door.

ElderSafe is one of the services offered in a typical, smart
semi-independent assisted-care facility today (e.g., Jewish Se-
nior Life [92]). To be useful, ElderSafemust provide a number
of guarantees of different types, some of which are:

Functional guarantees: unlock the door only when an emer-
gency is detected;

Security guarantees: only authorized staff/nurses can unlock
the door in a detected emergency; only the subject’s
wearable can trigger unlocking of that subject’s door;
only genuine instances of the wearable device operat-
ing under a known configuration can trigger unlocking
of the door;

Timing guarantees: worst-case response time between detec-
tion of emergency and responsive action of unlocking
the door is under 5 minutes;

Information-flow guarantees: no information about unrelated
readings of the wearable, or the subject’s comings and
goings detected via the door lock, can leak to the staff
or the outside world.

Such guarantees, strongly enforced, are essential to ensure
deployability, regulatory compliance, and to save lives.
Note that, although ElderSafe is of limited complexity, it

serves to illustrate a typical CHIC stack application compris-
ing heterogeneous hardware, software, and properties.

2 Design Goals for CHIC Guarantees
We strive for the following goals while realizing ElderSafe:

▶ Provable End-to-End Guarantees – Produce a service
where guarantees are formally verifiable, end-to-end, with
machine-checkable proofs of those guarantees on the soft-
ware implementation running on top of the actual CHIC plat-
form hardware.

▶ Practicality – The verification overhead of ElderSafe
should be minimal both from a construction-time and run-
time perspective. For example, taking 15 person years only
to verify one specific instance of Eldersafe would not be
cost-effective. Similarly, having a verified Eldersafe that is

too slow to detect emergencies and ensure timely interven-
tion would be impractical. Our solution must be develop-
ment compatible (evolvable with iterative versions), power-
efficient, and performant to be practical.

▶ Implementation Generality – Our implementation should
use existing components to the extent possible, rather than
building new hardware, implementing new software on top
of it, and mounting a new verification effort. All of the afore-
mentioned activities are very expensive, and ElderSafe can be
cost effective only reusing existing products when possible.

3 überSpark – Genesis
In this section, we derive the überSpark architecture, the
main contribution of this paper, via a progressive design
exercise for ElderSafe (see Table 1 for a summary).
Our objective is to describe the CHIC stack challenges, il-

lustrate the design decisions that satisfy our goals (§2), and
motivate the main ideas behind überSpark, before presenting
it formally in §4.

3.1 Single Monolithic Verified System
We can try to implement ElderSafe in a single language and
code base (e.g, C), specify properties (e.g., via ACSL Hoare
clauses [46]), prove them mechanically (e.g., using a C veri-
fication framework such as Frama-C [72]), extract runtime
binaries (e.g., via the CompCert certified C compiler [16])
and deploy.
Are we there yet? Unfortunately, this is infeasible for El-
derSafe. By necessity, the vitals monitor, the health-scoring
platform, the smart lock, and the caregiver tablet are dis-
tinct physical hardware platforms. We certainly can’t phys-
ically tether our elderly subject to the door lock, or to the
caregivers. So our solution must accommodate distribution,
inducing an additional design goal:

▶ Hardware Distribution – Ensure that the service can
accommodate physically distinct hardware components and
be meaningfully distributed across them.
Further, our service comprises disparate hardware archi-

tectures: x86 for the health-scoring platform, ARM for the
vitals monitor, and a PIC18 microcontroller unit (MCU) for
the smart lock, and they each have different functional char-
acteristics and capabilities. This implies an additional goal:

▶ Hardware Heterogeneity – The service should be able
to accommodate disparate hardware architectures across its
components.

3.2 Distributed System of Monolithic Blobs
In order to accommodate physically-distinct hardware com-
ponents and disparate hardware, we can make ElderSafe a
distributed system, to have one component per distinct phys-
ical hardware platform. We can then prove properties on
individual components (e.g., with Frama-C), and then prove



Design Design Goals Design
Rationale Generated Features

Domain Requirements (§1.1; §2)
Provable End-to-End Guarantees

−Practicality
Implementation Generality

Single Monolithic Verified
System (§3.1)

Hardware Distribution
−Hardware Heterogeneity

Distributed System of Mono-
lithic Blobs (§3.2) Modularity and Layering üobjects (§4.1)

Components as Collections of
Objects (§3.3) Software Heterogeneity üobject Collections (§4.2)

Hybrid Isolation (§3.4) Resource Closure üobject Resource Interface Confine-
ment (§4.3);

Resource Interface Confinement
(§3.5) Verification Bridging üobject Instantiation and Execution

(§4.4); and üobject Interactions (§4.5)

Verification Bridges (§3.6) Running Correct Object Collections
Allowing Correct Platforms üobject Verification Bridge (§4.6)

Attestation and Authentication
(§3.7) − üobject Reporting (§4.7)

Table 1. überSpark architecture derivation via a progressive design exercise for ElderSafe. For each design rationale, we present
the design goals generated by each iteration of the design excercise, and the corresponding design features that address those
goals. The shaded cells represent the candidate design features that together make up the überSpark architectural components.

end-to-end guarantees about the distributed system (e.g., via
protocol verification on top of TLA+ [76] or Dafny [60]).
Are we there yet? Each monolithic blob is too big to verify
in one piece. The size limit for a single verifiable program
varies by methodology, but it is anecdotally estimated to be
in the tens of thousands of lines of high-level language code
(e.g., C) [60, 124].

In contrast, the Linux kernel alone is several millions of
lines of code [31], and an analytics application on top of it
runs in the hundreds of thousands of lines of code, when
math and machine-learning libraries are included.

Even going beyond size, different functionalities are often
proven in isolation, and then composed to produce a unified
guarantee about a system, for scalability and complexity
purposes [52].
For example, the guarantees for the firmware are very

different from those for the OS kernel or hypervisor, the
health-scoring analytics engine, or the sensing module of
the vitals monitor. Especially for security, isolation of com-
ponents from each other can be of paramount importance.

Finally, especially for the purposes of ElderSafe, some func-
tionality touches on different hardware capabilities that may
require additional care.
For example, the health-scoring application may have li-

braries to speed up computations on a GPU; it would be
infeasible to verify that the GPU remains in some good state

for every one of the millions of lines of code involved in the
health-scoring application libraries.

Therefore, focusing on a single softwaremodule to provide
those additional capabilities may be essential for verification.
Thus, an additional goal emerges:

▶ Modularity and Layering – The service should be able
to decompose its components into separate modules, even
within software on the same hardware platform.

3.3 Components as Collections of Objects
Modularity and layering can be achieved by breaking amono-
lithic blob into a collection of functional, verifiable objects
within a platform.

For example, on the ElderSafe health-scoring platform, the
health-scoring analytics engine and the caregiver tablet sig-
naling interface are broken into verifiable object collections.
We can then isolate memory of objects from each other

within a collection, enforce control-flow integrity, prove
properties about individual objects (e.g., health-scoring ana-
lytics returning a result within a worst-case execution time),
and prove properties about the composition of objects on a
component (e.g., health score computed and transmitted to
the caregiver tablet from the health scoring platform).
Are we there yet? Modularization and isolation typically in-
volve refactoring code and leveraging hardware capabilities
as needed (e.g., de-privileging, virtualization).



While some ElderSafe software components such as OS
kernels are open-source and use open-source development
tool-chains (e.g., Linux), other components such as BIOS and
firmware use proprietary tool-chains and are binary-only
(e.g., Schlage lock firmware [95]).

Further, these software components are often indepen-
dently developed by developers with different pedigree, and
are either completely opaque (e.g., Schlage lock firmware [95])
or have partial API visibility (e.g., health-scoring applet in
Intellivue [44, 45]). This makes achieving modularity and
isolation a challenge, and implies an additional goal:

▶ Software Heterogeneity – The service should accom-
modate diverse-origin software components and make it
possible to ensure all other goals in the presence of partial
visibility and dubious engineering practices.

To make matters worse, a given hardware platform can
have a wide range of capabilities in support of modularity
and isolation (e.g., x86 and ARM processors with and without
hardware virtualization, Intel x86with SGX [63, 91] andARM
Trustzone [30] to contain parts of sensitive data processing,
or PIC18 MCU with a single privileged address space and
built-in memory).
This further motivates the goal of accommodating dis-

parate hardware architectures (hardware diversity), but es-
pecially with respect to functionally-divergent capabilities.

3.4 Hybrid Isolation
We can achieve modularity and layering while accommo-
dating diverse-origin software and hardware with different
capabilities via hybrid isolation.
We can isolate collections via verification when having

visible, verifiable objects in both source and binary (e.g.,
SFI [105]). We can use hardware capabilities (e.g., deprivileg-
ing) to isolate collections from other untrusted components
or trusted but unverified objects.
For example, the vitals-monitor application is split into

a collection of verifiable objects and isolated from the un-
trusted OS within the wearable.
Are we there yet? Unfortunately, this is still insufficient for
ElderSafe. Some software objects do more than what we
need them for (e.g., the vitals monitor app includes a GUI
subsystem [84] when all we really care about is the periodic
transmission of vital sensor readings).

