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Learning turns experience into better decisions. A key problem in learning is credit             
assignment—knowing how to change parameters, such as synaptic weights deep within a            
neural network, in order to improve behavioral performance. Artificial intelligence owes its            
recent bloom largely to the error-backpropagation algorithm ​1​, which estimates the          
contribution of every synapse to output errors and allows rapid weight adjustment. Biological             
systems, however, lack an obvious mechanism to backpropagate errors. Here we show, by             
combining high-throughput volume electron microscopy ​2 and automated connectomic        
analysis​3–5​, that the synaptic architecture of songbird basal ganglia supports local credit            
assignment using a variant of the node perturbation algorithm proposed in a model of              
songbird reinforcement learning ​6,7​. We find that key predictions of the model hold true: first,              
cortical axons that encode exploratory motor variability terminate predominantly on dendritic           
shafts of striatal spiny neurons, while cortical axons that encode song timing terminate             
almost exclusively on spines. Second, synapse pairs that share a presynaptic cortical timing             
axon and a postsynaptic spiny dendrite are substantially more similar in size than expected,              
indicating Hebbian plasticity​8,9​. Combined with numerical simulations, these findings provide          
strong evidence for a biologically plausible credit assignment mechanism ​6​.  
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Neural circuits that control decisions and actions are recurrently connected and involve            
many network layers from sensory inputs to motor output. Yet, as we learn, some              
mechanism specifies precisely which synapses, out of trillions, are to be modified and in              
what way. The backpropagation algorithm ​10 is powerful because it directly calculates, based            
on the network architecture, the derivative of output errors with respect to every synaptic              
weight, providing an efficient method to update synaptic strengths. However, it remains            
unclear whether backpropagation or its variants are biologically implemented, or even           
plausible ​11–13​. An alternative approach to implement gradient-based learning is weight- or           
node- perturbation ​14,15​, in which the activity of a specific synapse or neuron is stochastically              
varied to determine its contribution to the output. Here we use a connectomic approach to               
study the biological implementation of stochastic gradient descent, which requires as-yet           
unknown circuit structures to inject variability, correlate variability with reward signals, and            
correctly assign credit to relevant synapses. 
 
Node perturbation is conceptually similar to behavioral trial-and-error reinforcement learning          
(RL)​16,17​. In the vertebrate brain RL is thought to involve the basal ganglia​18​, where a               
multitude of sensory and other context and state signals converge with action and outcome              
signals to determine which actions in which state lead to the best outcomes. In the songbird,                
the basal ganglia circuit dedicated to song learning ​19​, Area X, receives synaptic input from              
two cortical areas​20​: the vocal variability-generating area LMAN (lateral magnocellular          
nucleus of the anterior neostriatum) and a timing generating area, HVC (proper noun), which              
controls vocal output at each moment in the song. Area X also receives information about               
song performance via dopaminergic (DA) axons originating in the ventral tegmental area            
(VTA)​21 (Fig. 1a). It has been proposed that medium spiny neurons (MSNs) in Area X               
integrate signals from HVC, LMAN, and VTA to detect which song variations (from LMAN) at               
which times in the song (from HVC) lead to improved song performance (from VTA). The               
model posits that convergence of these factors drives plastic changes in HVC synapses             
within the basal ganglia such that HVC can improve song performance at each moment in               
subsequent song renditions ​6​.  
 
At a synaptic level, precise temporal coincidence of HVC and LMAN input onto MSN              
dendrites is hypothesized to form a transient biochemical eligibility trace​22 at the HVC-MSN             
synapse. This tags the synapse as a candidate for strengthening, conditional on a             
subsequent DA signal, indicating improved song performance ​15,23–25​, similar to three-factor          
Hebbian learning rules ​26,27​. Spinous synapses are well suited to carry out the proposed             
functions of the HVC-MSN connection: they are electrically and biochemically          
compartmentalized ​28​, can function as coincidence detectors ​29​, exhibit robust synaptic         
plasticity​30​, and have been proposed as loci of eligibility traces ​22​. The model posits that, in               
contrast to HVC inputs, LMAN synapses are neither plastic, nor carry an eligibility trace, but               
rather signal the occurrence of actions globally across MSN dendrites—a function more            
suitable to shaft synapses. Altogether, these observations lead to the specific predictions            
(Fig. 1a) that HVC-MSN synapses are plastic and preferentially terminate on spines, while             
LMAN-MSN synapses preferentially terminate on dendritic shafts ​24​.  
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Fig. 1: Anatomy of the zebra finch song system and Area X connectome analysis.  
a ​, The brain regions and their connections involved in zebra finch song learning and generation; solid 
lines indicate mono-synaptic connections; broken lines, multi-synaptic. ​b​, Automated reconstruction 
pipeline (FFN, flood filling network; CNN, convolutional neural network; RF, random forest classifier). 
c ​, Area X data set used in this study. ​d​, UMAP projection of a 67-dimensional neurite feature space 
into 2d (each neurite is one dot, n=7,120). Dots with the same color belong to the same cell type as 
assigned by a neural network morphology classifier ​5 ​. Also shown are modulatory (light red), 
subthalamic-nucleus-like (green), pallidal-like (yellow), inhibitory (inter) neuron-like neurites 
(turquoise). ​e, f, g, ​Typical neurites from putative corticostriatal axon clusters HVC, LMAN, and a 
MSN. Scale bar for HVC and LMAN 10 µm, for MSN 20 µm. 
 