Further, a component contributing to an end-to-end guar-
antee can be characterized by a function (e.g., sensor value
read within the vitals sensor driver), collection of functions
(e.g., SSL library), thread (e.g., smart door lock control), pro-
cess (e.g., caregiver application) or a VM (e.g., health-score
analytics engine) that in turn interacts with other unverified
components for their functionality (e.g., driver relying on
OS kernel support functions).

Achieving efficient hybrid isolation in this multi-granular
execution environment is challenging. This implies an addi-
tional goal:

▶ Resource Closure – Resources contributing towards
an end-to-end guarantee should be encapsulated within an
object at a given granularity (e.g., function, driver, process)
with specified interfaces.

3.5 Resource Interface Confinement
We can define a use policy for a verifiable object that consists
of a specific entry point and resources the object is allowed
to modify. We can then prove properties on the object and
resource closure (e.g., via ACSL and Frama-C as before) while
isolating everything else via hybrid isolation (§3.4).
For example, the vital sensor hardware can be encapsu-

lated by an object within the vital sensor application stack
and isolated from the OS.
Are we there yet? Unfortunately, there are multiple object
collections encapsulating resources, existing on different
hardware platforms, which together achieve an end-to-end
guarantee (e.g., vitals monitor, health-scoring analytics, care-
giver application and smart lock all contribute towards the
guarantee of unlocking the door only when an emergency
is detected).
Further, these objects can be implemented in different

languages (e.g., Java and C for caregiver application, binary
assembly for smart lock firmware), and provide different fla-
vors of properties (e.g., functional, timing; cf. §1.1), which in
turn requires different verification tools and methodologies
(e.g., Frama-C for C [124], Krakatoa for Java [43], Dafny [18]
and ProVerif/CryptoVerif [15] for crypto, TLA+ for protocol
verification [76]).

Furthermore, using different verification tools often im-
plies different formalizations of hardware environment as-
sumptions such as memory, concurrency and interrupts. For
instance, Frama-C only models memory as bytes. Thus, an
additional goal emerges:

▶ Verification Bridging – Verification tools andmethodolo-
gies should be bridged to connect with each other soundly,
and help prove and compose properties of different flavors
on objects running on different hardware environments.

3.6 Verification Bridges
We can enforce strict execution entry and exit points for an
object and extract a sound high-level sequential execution
abstraction, that is consistent with hardware environment
assumptions such as concurrency, pre-emption and memory
ordering, for composing objects.

Different verification tools and methodologies can be brid-
ged via intermediate verification layers (e.g., Why3 [85], Boo-
gie [10]), with hardware environment details (e.g., memory
model, instructions, and device interfaces and semantics) tied
in, and invariants and properties proven at the intermediate
layers.
Are we there yet? Attackers can compromise the unverified
portions of the platform software stack preventing verified



objects from executing in the first place (e.g., smart lock
firmware hijacks [95]).
Further, an adversary can spoof a device altogether (e.g.,

unlock the door via a spoofed wearable). This implies two
additional goals:

▶ Running Correct Object Collections – Ensure that plat-
forms are running the correct (verified) object collections.

▶ Allowing Correct Platforms – Ensure that the correct
platform is participating in the protocol.

3.7 Attestation and Authentication
We can employ platform static and/or dynamic root of trust
[34] in conjunction with code attestation [90, 125] and/or
property-based attestation [21, 75] to ensure that platforms
are running the required (verified) object collections.

Similarly, physical authentication can be leveraged to de-
termine the authenticity of participating platforms [80, 117].
Are we there yet? Yes! We have generated no new obliga-
tions towards achieving our goals (§2).

3.8 The Road to ElderSafe
Table 1 reviews which design goals were foundational re-
quirements, and which were generated by each iteration of
the design exercise.

At this point, we seem to have satisfied our original three
goals of provable end-to-end guarantees, practicality and
implementation generality (§2), as well as the secondary
goals we generated along the way.

Specifically, we adapt to heterogeneous hardware, by split-
ting the system into per-hardware-device collections, and
the verification bridge enables composition of verified col-
lections across hardware differences. We support heteroge-
neous white-box and black-box software via hybrid isolation
(through inspection and verification or via hardware confine-
ment); resource interface confinement enables us to limit the
scope of big blobs of supplied software only to the function-
ality we care to incorporate (and prove guarantees about).
The verification bridge, besides helping with heteroge-

neous hardware and their disparate capabilities, also enables
the bridging across verification disciplines that tackle differ-
ent types of properties.
Generality and practicality are delivered by a combina-

tion of our handling of existing heterogeneous software and
hardware, attestation and authentication for trustworthy
reporting of verified collections, as well as by our use of
language-based and verification-based isolation, rather than
solely using the hammer of hardware de-privileging.
Intuitively, the combination of the aforementioned char-

acteristics and challenges that made ElderSafe tricky and
entailed the different steps in our design genesis naturally
generalize to a broad spectrum of today’s burgeoning CHIC

stack applications: smart-homes, healthcare, smart-grid, au-
tonomous drone deliveries, self-driving cars.

hardware model

Input device

BIOS
Layer

hardware model

Base System

App.
Layer

OS 
Layer

Hyp
Layer

BIOS 
Layer

hardware model

Storage device

BIOS
Layer

hardware model

Network device

BIOS
Layer

hardware model

GP/GPU device

App.
Layer

BIOS 
Layer

hardware model

Platform

(üobject) 

Report

To Remote 

Platform

Vitals 
Monitor
Wearable

Smart
Door 
Lock

Health 
Scoring
System

Caregiver 
Tablet

Figure 2. The überSpark architecture embraces a novel
micro-multi-kernel design paradigm, towards practical and
provable end-to-end guarantees on CHIC platforms. Every
node of the CHIC platform stack is decomposed into (legacy)
unverified components and a collection of protected, verifi-
able, and reportable üobjects (shaded blocks), that retrofit
with the unverified components incrementally, at a fine gran-
ularity, and wide applicability to all layers of the CHIC stack.

4 überSpark – System Architecture
We now describe the überSpark system architecture (see
Fig. 2) distilling from our design goals (§2) and construc-
tive design effort (§3).

The überSpark architecture embraces a novel micro-multi-
kernel design paradigm, towards practical and provable end-
to-end guarantees on CHIC platforms. We draw from both
micro-kernel support for component cohesiveness [73, 82,
115] and multi-kernel support for heterogeneous hardware
[12, 38, 119], but with an emphasis on incremental and com-
positional end-to-end reasoning and efficient implementa-
tion.
At a high level, überSpark divides every node of the CHIC

platform stack into legacy, unverified components and a
collection of protected, verifiable üobjects (see Fig. 2 and
§ 4.1). The überSpark architecture is designed to support the
use of multiple verification techniques towards properties of
different flavors, for development compatible, incremental
verification, co-existing and meshing with unverified com-
ponents, at a fine granularity, and wide applicability to all
layers of the CHIC stack.



signal callers

m
e
t
h
o
d
 
c
a
l
l
e
r
s

legacy callees

ü
o
b
j
e
c
t
 
c
a
l
l
e
e
s

code; 

data; 

stack;

resource

CPU state; 

memory; 

device;

behavior + resource

manifest

Figure 3. The logical building block of überSpark, the üob-
ject provides a design/development-time singleton object
abstraction guarding exclusive indivisible system resources
and supporting shared-memory concurrency and lineariz-
ability. üobjects provide principled call-return interfacing
for entry, interruption, legacy code invocations and other
üobject invocations, enabling fine-granularity meshing with
various CHIC stack programming idioms, while at the same
time facilitating assume-guarantee style reasoning and com-
position in the presence of multi-threaded executions.

4.1 üobjects
The logical building block of überSpark, an üobject, is a sin-
gleton object guarding some exclusive, indivisible resources
such as CPU state and registers, memory, and hardware con-
duits (hardware signaling and data transfer such as device
endpoints, DMA, Mailboxes, etc.).
An üobject implements method callers to access the re-

sources it guards. Method callers are essentially regular func-
tion signatures, along with an access-control list (ACL) on al-
lowed callers (§4.5.1). See Fig. 3 for an illustration. In addition,
an üobject also implements signal callers to handle signals
(interrupts, exceptions, traps, etc.; §4.4), and legacy callees
and üobject callees for principled invocation of legacy, unver-
ified components and other üobjects respectively (§4.5).

An üobject is accompanied by a use manifest. This consists
of a resource specification (§4.3), and an additional formal be-
havior specification [58] of its own method and signal callers,
which guarantee that if some assumptions are satisfied in
how a method or signal caller is invoked, then a property on
the return values is guaranteed to hold upon return of that
method or signal, without mention of internal üobject state.
Logical isolation of üobjects may be enforced via typi-

cal OS and micro-kernel containers. Such external enforce-
ment might be necessary for üobjects running in different
address spaces. However, formally-verified üobjects running
in the same address space need no such external enforce-
ment; they enjoy the same isolation, enforced via machine-
checked proofs. This helps us achieve the sweet spot with
both high performance (there is no hardware de-privileging

or message-passing overheads) and compositional verifica-
tion (üobjects can be verified separately), even in the pres-
ence of other unverifiable (and unavoidable) legacy compo-
nents.

4.2 üobject Collections
An üobject collection is a set of üobjects that share a common
memory address space. Collections are bridged via hardware
conduits (hardware pathways for signaling and data transfer,
e.g., DMA, memory-mapped I/O, etc) or sentinels (§4.5.1).

A special set of üobjects, called primes, are responsible for
instantiating üobject collections on a given platform and/or
a memory address space (§4.4). See Fig 4 for an illustration.

In principle, üobject collections can also be nested, modulo
the hardware providing necessary conduits, e.g., guest OS
üobject collection inside a hardware VM within the base
system collection in Fig 2.

4.2.1 Hardware Model
Every üobject collection also has an associated hardware
model formalizing the CPU andmodeling thememory and as-
sociated hardware conduit end-points. The hardware model
is crucial for verifying properties over collections of hard-
ware state (e.g., state of CPU registers and memory) and
assertions that are part of the üobject contract within and
across üobject collections,

We envision amodular and layered hardwaremodel where
only the required subset of the hardware is modeled and used
during verification, e.g., the hardwaremodel for an Intel SGX-
backed [91] üobject is simpler than an üobject executing
with hypervisor privileges. This greatly aids verification
automation and facilitates validation of the hardware model
against real hardware [87, 103].
We further advocate for the hardware model to be speci-

fied in an abstract specification language (e.g., UML-B [114])
which can then be automatically synthesized down to desired
target languages such as C, Java and Coq [9, 79, 121]. This
allows the hardware model to be more readily integrated
into existing verification toolchains and methodologies that
could be employed to verify an üobject (§5.2).

üobject collections thus abstract heterogeneous hardware
platforms, allowing each collection (along with its üobjects)
to be verified separately down to their hardware states while
allowing composition of such verified properties across col-
lections.

4.3 üobject Resource Interface Confinement
Every üobject includes a resource specificationwithin its man-
ifest that describes possibly sensitive resources that it may
access (e.g., code, data, stack, global system data, CPU state
and collection hardware conduit end-points).

üobjects are held to their resource specification via a com-
bination of hardware and/or software mechanisms.



Prime

(RoT)

legacy / üobject

signal callers

legacy callees

l
e
g
a
c
y
/
 
ü
o
b
j
e
c
t

m
e
t
h
o
d
 
c
a
l
l
e
r
s

i
n
t
e
r
-
ü
o
b
j
e
c
t
 
c
o
l
l
e
c
t
i
o
n

ü
o
b
j
e
c
t
c
a
l
l
e
e
s

Figure 4. überSpark üobject collections are runtime abstractions that comprise a set of üobjects sharing a common memory
address space within a given CHIC stack layer. Collections are boot-strapped by a special set of üobjects called primes, that form
the CHIC platform root-of-trust entities. üobject collections are bridged via sentinels (solid line segments), abstractions that
enforce call routings, enable logical privilege separation, and üobject caller/callee mediation, both within and across üobject
collections, and legacy component invocations (dotted line segments), while permitting flexible implementations.

überSpark can employ the üobject collection hardware
model (§4.2.1) identifying CPU interfaces to üobject resources
(e.g., designated instructions) and software verification to
ensure that access to those interfaces respects the üobject’s
manifest.

Alternatively, hardware mechanisms (e.g., MMU, privilege
protections) and/or binarymanipulations (e.g., SFI [105]), can
be leveraged to hold üobjects to their resource specification.

überSpark resource interface confinement thus supports
shared memory concurrency and linearizability by allowing
distinct system resources to be: (a) managed by designated
üobjects, (b) protected from access by unauthorized üobjects
or legacy components, and (c) regulated in their invocation
via method callers by authorized client üobjects or legacy
components (Fig. 3 and Fig. 4).
The aforementioned capabilities enabled by üobject re-

source interface confinement, in conjunction with üobject
execution and interaction mechanisms (§4.4 and §4.5) facili-
tate assume-guarantee style reasoning and composition of
verified properties on the CHIC stack, while allowing efficient
multi-threaded executions.

4.4 üobject Instantiation and Execution
An üobject can be statically or dynamically instantiated. A
special collection of üobjects, called prime, is responsible
for boot-strapping üobject execution within a given üobject
collection (see Figure 4; cf. §4.7).

Primes1 can employ different isolation mechanisms such
as software fault isolation [105] and hardware-assisted con-
tainerization [7, 32, 33] to instantiate üobject collections in
a protected manner. Primes also initialize the üobject collec-
tion CPUs, operating stacks, and policies before kick-starting
üobject interactions.
An üobject may be concurrent or sequential. überSpark

decouples execution threads from execution domains, i.e.,
an execution trace can span multiple üobjects and across
multiple collections.
üobjects can also incur hardware signals such as traps,

exceptions, or interrupts. In such cases, hardware capabil-
ities are employed to save the current üobject state before
handling the signal, either within the source üobject (via sig-
nal callers; § 4.1) or another üobject by employing sentinels
(§4.5.1). Once the signal is processed, the source üobject is
resumed once again via sentinels.
These design choices enable abstracting concurrent and

asynchronous üobject executions as sequential interleav-
ings facilitating verification (e.g., contextual refinement [53]),
while supporting the use of commodity signal and thread-
ing mechanisms (e.g., deferred procedure calls, user-mode

1überSpark primes are akin to primes from the fictional Transformers
universe which are the highest ranking Transformers that can create other
Transformers, and form singular entities that exist (and must exist) threaded
through all continuities.



and kernel-mode preemptive threading, light-weight non-
preemptive threading etc.).

4.5 üobject Interactions
üobject interactions can be divided into intra-collection,
inter-collection and legacy component invocations (Fig. 4).
Intra-üobject collection and inter-üobject collection inter-
actions occur via üobject callees while legacy invocations
occur via legacy callees (§4.1).
Such interactions model function call-return semantics

using a combination of hardware capabilities and software
verification. This enables compositional reasoning of the
üobject properties [50, 52, 67, 124], i.e, allow properties of
üobjects to be specified in terms of their interactions with
other üobjects and collections, yet being able to verify those
properties separately on each üobject in isolation, while
meshing with (legacy) unverified components at the desired
granularity.

üobject interactions can happen via software and/or hard-
ware conduits and are facilitated by the sentinel abstraction
as described below.

4.5.1 Sentinels

Sentinels2 mediate üobjects interactions and ensure that
the caller may invoke a given üobject method on the callee
according to the üobject manifest (§4.3; Fig. 4.2). If caller and
callee are both verified, then no runtime check is required
because üobject verification enforces the call policy. This
results in efficient runtime performance (e.g., no hardware
de-privileging overhead). If either the caller or the callee is
unverified, the sentinel consults the policy dynamically and
allows or rejects the call accordingly.
In addition to the runtime checks, sentinels are responsi-

ble for transferring control among üobjects, switching stacks,
and handling hardware signals by employing the appropri-
ate control-transfer method for the isolation mechanism
imposed on the üobject.

For example, if two üobjects are both verified and have the
same isolation mechanism (e.g., SFI [105]), then the control
transfer is just a function call. But if one has a different
isolation mechanism (e.g., hardware segmentation), then
the sentinel implements the control transfer leveraging the
appropriate hardware capabilities, e.g., for segmentation,
switches privilege levels, stacks, and marshals arguments.
Similarly for hardware signals, the sentinel employs the

appropriate hardware capabilities (e.g., trap state areas) to
handle the signal either within the source üobject or by
passing control to another üobject.

2überSpark sentinels are aptly named after the sentinel Transformers in
the fictional Transformers universe, which are guard Transformers designed
to combat renegades.

üobject 
collection

hardware model

UOA High-level 
Specifications

Verification Tools
(e.g., Frama-C, Coq)

Intermediate 
Verification 
Languages 

(e.g., Why3, Boogie)

Provers 
(e.g., Z3, CVC4)

B
i
n
a
r
y
 
T
o
o
l
c
h
a
i
n
 

(
e
.
g
.
,
 
C
o
m
p
c
e
r
t
,
 

L
L
V
M
/
c
l
a
n
g
)

üobject/ 

üobject collection

Binaries

UOA Verification Bridge

üobjects sentinels

üobject/ 

üobject collection

Proofs

Figure 5. The überSpark verification bridge facilitates
assume-guarantee style reasoning on the CHIC stack and
makes it possible for compositional üobject verification and
binary generation while allowing the use of multiple verifi-
cation tools and techniques.

Sentinels can also be realized using hardware conduits
such as legacy I/O, memory-mapped I/O, DMA, and mail-
boxes [8, 32]. In such cases, interactions are enforced via
üobject resource interface confinement (§4.3).

4.6 üobject Verification Bridge
überSpark reasoning relies foundationally on the following
set of properties that must hold throughout the execution
of an üobject: (a) üobject base invariants, and (b) üobject-
specific properties.