 
To examine the anatomical fine structure of inputs to MSN dendrites and test these              
predictions, we acquired a data set (approximately cubical, with 100 µm edge length) by              
serial block-face electron microscopy (SBEM)​2 from Area X of an adult male zebra finch. The               
neural circuitry contained in this volume (~2.4 m axonal and ~0.5 m dendritic path length;               
253,657 synapses; 137,918 excitatory, 115,739 inhibitory) was then reconstructed using fully           
automated methods for neurite segmentation, synapse identification and morphology         
classification ​3–5 (Fig. 1b, c). The results presented are based on a hybrid reconstruction, with              
the machine output augmented by some (<1000 hours) manual proof-reading. However,           
later inspection revealed that the conclusions are the same for analyses carried out on fully               
automated reconstructions, without manual neurite proofreading (see Supplementary Note 1          
and Extended Data Fig. 1). This speaks to dramatic progress in automating connectomic             
analysis​3–5​, and stands in contrast to the recent situation in which significant amounts of              
manual proofreading were required to address meaningful biological questions ​9,31,32​. 
 
To interpret the synaptic architecture associated with the MSN dendrite, we next needed to              
determine the cell types of the neurites involved. We used a neural network-based             
morphology classifier ​5 trained on a set of 240 neurites, manually classified on the basis of               
known morphological characteristics (Extended Data Table 1). These characteristics         
included the rate of branching, which is especially low for HVC axons (Fig. 1e), the presence                
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of a dense terminal plexus, typical of LMAN axons ​33,34 (Fig. 1f), the density of spines on                
dendrites, to identify MSNs ​35 (Fig. 1g). Cross-validation (Methods) of classifier performance           
(F1-scores of 0.91, 0.95, 0.93 for HVC, LMAN and MSN, respectively) indicates a             
misclassification rate below 10%, which also largely agrees with an unsupervised low            
dimensional embedding (Fig. 1d; Supplementary Note 2, Extended Data Fig. 2 and 3). 
 
We start by analysing the nature of HVC and LMAN synaptic contacts on MSN dendrites               
(Fig. 2a). Together these inputs contribute 94% of all excitatory synapses onto MSNs. HVC              
synapses dominate those from LMAN about sixfold by number, and sevenfold by area, a              
ratio much larger than the 1-to-1 ratio between the numbers of axons (about 10,000)              
entering from each region ​36,37​, but smaller than the 12-to-1 ratio between the total axon path               
lengths (~90 cm vs. ~7.7 cm, in the data set; Fig. 2b). Consistent with the model’s prediction,                 
most (86.7%) of the synaptic area of HVC axons onto MSNs was found on spines, while the                 
corresponding fraction was less than half (44.7%) for LMAN axons. Similar results were             
obtained for sets of manually classified HVC and LMAN axons (87.6% and 38%; 30 neurite               
fragments each). In contrast, the synaptic areas of HVC and LMAN axons terminating on              
MSN dendritic shafts were 11.6% and 52.3%, respectively. The fractions of synaptic contact             
area going to an MSN postsynaptic compartment other than a spine or shaft were negligible               
(1.4% and 2.5% on somata, and 0.3% and 0.5% on spine necks, for HVC and LMAN,                
respectively). We found no evidence for distinct subpopulations of HVC or LMAN axons with              
different spines/shaft ratios; a similar analysis also revealed no distinct subpopulations of            
MSN dendrites on this basis (Fig. 2c,d). 