üobject base invariants are properties that need to hold re-
gardless of what the üobject implements and includememory
safety, memory integrity and (internal) control flow integrity.
These invariants include ensuring correct stack frame setup
and teardown, ensuring the absence of buffer overflows, (oth-
erwise returns could land at arbitrary üobject program sites),
parameter marshaling, routing of external calls via sentinels,
privilege-level enforcement, etc.

üobject base invariants make assume-guarantee reasoning
on the CHIC stack tractable, and make it possible for üobject
code to be reasoned about in a compositional manner. The
base invariants are also designed to be verified automatically,
without developer assistance (e.g., using abstract interpreta-
tion techniques [68, 72] or binary-level enforcement [105]),



to allow retrofitting üobjects into an existing legacy unveri-
fied codebase with minimal effort.

üobject-specific properties on the other hand, depend on
the desired end-to-end guarantees, the resources that the
üobject encapsulates, and the üobject implementation.
The üobject verification bridge (see Fig. 5) is based on a

key observation that a vast majority of today’s state-of-the-
art formal analysis tools integrate with (inter-convertible)
common verification languages (e.g., Why3, Boogie) [6].
However, existing intermediate languages do not cap-

ture both software and hardware requirements expressively.
Therefore, überSpark defines a high-level abstract specifica-
tion language for the üobject invariants and üobject execu-
tion semantics including sentinels, resource confinement,
and the collection hardware model.
The verification bridge translates the üobject invariants

and execution semantics to an existing intermediate veri-
fication language and/or specification, which can then be
used by a specific verification tool and/or methodology in
order to prove various classes of üobject-specific properties,
including properties over hardware states.

4.7 üobject Reporting
überSpark enables collecting and reporting measurements
(e.g., SHA-1, property based attestation [21]) of üobject in-
stantiations within and across platforms. This ensures that
platforms are running the correct stack of (verified) üobject
collections.

The special set of üobjects, primes, which instantiate üob-
ject collections (§4.4), are also responsible for collecting and
reporting üobject measurements.
There can be multiple primes across multiple collections

within a given platform chaining together collection mea-
surements (Fig. 2); a root-prime forms the root-of-trust for
measurements in such cases3.

Root-of-trust within a prime can be implemented entirely
in software (e.g., via static root of trust and software TPM [99]),
entirely in hardware (e.g., via dynamic root of trust and hard-
ware TPM [51]), or a combination of hardware and software
(e.g., static root of trust and hardware TPM).

überSpark primes can also be extended to allow üobject
instantiation via white-listing [126] and to provide physical
platform authentication using an external verifier in the form
of software-based attestation [106].

4.8 ElderSafe in überSpark

Finally, we revisit how the described überSpark architecture,
as instantiated on ElderSafe, satisfies our design goals for
CHIC stack guarantees (§2; cf. §3.8).

3This is in a similar vein to the doctrines of the fictional Transformers
universe where the prime Transformer that is designated as the leader
of all the other Transformers holds the Matrix of Leadership that allows
harnessing the wisdom of all the other primes.

Since there are four distinct CHIC hardware platforms in-
volved in ElderSafe (§1.1), there are four corresponding prime
üobject collections, one for each of the smart lock, the wear-
able vitals monitor, the health scoring workstation, and the
caregiver’s tablet.
Each prime üobject collection is responsible for estab-

lishing a static root of trust for each platform, as well as a
dynamic root of trust for the health scoring system, which
may be co-tenant with other software on the workstation.

An additional prime üobject collection deals with the static
root of trust on the health scoring workstation GPU.
Each prime üobject collection manages corresponding

üobject collections within the underlying hardware platform.
For example, zooming in on the wearable platform, the prime
manages one collection each for the vital-sensing application,
the sensing-hardware driver within the OS, as well as the
platform collections supporting the boot-up firmware, while
reporting on other software and the hardware state; these are
distinct collections because they handle different high-level
functionalities and resources.

The prime also takes care to create these collections (and
their constituent üobjects) with the right isolation container:
the vitals-monitoring application is vast and proprietary, so it
must be contained via a combination of software verification
and hardware de-privileging, whereas the boot-up firmware
can be verified and need not be virtualized or otherwise
isolated via hardware mechanisms.
Although the wearable platform’s prime creates these

collections of üobjects, a number of sentinels on the platform
handle on-going object interactions: object-to-object calls
within each collection, measurement calls for attestation,
inter-process or multi-processor communication calls across
address spaces and cores, respectively, etc.

Importantly, the vitals-monitoring application üobject col-
lection needs its sentinel in particular, because it must filter
out the vast functionality of the vitals-monitoring applica-
tion, including a GUI, and only keep the few sensing APIs
needed by ElderSafe.

The sentinels enforce Resource Interface Confinement on
this application, only allowing information about the needed
sensor readings, and therefore achieving resource closure.
Providing guarantees (security and functional) on the

wearable üobject collections requires bridging hardware ab-
stractions on the ARM platform and the memory abstrac-
tions of the C/Java runtime executing the vitals-monitoring
application.

For example, to provide real-time guarantees about the de-
livery of a sensed signal to collections on a different platform
(e.g., the health-scoring application on the workstation), the
verification bridge must expose the concurrency model to a
worst-case execution-time framework.

Although this is a brief slice of the überSpark primitives
in the context of ElderSafe, they demonstrate how the archi-
tecture makes it tractable to reason about a complex CHIC



system design, yet adhere to the design goals we set out to
achieve.

5 Research Directions and Opportunities
We now discuss interesting research directions that stem
from the überSpark architecture (§4) and existing tools and
methodologies that überSpark can benefit from.

5.1 Creation of üobjects
üobjects can be created from the existing CHIC stack by identi-
fying the resources being isolated towards a specific property,
and then paring away code that closely operates on such
resources. überSpark can readily benefit from program slic-
ing [55, 72, 102, 128], data dependency analysis [72, 86], and
program synthesis [40, 41, 57], to automatically identify such
code fragments for common languages such as C, C++, and
Java. For binary-only components, überSpark can leverage
binary analysis platforms [19, 61] to locate, slice, and stitch
together such code fragments. In the long term, machine
learning techniques for optimizing existing binary code for
a purpose [104] or forms of summarization and question
answering [4, 22, 54] may help in this task.

5.2 Verification of üobjects
For open-source üobjects that are written in common lan-
guages, überSpark can employ refinement proofs [53, 59,
73], source-code level verification [60, 77, 124], and push-
button style verification [94, 109, 110, 133] to prove üobject
properties. Additionally, for some languages (e.g., C, Assem-
bly, ML), überSpark can leverage certified compilers [16, 17,
25, 78, 116], certified parsers and code generation frame-
works [11, 24, 25, 69], in association with proven-correct
assemblers [71], to translate verified properties into proven-
correct binaries. For languages unable to benefit from such
schemes or for binary-only üobjects, überSpark allows instru-
menting the resulting binary code with assertions satisfying
required properties [13, 73, 112, 113]. Similarly, for concur-
rent üobjects we can employ contextual refinement [53],
while sequential üobjects can be reasoned with Hoare logic
[60, 77, 124].

5.3 üobject Resource Interface Confinement (RIC)
überSpark can employ hardware capabilities such as IOMMU
[32] and MMU for RIC of memory and devices; hardware de-
privileging can be used for RIC of CPU instructions. Where
performance is key or where hardware has limited capabil-
ities überSpark can benefit from model-checking [27], ab-
stract program interpretation [72], and software fault isola-
tion [105] to achieve RIC at both source and binary levels.
Finally, überSpark can leverage (and inform) hardware break-
points as well as hardware-assisted instruction level guards
(e.g., Intel MPX [32]) to enforce efficient fine-grained RIC.

In the long term, we envision überSpark to inform next gen-
eration of hardware capabilities towards efficient RIC (e.g.,
MPX guards for privileged instructions).

6 Foundational Steps
As with any vision, we first must learn to walk towards our
goals, before we can run. We now describe our foundational,
walking steps towards realizing the überSpark vision.

As a first step, we set out to refactor an existing com-
modity open-source micro-hypervisor, the eXtensible Micro-
Hypervisor Framework (XMHF)4, for the x86 platforms into
a üobject collection. XMHF is written in C and Assembly and
allows for the micro-hypervisor framework to be extended
with extensions to support required functionality [123]. Our
goal was to leverage this existing micro-hypervisor function-
ality and create a prime üobject collection that would enable
instantiating üobjects on desired layers of the CHIC stack on
x86 hardware platforms and also serve as the foundation for
üobject reporting.

We were able to refactor XMHF into 14 üobjects within 6
months, in an incremental fashion, co-existing with regular
development [124].
üobject invariants were automatically proven and com-

posed using the Frama-C [72] verification framework, along
with a x86 hardware model and assembly language dialect
(called CASM) that we developed to work in conjunction
with Frama-C. We have so far been able to verify and bridge
properties such as memory safety, control-flow integrity,
and information flow as trace properties automatically and
directly on the source code. We have also been able to auto-
matically prove supporting üobject-specific functional cor-
rectness properties.

The verification was bridged with the Compcert [16] certi-
fied compiler for binary generation. We were able to support
verified üobjects co-existing and meshing with unverified
components at multiple granularities, with üobject Resource
Interface Confinement (RIC) enforced using IOMMU, MMU
(regular and nested page-tables) and pure software verifica-
tion. The runtime performance overhead for a collection of
verified üobjects was less than 2% [124].

Open-source development now continues as the über eX-
tensible Micro-Hypervisor Framework (überXMHF)5, which
is XMHF in the überSpark architecture.
Encouraged by our results on x86 – a particularly rich

hardware platform – we turned to low-cost ARM platforms.
To this end, we have implemented the first ARMv8 micro-
hypervisor based on überXMHF, that currently supports the
ubiquitous low-cost Raspberry Pi 3 computing platform [122].

Our ARMv8 based micro-hypervisor implementation uses
a novel lightweight trap-inspect-forward (TIF) mechanism
to selectively trap and inspect critical peripheral register

4http://xmhf .org
5https://uberxmhf .org

http://xmhf.org
https://uberxmhf.org


accesses, before forwarding the access directly to the phys-
ical system peripherals. The TIF building block allows us
to efficiently implement resource interface confinrment of
memory, devices, and DMA, including interrupts, without
the requirement of hardware support. This is essential, be-
cause such hardware support, e.g., an IO Memory Manage-
ment Unit (IOMMU) or a Generic Interrupt Controller (GIC),
is absent on Raspberry Pi3 and similar low-cost platforms.
Further, we achieve all this with low complexity, since we do
not resort to complex peripheral emulation and state main-
tenance. We are able to run Raspbian and realtime linux
distributions with runtime overheads of 2-6% [122].
Lastly, we have explored üobject threading and schedu-

lability in the presence of legacy unverified code. We have
developed a real-time mixed-trust scheduling framework
that is able to offer precise timing guarantees for protected
üobjects, while co-existing with a regular (untrusted) legacy
OS schedulers [36].
To verify the timing correctness of potentially safety-

critical üobjects in our mixed-trust scheduling framework,
we propose a new mixed-trust task model and construct a
detailed schedulability analysis. We also present the design
and implementation of a coordination protocol between the
legacy guest OS scheduler and the micro-hypervisor based
scheduler (called hyper-scheduler) to preserve the synchro-
nization between üobject executions and untrusted compo-
nents while preventing dependencies that can compromise
üobject executions.
Our current hyper-scheduler implementation consists of

a non-premptive scheduler üobject which operates in con-
junction with the open-source ZSRMV6 Linux OS scheduler,
boot-strapped by the überXMHF prime üobject collection
on an ARMv8 platform [36].

7 Present Activities
We are presently finishing up the überSpark language frame-
work that enforces the üobject abstraction within any ex-
isting legacy C and Assembly code-base, towards assume-
guarantee (compositional) reasoning on the CHIC stack. This
will enable us to automate all the invariants that were man-
ually constructed during the verification effort of the x86
implementation of our micro-hypervisor prime üobject col-
lection (§6). We will refactor the x86 micro-hypervisor prime
üobject collection implementation using the überSpark lan-
guage framework as part of evaluating the language efficacy.

More broadly, the überSpark language framework, will en-
able automated verification of foundational properties such
as memory safety, memory integrity and control-flow in-
tegrity for any existing C and Assembly CHIC stack codebase,
thereby supporting development compatible, incremental
and composable verification that can keep pace with the
codebase evolution.

6https://github.com/cps-sei/zsrmv

Work is also underway to verify the ARMv8 implementa-
tion of our micro-hypervisor prime üobject collection (§6).
We will be leveraging the überSpark language framework, in
addition to adding relevant ARMv8 hardware modeling, to
verify additional properties that can be formulated as invari-
ants (e.g., information flow) as well as supporting functional
correctness properties.
We are further investigating meshing of different flavors

of properties, such as timing and logical properties, in the
context of our hyper-scheduler implementation (§6). Reason-
ing based on timed automata is proving to be a very useful
building piece in this context.
Last but not least, we are exploring other existing, ubiq-

uitous, legacy code bases such as the Linux OS kernel7, the
PX4 open-source autopilot8, and Open vSwitch (OVS)9 to
provide verified properties such as dependable interrupts,
threading, secure inter-process communications and net-
work level packet-flow attribution (e.g., via trustworthy IoT
security gateways [89]).
We anticipate the überSpark architecture, language, and

development tool-chain, in conjunction with our verified
micro-hypervisor prime üobject collections, to facilitate in-
cremental and composable verification of such existing legacy
codebases, in a development compatible manner.

8 Related Work
Micro-kernels [1, 56, 64, 81, 82, 108, 115, 130], separation ker-
nels [66, 101], MILS [5], isolation kernels [129], exo-kernels
[37, 62, 70], small-TCB hypervisors [23, 29, 35, 49, 107, 111,
118, 123], lightweight process contexts [83], and type-safe
containerization kernels [14, 39], attempt to minimize bugs
via privilege disaggregation. However, they do not provide
any formal guarantees or privileged code disaggregation;
they remain vulnerable to the attacks against small ker-
nels [47, 48].
Approaches verifying a privileged OS kernel both in a

monolithic [28, 42, 65, 73, 74, 77, 88, 93, 105, 123, 127, 132]
and compositional manner [52, 53, 124] primarily focus on
the verification methodology that best applies to a specific
subsystem (e.g., kernel or hypervisor). However, it is unclear
if such methodologies can individually be applicable to ev-
ery component of a CHIC stack, e.g., specifying interactions
among verified and unverified components. Furthermore,
they often rely on deep refinement proofs that are likely to
be prohibitive for a rapidly evolving CHIC stack.
Recent full-system stack-verification approaches impres-

sively verify the entire OS, application stack, and in some
cases the hardware platform [3, 60, 131]. However, changes
in system configuration entail lengthy, costly re-verification
(sometimes, measuring many person years). Further, they are

7https://kernel.org
8https://px4.io
9https://openvswitch.org

https://github.com/cps-sei/zsrmv
https://kernel.org
https://px4.io
https://openvswitch.org


bound to a specific platform or programming paradigm and
lack support for co-existence with unverified components.

9 Conclusions
Taking stock of today’s computing ecosystem, and advances
in verification technologies we asked ourselves: How do
we achieve practical, provable end-to-end guarantees on to-
day’s complex commodity heterogeneous interconnected edge-
computing (CHIC) platforms? Our inability to find a satisfy-
ing answer motivated the genesis of überSpark. Elements
of überSpark act in synergy to offer required capabilities for
achieving provable end-to-end guarantees on the CHIC stack.
While we expect a myriad of implementation hurdles in our
quest, we are encouraged by our early results and on-going
research in this direction. We anticipate überSpark to en-
able the combination of otherwise incompatible hardware,
software, and tools towards offering strong guarantees for
tomorrow’s user on today’s evolving CHIC platforms.

Availability
Active open-source development of überSpark continues at:

https://uberspark.org

Acknowledgements
We thank Sagar Chaki, Anupam Datta, and Limin Jia for
their deep insights and feedback during the early stages of
überSpark. We also thank Martin Abadi, Dionisio de Niz,
Grace Lewis, Matt Loring, and Andrew Ferraiuolo for their
reviews and feedback. Finally, we thank various anonymous
reviewers for their detailed comments and feedback through-
out different stages of research and development connected
to the überSpark architecture and components.

This work was funded and supported by the Department
of Defense under Contract No. FA8702-15-D-000210
10Copyright 2020 ACM.

This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a
federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFT-
WARE ENGINEERING INSTITUTEMATERIAL IS FURNISHED ON AN "AS-
IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PUR-
POSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREE-
DOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
DM20-0448

References
[1] Michael J. Accetta, Robert V. Baron, William J. Bolosky, David B.

Golub, Richard F. Rashid, Avadis Tevanian, and Michael Young. 1986.
Mach: A New Kernel Foundation for UNIX Development. In USENIX
Summer. USENIX Association, 93–113.

[2] AliveCor. 2020. KardiaBand: Take an EKG anytime, anywhere. https:
//www.alivecor.com/. Accessed: May 28, 2020.

[3] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach, N. W. Schirmer,
A. Starostin, and A. Tsyban. 2009. Balancing the Load: Leveraging
Semantics Stack for Systems Verification. 42, Numbers 2-4 (2009),
389–454.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq:
Generating Sequences from Structured Representations of Code. In
ICLR (Poster). OpenReview.net.

[5] Jim Alves-Foss, Paul W. Oman, Carol Taylor, and Scott Harrison. 2006.
The MILS architecture for high-assurance embedded systems. IJES 2,
3/4 (2006), 239–247.

[6] Michael Ameri and Carlo A. Furia. 2016. Why Just Boogie? - Trans-
lating Between Intermediate Verification Languages. In IFM (Lecture
Notes in Computer Science), Vol. 9681. Springer, 79–95.

[7] ARM. 2010. Virtualization Extensions Architecture Specification.
http://infocenter.arm.com. Accessed: May 28, 2020.