 
Given the very different roles for HVC and LMAN synapses postulated in the model, we               
wondered if these synapses also differ in their distribution of synaptic areas. HVC synapses              
onto spines were larger than those from LMAN (mean=0.35 µm ​2 vs 0.22 µm​2​, median=0.23              
µm​2 vs 0.15 µm​2​, n=81,684 and n=8,946, for HVC and LMAN, respectively), while the              
reverse was true for synapses onto MSN shafts (mean=0.30 µm ​2 vs 0.35 µm​2​, median=0.18              
µm​2 vs 0.25 µm​2​, n=13,018 and n=6,668, for HVC and LMAN, respectively). These             
differences were highly significant (two-sided Mann Whitney U tests; all p-values < 10​-50​).             
The size distribution of each of the four synapse classes (HVC-spine, HVC-shaft,            
LMAN-spine, LMAN-shaft) was much better fit by a mixture of two log-normal components             
than by a single log-normal distribution (Fig. 2e, Extended Data Fig. 5), reminiscent of a               
similar finding of bimodal synapse sizes in the mammalian cortex ​38​. In fact, the larger size of                
HVC spine synapses, compared to those from LMAN, is consistent with their hypothesized             
role in driving temporally specific MSN activity​39 and appears to be largely explained by a               
more robust tendency of HVC synapses to occupy the larger synapse state (HVC-spine:             
81% µ ​S = 0.18 µm​2​; 19% µ ​L​=0.71 µm​2​; LMAN-spine: 89% µ ​S = 0.14 µm​2​; 11% µ ​L = 0.54                  
µm​2​). The converse was true for shaft synapses where it was the LMAN inputs that were                
more likely to occupy the larger of the two states (HVC: 77% µ ​S = 0.14 µm​2 and 23% µ ​L =                    
0.59 µm​2​; LMAN: 67% µ ​S​ = 0.17 µm​2​ and 33% µ ​L​= 0.5 µm​2​). 
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Fig. 2: Dendritic compartment preference of HVC and LMAN inputs to MSN dendrites. 
a ​, MSN dendrite (purple), spine head synapse from an HVC axon (blue arrow), and a shaft synapse 
from a LMAN axon (red arrow). Same region in cross section (right). Scale bars 1 µm. ​b​, Conceptual 
sketch of the ratio between spine- and shaft bound-fractions for HVC (top) and LMAN (bottom) inputs 
and the contribution of each of the four cases to the total excitatory synaptic area on MSN dendrites. 
c, ​Normalized histogram of fraction of spine head area per neurite for different axon types with MSN 
dendrites. ​d, ​Same plot from the perspective of MSN dendrites. ​e​, Distribution of log10-transformed 
synapse size for spine and shaft synapses of HVC and LMAN synapses. Also shown are fits (grey 
curves) to a model with two log-normal distributions​38 ​ (Methods, Extended Data Fig 5). 

 
 

In the proposed learning model, LMAN inputs generate a dendrite-wide depolarization to            
enable detection of HVC and LMAN coincidence. Such broad depolarization might require            
multiple LMAN contacts spread across the target compartment. We examined the incidence            
of multi-synaptic connections from HVC and LMAN axons (only fragments > 50 µm long)              
onto MSN dendrites (Fig. 3a). On average, LMAN axons dedicated 13% of their synaptic              
area to multi-synaptic connections, while for HVC axons this was only 5%. In both cases,               
this number is likely to be an underestimate due to a substantial number of reentering axons                
that result from the limited extent of the data set. About 65% of all LMAN axon fragments,                 
but only 26% of HVC fragments made more than one synapse on the same MSN (Fig. 3b),                 
which is consistent with the more focal distributions of LMAN arbors ​34​. For both HVC and               
LMAN axons, multiple synaptic contacts had an average pairwise distance of about 10 µm,              
which is small compared to expected electrotonic lengths. 
 
It has been argued that Hebbian learning should lead to a correlation in the size of synapses                 
that share both pre- and post- synaptic neurons (dual-connection pairs), and that when such              
correlations are found they constitute evidence for Hebbian learning ​8,40,41​. In our data set, the              
dual-connection pairs (n=1950) between HVC axons and MSN spines showed a significant            
degree of such size correlations. In particular, the distribution of normalized intra-pair            
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synaptic-area differences was significantly shifted toward smaller values compared to          
randomized controls (Fig. 3c-e; one-sided Mann Whitney U tests; for all controls p-values <              
10​-5​; see Methods, Extended Data Table 3 and Extended Data Fig. 4). This suggests that               
HVC-to-MSN-spine synapses, which comprise the vast majority of spinous inputs to MSNs,            
are capable of Hebbian-type plasticity, consistent with the proposed learning model. For            
LMAN-to-MSN-spine synapses (n = 443 pairs) a marginally significant effect was observed            
(shuffle control p-value = 0.045; rand control: p = 0.025; sA_dD control: p = 0.098), while no                 
significant differences from randomized control pairs was seen for shaft synapses of both             
axon types (all p-values > 0.05; HVC n = 128; LMAN n = 215). Notably, while the enrichment                  
of similarly sized pairs observed in Area X spine synapses is smaller than that observed in                
hippocampus​8,41​, it is comparable to the enrichment reported for neocortex ​9,38,40​. 
 

 

 
Fig 3. Multi-synaptic connections of MSN dendrites  
a ​, MSN dendrite (purple) that receives two spine-head synapses from the same HVC axon (blue). 
Also shown in cross sections (right). Scale bars: 1 µm. ​b​, CDF showing the fraction of multi-synaptic 
area for HVC (blue) and LMAN (red) axons. ​c,​ area of the first vs. area of the 2nd synapse (and vice 
versa, i.e. symmetrized across the diagonal) for all ​ ​HVC-on-MSN-spine dual pairs. ​d​, Histogram of 
observed normalized size difference values (cv) for dually connected HVC-MSN spine synapse pairs 
relative to values for different sets of control synapse pairs. Three different control sets are used: 
sA_dD, both synapses sampled from the same axon but connecting to different dendrites; rand, 
control pairs drawn randomly from all  HVC-MSN spine synapses; shuffle, control pairs drawn 
randomly from all dually connected pairs of HVC-MSN synapses, without replacement. Note the 
excess of pairs with small differences and suppression of pairs with large differences compared to 
controls. Error bars are  of histogram counts. ​e, ​Excess size similarity of HVC-MSN spine± √n  
synapse relative to controls (percentage mean cv change) for synapse pairs of different mean size 
ranges. Error bars are s.e.m. (Methods). 
 
To quantitatively assess the ability of the observed neural architecture to correctly implement             
credit assignment in the context of vocal learning, we constructed a numerical simulation of              
the model consistent with our anatomical findings. Closely related to the concept of parallel              
node perturbation ​7,15​, the local learning rule incorporates non-plastic LMAN shaft synapses,           
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and plastic HVC spine synapses. The latter are strengthened by coincident activation of             
HVC (state) and LMAN (action) inputs, followed by a delayed reward (Fig. 4a). Numerical              
simulations show that the model learns to imitate a simple song template after a few               
thousand iterations (Fig. 4b), consistent with typical learning rates in juvenile zebra finches ​42​.             
Furthermore, our simulations revealed that the network exhibits a high temporal precision of             
learning that exceeds that of the reward signal (~100ms) ​21 (Fig. 4c), consistent with the              
reported ~10 ms resolution of vocal learning in the songbird ​43​ (Fig. 4d).  
  

 
Fig. 4  Numerical model of RL and credit assignment in the songbird basal ganglia 
a ​, Sequence of events (left to right) underlying plasticity at HVC-MSN synapses during vocal learning 
implemented by a three-factor learning rule. Two HVC axons (left), and multiple synapses from one 
LMAN axon (right) impinge on an MSN dendrite. Colors indicate: spike activity (yellow), calcium influx 
(green),  eligibility trace (red), and DA release (pink dots). LMAN spiking activity leads to MSN 
dendritic depolarization; coincident activation of HVC input 1 leads to an eligibility trace in HVC 
synapse 1. Subsequent arrival of a reward leads to LTP at this synapse (indicated by size increase). 
After learning, spiking activity in HVC axon 1 leads to MSN activation and improved behavioral output. 
b,​ Reinforcement learning of a 1-d vocal output (template, red; learned output, black) over 20,000 
iterations, using the proposed learning rule (Methods). ​c,​ Left: Comparison of reward signal (DA) in 
model vs. time course of VTA​X​ neuron responses measured ​in vivo ​, with permission, see Gadagkar et 
al.​21 ​. Right: Learning of a single peak, full-width-at-half-maximum: 8.4 ms. ​d​, Average 
magnitude-squared coherence between template and model output, gray band is s.d.. ​e, 
Interpretation of the proposed basal ganglia model for learning in a feedforward network. The 
fluctuating LMAN output activity is projected back onto the HVC-MSN synapse layer, where the 
non-plastic feedback signals guide learning at plastic input layer synapses. 
 