[8] ARM. 2020. ARM Architecture Reference Manuals. https://
developer.arm.com/docs/ddi0487/fb. Accessed: May 28, 2020.

[9] Astah Inc. 2016. Astah UML2C. https://astah.net/product-plugins/
uml2c-export/. Accessed: May 28, 2020.

[10] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier
for Object-Oriented Programs. In FMCO (Lecture Notes in Computer
Science), Vol. 4111. Springer, 364–387.

[11] Aditi Barthwal and Michael Norrish. 2009. Verified, Executable Pars-
ing. In ESOP (Lecture Notes in Computer Science), Vol. 5502. Springer,
160–174.

[12] Andrew Baumann, Paul Barham, Pierre-Évariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The multikernel: a new OS architecture
for scalable multicore systems. In SOSP. ACM, 29–44.

[13] Cinzia Bernardeschi, Nicoletta De Francesco, Giuseppe Lettieri, Luca
Martini, and Paolo Masci. 2008. Decomposing bytecode verification
by abstract interpretation. ACM Trans. Program. Lang. Syst. 31, 1
(2008), 3:1–3:63.

[14] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün
Sirer, Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan J.
Eggers. 1995. Extensibility, Safety and Performance in the SPIN
Operating System. In SOSP. ACM, 267–284.

[15] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols
with the Applied Pi Calculus and ProVerif. Found. Trends Priv. Secur.
1, 1-2 (2016), 1–135.

[16] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal Ver-
ification of a C Compiler Front-End. In FM (Lecture Notes in Computer
Science), Vol. 4085. Springer, 460–475.

[17] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. 2013. A Formally-Verified C Compiler Supporting
Floating-Point Arithmetic. In IEEE Symposium on Computer Arith-
metic. IEEE Computer Society, 107–115.

[18] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath T. V. Setty, and
Laure Thompson. 2017. Vale: Verifying High-Performance Crypto-
graphic Assembly Code. In USENIX Security Symposium. USENIX
Association, 917–934.

[19] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. 2011. BAP: A Binary Analysis Platform. In CAV (Lecture
Notes in Computer Science), Vol. 6806. Springer, 463–469.

[20] Caretaker Medical. 2018. Wireless CNIBP and Vital Signs. http:
//www.caretakermedical.net/. Accessed: May 28, 2020.

https://uberspark.org
https://www.alivecor.com/
https://www.alivecor.com/
http://infocenter.arm.com
https://developer.arm.com/docs/ddi0487/fb
https://developer.arm.com/docs/ddi0487/fb
https://astah.net/product-plugins/uml2c-export/
https://astah.net/product-plugins/uml2c-export/
http://www.caretakermedical.net/
http://www.caretakermedical.net/


[21] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-
Reza Sadeghi, and Christian Stüble. 2006. A protocol for property-
based attestation. In STC. ACM, 7–16.

[22] Qingying Chen and Minghui Zhou. 2018. A neural framework for
retrieval and summarization of source code. In ASE. ACM, 826–831.

[23] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrah-
manyam, Carl A. Waldspurger, Dan Boneh, Jeffrey S. Dwoskin, and
Dan R. K. Ports. 2008. Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. InASPLOS.
ACM, 2–13.

[24] Adam Chlipala. 2008. Parametric higher-order abstract syntax for
mechanized semantics. In ICFP. ACM, 143–156.

[25] Adam Chlipala. 2010. A verified compiler for an impure functional
language. In POPL. ACM, 93–106.

[26] Adam Chlipala. 2013. The bedrock structured programming sys-
tem: combining generative metaprogramming and hoare logic in an
extensible program verifier. In ICFP. ACM, 391–402.

[27] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool
for Checking ANSI-C Programs. In TACAS (Lecture Notes in Computer
Science), Vol. 2988. Springer, 168–176.

[28] Ernie Cohen,Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,
Michal Moskal, Thomas Santen,Wolfram Schulte, and Stephan Tobies.
2009. VCC: A Practical System for Verifying Concurrent C. In TPHOLs
(Lecture Notes in Computer Science), Vol. 5674. Springer, 23–42.

[29] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
TimDeegan, Peter Loscocco, and AndrewWarfield. 2011. Breaking up
is hard to do: security and functionality in a commodity hypervisor.
In SOSP. ACM, 189–202.

[30] Rob Coombs. 2015. Securing the Future of Authentication with
ARM TrustZone-based Trusted Execution Environment and Fast
Identity Online. https://community.arm.com/cfs-file/__key/telligent-
evolution-components-attachments/01-2142-00-00-00-01-06-
27/TrustZone-and-FIDO-white-paper-final.pdf. Accessed: May 28,
2020.

[31] Jonathan Corbet, Greg Kroah-Hartman, and Amanda McPherson.
2015. Linux Kernel Development How Fast it is Going, Who
is Doing It, What They are Doing, and Who is Sponsoring It.
https://www.linuxfoundation.org/events/2015/02/linux-kernel-
development-how-fast-it-is-going-who-is-doing-it-what-they-
are-doing-and-who-is-sponsoring-it-2015/. The Linux Foundation
(2015). Accessed: May 28, 2020.

[32] Intel Corporation. 2016. Intel Architecture Software Developer Man-
ual. https://software.intel.com/content/www/us/en/develop/articles/
intel-sdm.html. Accessed: May 28, 2020.

[33] Intel Corporation. 2016. Software Guard Extensions Programming
Reference. https://software.intel.com/sites/default/files/managed/
48/88/329298-002.pdf. Accessed: May 28, 2020.

[34] Intel Corporation. 2019. Intel Trusted Execution Technology –
Software Development Guide. http://cqcontent.intel.com/content/
dam/www/public/us/en/documents/guides/intel-txt-software-
development-guide.pdf Document number 315168-016. Accessed:
May 28, 2020.

[35] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram S.
Adve. 2007. Secure virtual architecture: a safe execution environment
for commodity operating systems. In SOSP. ACM, 351–366.

[36] Dionisio de Niz, Björn Andersson, Mark H. Klein, John P. Lehoczky,
A. Vasudevan, Hyoseung Kim, and Gabriel A. Moreno. 2019. Mixed-
Trust Computing for Real-Time Systems. In RTCSA. IEEE, 1–11.

[37] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. 1995.
Exokernel: An Operating System Architecture for Application-Level
Resource Management. In SOSP. ACM, 251–266.

[38] ETH Zurich and Microsoft Research. 2018. Barrelfish OS. http:
//www.barrelfish.org/. Accessed: May 28, 2020.

[39] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen C. Hunt, James R. Larus, and Steven Levi. 2006. Language sup-
port for fast and reliable message-based communication in singularity

OS. In EuroSys. ACM, 177–190.
[40] Yu Feng, RubenMartins, Osbert Bastani, and Isil Dillig. 2018. Program

synthesis using conflict-driven learning. In PLDI. ACM, 420–435.
[41] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.

Reps. 2017. Component-based synthesis for complex APIs. In POPL.
ACM, 599–612.

[42] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using verification to disentangle secure-
enclave hardware from software. In SOSP. ACM, 287–305.

[43] Jean-Christophe Filliâtre and Claude Marché. 2007. The
Why/Krakatoa/Caduceus Platform for Deductive Program Verifica-
tion. In CAV (Lecture Notes in Computer Science), Vol. 4590. Springer,
173–177.

[44] US Food and Drug Administration. 2011. Philips IntelliVue
GuardianSoftware Rev A.00. https://www.accessdata.fda.gov/
cdrh_docs/pdf11/K111905.pdf. Accessed: May 28, 2020.

[45] US Food and Drug Administration. 2018. Philips IntelliVue
GuardianSoftware Rev D.0. https://www.accessdata.fda.gov/
cdrh_docs/pdf18/K180534.pdf. Accessed: May 28, 2020.

[46] Frama-C Team. 2015. ACSL: ANSI/ISO C Specification Language v1.9.
http://www.frama-c.com. Accessed: May 28, 2020.

[47] Jason Franklin, Sagar Chaki, Anupam Datta, and Arvind Seshadri.
2010. Scalable Parametric Verification of Secure Systems: How to
Verify Reference Monitors without Worrying about Data Structure
Size. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 365–379.

[48] Jason Franklin, Arvind Seshadri, Ning Qu, Sagar Chaki, and Anu-
pam Datta. 2008. Attacking, Repairing, and Verifying SecVisor: A
Retrospective on the Security of a Hypervisor. Technical Report CMU-
CyLab-08-008. CMU CyLab.

[49] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. 2003. Terra: a virtual machine-based platform for trusted
computing. In SOSP. ACM, 193–206.

[50] Deepak Garg, Jason Franklin, Dilsun Kirli Kaynar, and Anupam Datta.
2010. Compositional System Security with Interface-Confined Ad-
versaries. In MFPS (Electronic Notes in Theoretical Computer Science),
Vol. 265. Elsevier, 49–71.

[51] Trusted Computing Group. 2003. Trusted platform mod-
ule main specification, Version 1.2, Revision 103. https://
trustedcomputinggroup.org/resource/tpm-main-specification/. Ac-
cessed: May 28, 2020.

[52] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers.
In POPL. ACM, 595–608.

[53] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman)Wu, Jieung
Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Kernels.
In OSDI. USENIX Association, 653–669.

[54] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim.
2017. DeepAM:Migrate APIs withMulti-modal Sequence to Sequence
Learning. In IJCAI. ijcai.org, 3675–3681.

[55] Christian Hammer and Gregor Snelting. 2004. An improved slicer
for Java. In PASTE. ACM, 17–22.

[56] Per Brinch Hansen. 1970. The nucleus of a multiprogramming system.
Commun. ACM 13, 4 (1970), 238–241.

[57] William R. Harris and Sumit Gulwani. 2011. Spreadsheet table trans-
formations from examples. In PLDI. ACM, 317–328.

[58] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller,
and Matthew J. Parkinson. 2012. Behavioral interface specification
languages. ACM Comput. Surv. 44, 3 (2012), 16:1–16:58.

[59] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2017.

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-06-27/TrustZone-and-FIDO-white-paper-final.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-06-27/TrustZone-and-FIDO-white-paper-final.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-06-27/TrustZone-and-FIDO-white-paper-final.pdf
https://www.linuxfoundation.org/events/2015/02/linux-kernel-development-how-fast-it-is-going-who-is-doing-it-what-they-are-doing-and-who-is-sponsoring-it-2015/
https://www.linuxfoundation.org/events/2015/02/linux-kernel-development-how-fast-it-is-going-who-is-doing-it-what-they-are-doing-and-who-is-sponsoring-it-2015/
https://www.linuxfoundation.org/events/2015/02/linux-kernel-development-how-fast-it-is-going-who-is-doing-it-what-they-are-doing-and-who-is-sponsoring-it-2015/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://cqcontent.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://cqcontent.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://cqcontent.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.barrelfish.org/
http://www.barrelfish.org/
https://www.accessdata.fda.gov/cdrh_docs/pdf11/K111905.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf11/K111905.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180534.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf18/K180534.pdf
http://www.frama-c.com
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/


IronFleet: proving safety and liveness of practical distributed systems.
Commun. ACM 60, 7 (2017), 83–92.

[60] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-
to-End Security via Automated Full-System Verification. In OSDI.
USENIX Association, 165–181.

[61] Andrew Henderson, Aravind Prakash, Lok-Kwong Yan, Xunchao Hu,
Xujiewen Wang, Rundong Zhou, and Heng Yin. 2014. Make it work,
make it right, make it fast: building a platform-neutral whole-system
dynamic binary analysis platform. In ISSTA. ACM, 248–258.

[62] Jason Hennessey, Sahil Tikale, Ata Turk, Emine Ugur Kaynar, Chris
Hill, Peter Desnoyers, and Orran Krieger. 2016. HIL: Designing an
Exokernel for the Data Center. In SoCC. ACM, 155–168.

[63] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan del Cuvillo. 2013. Using innovative instructions to create
trustworthy software solutions. In HASP@ISCA. ACM, 11.

[64] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S.
Shapiro. 2004. Reducing TCB size by using untrusted components:
small kernels versus virtual-machine monitors. In ACM SIGOPS Eu-
ropean Workshop. ACM, 22.

[65] Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the
software stack. Operating Systems Review 41, 2 (2007), 37–49.

[66] Information Assurance Directorate. 2007. US Government Protec-
tion Profile for Separation Kernels in Environments Requiring High
Robustness. https://www.niap-ccevs.org/Profile/Info.cfm?PPID=
65&id=65. (2007). Accessed: May 28, 2020.

[67] Limin Jia, Shayak Sen, Deepak Garg, and Anupam Datta. 2015. A
Logic of Programs with Interface-Confined Code. In CSF. IEEE Com-
puter Society, 512–525.

[68] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier
Leroy, and David Pichardie. 2015. A Formally-Verified C Static Ana-
lyzer. In POPL. ACM, 247–259.

[69] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Val-
idating LR(1) Parsers. In ESOP (Lecture Notes in Computer Science),
Vol. 7211. Springer, 397–416.

[70] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M.
Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert
Grimm, John Jannotti, and Kenneth Mackenzie. 1997. Application
Performance and Flexibility on Exokernel Systems. In SOSP. ACM,
52–65.

[71] Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-
Évariste Dagand. 2013. Coq: the world’s best macro assembler?. In
PPDP. ACM, 13–24.

[72] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2015. Frama-C: A software analysis perspec-
tive. Formal Asp. Comput. 27, 3 (2015), 573–609.

[73] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehen-
sive formal verification of an OS microkernel. ACM Trans. Comput.
Syst. 32, 1 (2014), 2:1–2:70.

[74] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: formal verification of an OS kernel. In
SOSP. ACM, 207–220.

[75] Ulrich Kühn, Marcel Selhorst, and Christian Stüble. 2007. Realizing
property-based attestation and sealing with commonly available hard-
and software. In STC. ACM, 50–57.

[76] Leslie Lamport. 2019. The TLA+ home page. https://
lamport.azurewebsites.net/tla/tla.html. Accessed: May 28, 2020.

[77] Dirk Leinenbach and Thomas Santen. 2009. Verifying the Microsoft
Hyper-V Hypervisor with VCC. In FM (Lecture Notes in Computer
Science), Vol. 5850. Springer, 806–809.

[78] Xavier Leroy. 2006. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In POPL. ACM, 42–
54.

[79] Chao Li, Liang Dou, and Zongyuan Yang. 2014. A metamodeling
level transformation from UML sequence diagrams to Coq. In ICTCS
(CEUR Workshop Proceedings), Vol. 1231. CEUR-WS.org, 147–157.

[80] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. 2011. VIPER:
verifying the integrity of PERipherals’ firmware. In ACM Conference
on Computer and Communications Security. ACM, 3–16.

[81] Jochen Liedtke. 1993. Improving IPC by Kernel Design. In SOSP. ACM,
175–188.

[82] Jochen Liedtke. 1996. Toward Real Microkernels: The inefficient, in-
flexible first generation inspired development of the vastly improved
second generation, which may yet support a variety of operating
systems. Commun. ACM 39, 9 (1996), 70–77.

[83] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In OSDI.
USENIX Association, 49–64.

[84] Macworld. 2018. Apple Watch’s heart rate sensor can detect dia-
betes, Cardiogram study finds. https://www.macworld.com/article/
3253341/cardiogram-diabetes-apple-watch.html. Accessed: May 28,
2020.

[85] Claude Marché, Guillaume Melquiond, Andrei Paskevich, and et al.
2013. The why3 platform. http://why3.lri.fr/. Accessed: May 28,
2020.

[86] Victor J. Marin and Carlos R. Rivero. 2018. Towards a framework
for generating program dependence graphs from source code. In
SWAN@ESEC/SIGSOFT FSE. ACM, 30–36.

[87] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn
Song, and Petros Maniatis. 2012. Path-exploration lifting: hi-fi tests
for lo-fi emulators. In ASPLOS. ACM, 337–348.

[88] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a
CISC Architecture. In USENIX Security Symposium. USENIX Associa-
tion.

[89] Matt McCormack, Amit Vasudevan, Guyue Liu, Sebastián Echeverría,
Kyle O’Meara, Grace Lewis, and Vyas Sekar. 2020. Towards an Archi-
tecture for Trusted Edge IoT Security Gateways. In HotEdge. USENIX
Association.

[90] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil D. Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient
TCB Reduction and Attestation. In IEEE Symposium on Security and
Privacy. IEEE Computer Society, 143–158.

[91] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative instructions and software model for isolated execution.
In HASP@ISCA. ACM, 10.

[92] Mike King. 2018. Smart Technology Takes Hold in Retirement
Communities. https://www.nextavenue.org/smart-technology-
retirement-communities/. Accessed: May 28,2020.

[93] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan,
and Edward Gan. 2012. RockSalt: better, faster, stronger SFI for the
x86. In PLDI. ACM, 395–404.

[94] Jan Nordholz. 2020. Design of a symbolically executable embedded
hypervisor. In EuroSys. ACM, 6:1–6:16.

[95] Colin O’Flynn. 2017. Breaking Electronic Door Locks like you’re on
CSI: CYBER. https://www.blackhat.com/docs/us-17/wednesday/us-
17-OFlynn-Breaking-Electronic-Locks.pdf. Black Hat USA (2017).
Accessed: May 28, 2020.

[96] Sangho Park and Henry A Kautz. 2008. Privacy-Preserving Recog-
nition of Activities in Daily Living from Multi-view Silhouettes and
RFID-based Training. In Proc. AAAI Fall Symposium: AI in Eldercare:
New Solutions to Old Problems. AAAI, 70–77.

[97] Philips. 2019. IntelliVue Guardian EWS: Automated Early-warning
scoring system. https://www.usa.philips.com/healthcare/clinical-
solutions/early-warning-scoring/intellivue-guardian-ews. Accessed:

https://www.niap-ccevs.org/Profile/Info.cfm?PPID=65&id=65
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=65&id=65
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://www.macworld.com/article/3253341/cardiogram-diabetes-apple-watch.html
https://www.macworld.com/article/3253341/cardiogram-diabetes-apple-watch.html
http://why3.lri.fr/
https://www.nextavenue.org/smart-technology-retirement-communities/
https://www.nextavenue.org/smart-technology-retirement-communities/
https://www.blackhat.com/docs/us-17/wednesday/us-17-OFlynn-Breaking-Electronic-Locks.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-OFlynn-Breaking-Electronic-Locks.pdf
https://www.usa.philips.com/healthcare/clinical-solutions/early-warning-scoring/intellivue-guardian-ews
https://www.usa.philips.com/healthcare/clinical-solutions/early-warning-scoring/intellivue-guardian-ews


May 28, 2020.
[98] Philips. 2019. Intellivue Guardian Software

Solution: Keep Watch and Intervene Early.
http://images.philips.com/is/content/PhilipsConsumer/Campaigns/
HC20140401_DG/Documents/en_US/20190225-intellivue-guardian-
software-igs-solution-brochure.pdf. Accessed: May 28, 2020.

[99] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah
Cox, Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Löser,
Dennis Mattoon, Magnus Nyström, David Robinson, Rob Spiger, Ste-
fan Thom, and David Wooten. 2016. fTPM: A Software-Only Imple-
mentation of a TPM Chip. In USENIX Security Symposium. USENIX
Association, 841–856.

[100] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj,
Michaela Hardt, Peter J Liu, Xiaobing Liu, Jake Marcus, Mimi Sun,
et al. 2018. Scalable and accurate deep learning for electronic health
records. CoRR abs/1801.07860 (2018).

[101] John M. Rushby. 1981. Design and Verification of Secure Systems. In
SOSP. ACM, 12–21.

[102] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram S.
Adve. 2013. Using likely invariants for automated software fault
localization. In ASPLOS. ACM, 139–152.

[103] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,
Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave.
2009. The semantics of x86-CC multiprocessor machine code. In
POPL. ACM, 379–391.

[104] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic su-
peroptimization. In ASPLOS. ACM, 305–316.

[105] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. 2010. Adapting Software
Fault Isolation to Contemporary CPU Architectures. In USENIX Secu-
rity Symposium. USENIX Association, 1–12.

[106] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doom, and
Pradeep K. Khosla. 2007. Pioneer: Verifying Code Integrity and En-
forcing Untampered Code Execution on Legacy Systems. In Malware
Detection. Springer, 253–289.

[107] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVi-
sor: a tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes. In SOSP. ACM, 335–350.

[108] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999.
EROS: a fast capability system. In SOSP. ACM, 170–185.

[109] Helgi Sigurbjarnarson, James Bornholt, Nicolas Christin, and Lor-
rie Faith Cranor. 2017. Push-Button Verification of File Systems via
Crash Refinement. In USENIX Annual Technical Conference. USENIX
Association.

[110] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James
Bornholt, Emina Torlak, and Xi Wang. 2018. Nickel: A Framework
for Design and Verification of Information Flow Control Systems. In
OSDI. USENIX Association, 287–305.

[111] Lenin Singaravelu, Calton Pu, Hermann Härtig, and Christian Hel-
muth. 2006. Reducing TCB complexity for security-sensitive applica-
tions: three case studies. In EuroSys. ACM, 161–174.

[112] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram K.
Rajamani, Sanjit A. Seshia, and Kapil Vaswani. 2016. A design and
verification methodology for secure isolated regions. In PLDI. ACM,
665–681.

[113] Rohit Sinha, Sriram K. Rajamani, Sanjit A. Seshia, and Kapil Vaswani.
2015. Moat: Verifying Confidentiality of Enclave Programs. In ACM
Conference on Computer and Communications Security. ACM, 1169–
1184.

[114] Colin F. Snook and Michael J. Butler. 2006. UML-B: Formal modeling
and design aided by UML. ACM Trans. Softw. Eng. Methodol. 15, 1
(2006), 92–122.

[115] Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-
based secure virtualization architecture. In EuroSys. ACM, 209–222.

[116] Martin Strecker. 2002. Formal Verification of a Java Compiler in
Isabelle. In CADE (Lecture Notes in Computer Science), Vol. 2392.
Springer, 63–77.

[117] G. Edward Suh and Srinivas Devadas. 2007. Physical Unclonable
Functions for Device Authentication and Secret Key Generation. In
DAC. IEEE, 9–14.

[118] Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting Inter-
faces: Making Trust Between Applications and Operating Systems
Configurable. In OSDI. USENIX Association, 279–292.

[119] Andrew S. Tannenbaum and Maarteen van Steen. 2016. Distributed
Systems: Principles and Paradigms. Createspace Independent Publish-
ing Platform.

[120] The Home Depot. 2019. Schlage Smart Door Locks.
https://www.homedepot.com/b/Smart-Home-Smart-Home-
Security-Smart-Locks/Schlage/N-5yc1vZc7byZ1c3. Accessed: May
28, 2020.

[121] UML Designer. 2018. UML to Java generator and reverse. http:
//www.umldesigner.org/ref-doc/umlgen.html. Accessed: May 28,
2020.

[122] Amit Vasudevan and Sagar Chaki. 2018. Have Your PI and Eat it Too:
Practical Security on a Low-Cost Ubiquitous Computing Platform. In
EuroS&P. IEEE, 183–198.

[123] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan M. McCune, James
Newsome, and Anupam Datta. 2013. Design, Implementation and
Verification of an eXtensible and Modular Hypervisor Framework.
In IEEE Symposium on Security and Privacy. IEEE Computer Society,
430–444.

[124] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anu-
pam Datta. 2016. überSpark: Enforcing Verifiable Object Abstractions
for Automated Compositional Security Analysis of a Hypervisor. In
USENIX Security Symposium. USENIX Association, 87–104.

[125] Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor, and Adrian
Perrig. 2009. Lockdown: A Safe and Practical Environment for Security
Applications. Technical Report CMU-CyLab-09-011. CMU CyLab.

[126] Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor, and Adrian
Perrig. 2012. Lockdown: Towards a Safe and Practical Architecture for
Security Applications on Commodity Platforms. In TRUST (Lecture
Notes in Computer Science), Vol. 7344. Springer, 34–54.

[127] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. 1993. Efficient Software-Based Fault Isolation. In SOSP.
ACM, 203–216.

[128] Mark Weiser. 1981. Program Slicing. In ICSE. IEEE Computer Society,
439–449.

[129] AndrewWhitaker, Marianne Shaw, and Steven D. Gribble. 2002. Scale
and Performance in the Denali Isolation Kernel. In OSDI. USENIX
Association.

[130] William A. Wulf, Ellis S. Cohen, William M. Corwin, Anita K. Jones,
Roy Levin, C. Pierson, and Fred J. Pollack. 1974. HYDRA: The Kernel
of a Multiprocessor Operating System. Commun. ACM 17, 6 (1974),
337–345.

[131] Jean Yang and Chris Hawblitzel. 2011. Safe to the last instruction:
automated verification of a type-safe operating system. Commun.
ACM 54, 12 (2011), 123–131.

[132] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. 2009. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, 79–93.

[133] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh R. Iyer, Matteo Rizzo,
Luis Pedrosa, Katerina J. Argyraki, and George Candea. 2019. Veri-
fying software network functions with no verification expertise. In
SOSP. ACM, 275–290.

http://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/en_US/20190225-intellivue-guardian-software-igs-solution-brochure.pdf
http://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/en_US/20190225-intellivue-guardian-software-igs-solution-brochure.pdf
http://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/en_US/20190225-intellivue-guardian-software-igs-solution-brochure.pdf
https://www.homedepot.com/b/Smart-Home-Smart-Home-Security-Smart-Locks/Schlage/N-5yc1vZc7byZ1c3
https://www.homedepot.com/b/Smart-Home-Smart-Home-Security-Smart-Locks/Schlage/N-5yc1vZc7byZ1c3
http://www.umldesigner.org/ref-doc/umlgen.html
http://www.umldesigner.org/ref-doc/umlgen.html

	Abstract
	1 Introduction
	1.1 Running Example

	2 Design Goals for CHIC Guarantees
	3 überSpark – Genesis
	3.1 Single Monolithic Verified System
	3.2 Distributed System of Monolithic Blobs
	3.3 Components as Collections of Objects
	3.4 Hybrid Isolation
	3.5 Resource Interface Confinement
	3.6 Verification Bridges
	3.7 Attestation and Authentication
	3.8 The Road to ElderSafe

	4 überSpark – System Architecture
	4.1 üobjects
	4.2 üobject Collections
	4.3 üobject Resource Interface Confinement
	4.4 üobject Instantiation and Execution
	4.5 üobject Interactions
	4.6 üobject Verification Bridge
	4.7 üobject Reporting
	4.8 ElderSafe in überSpark

	5 Research Directions and Opportunities
	5.1 Creation of üobjects
	5.2 Verification of üobjects
	5.3 üobject Resource Interface Confinement (RIC)

	6 Foundational Steps
	7 Present Activities
	8 Related Work
	9 Conclusions
	References