 
Connectomic analysis of brain circuitry has shown promise as a method to investigate             
synaptic plasticity​8,40​. Using highly automated dense reconstruction, we have extended this           
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approach to analyze the ultrastructure of synaptic interactions of inputs that carry            
computationally distinct and learning-relevant signals. In the context of a detailed model of a              
cortical-basal ganglia circuit that implements reinforcement learning, our data reveal the           
existence of a significant asymmetry between two types of cortico-striatal (CS) connections.            
The LMAN input resembles mammalian pyramidal-tract CS projections and carries an           
efference copy of a motor command signal, while the HVC input resembles mammalian             
intratelencephalic CS projections and carries a state (timing) signal ​44,45​. The predominance           
of HVC inputs onto dendritic spines and LMAN inputs onto shafts supports a model of basal                
ganglia learning in which action efference copy inputs modulate or gate plasticity of state              
inputs to MSNs. In this view, MSN spines detect and transiently maintain a memory of               
recently active action-state pairings.  
 
Our data provide insight into a plausible biological implementation of node perturbation​15​, a             
form of stochastic gradient descent learning that performs synaptic credit assignment without            
backpropagation. Conceptually, our model is a variant that could be called “remote            
node-perturbation”, since action feedback connections transmit network output variations         
back to the relevant synapses for credit assignment (Fig. 4e). We have identified a candidate               
ultrastructural motif for this mechanism: distinct excitatory synapse types interacting on a            
dendrite to inject variability, to correlate variability with reward signals, and to correctly             
assign credit to relevant synapses that potentiate improved performance. The generality of            
such a credit assignment strategy and whether it is anatomically manifested similarly in other              
brain areas, namely the cortex or the cerebellum, remains an interesting topic for future              
theoretical and empirical work. 
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Methods 
 
Code availability 

All analysis code will be made available upon publication on GitHub. 

 
Sample preparation  

An adult male zebra finch (> 120 days post hatching, obtained from the MPI of Ornithology,                
Seewiesen, Germany) was transcardially perfused with cacodylate buffer (CB) at room           
temperature (RT) that contained 0.07 M sodium cacodylate (Serva, Germany), 0.14 M            
sucrose (Sigma-Aldrich), 2 mM CaCl ​2 (Sigma-Aldrich), 2% PFA (Serva) and 2% GA (Serva)             
to retain the extracellular space​46​. We cut the brain sagittally into 200 µm thick slices on a                 
vibratome (Leica VT1000S), found the slice with the largest cross section of Area X              
(identified by its round shape and location in the section) and excised a piece of about 300 x                  
300 µm centered in Area X. We next immersed the sample in a sequence of aqueous                
solutions in 2 ml Eppendorf tubes. First 2% OsO​4 (Serva) reduced with 2.5 % potassium               
hexacyanoferrate(II) (Sigma-Aldrich) for 2 h at RT, followed by 1% thiocarbohydrazide           
(Sigma-Aldrich) at 58°C for 1h, then 2% OsO​4 at RT for 2h, 1.5% uranyl acetate (Serva) in                 
H​2​O at 53°C for 2h and 0.02M lead-aspartate (Sigma-Aldrich) at 53°C for 2h. The sample               
was rinsed three times with CB after the first OsO​4 step and once with double-distilled water                
after each of the other staining steps. We next dehydrated the samples using chilled              
ethanol-water mixtures (70 %, 100 %, 100 %, 100 %, ethanol (Electron Microscopy             
Sciences), 10, 15, 10, 10 min) followed by propylene oxide (100%, 100%) (Sigma-Aldrich),             
infiltrated first with a 50/50 propylene oxide/epoxy mixture, then with 100% epoxy. The epoxy              
was 812-replacement (hard mixture, Serva). After infiltration, samples were cured (60°C for            
48h), trimmed, and smoothed (Leica Ultracut microtome). All animal experiments were           
approved by the Regierungspräsidium Karlsruhe and were carried out in accordance with            
the laws of the German federal government. 
 
SBEM data-set generation 

The sample was imaged and sectioned in a eld-emission scanning electron microscope            
(SEM, Zeiss UltraPlus) equipped with a custom diamond knife-based serial-blockface          
ultramicrotome ​2​. We used a landing energy of 1.6 kV, a beam current of 1 nA, a scan rate of                   
3.3 MHz, a lateral pixel size of 9 x 9 nm and a cutting thickness of 20 nm. The acquired data                     
set (single image tile 10,240 x 10,240 pixels) was initially aligned by translation only,              
followed by elastic alignment (A. Pope, Google Research. The aligned stack contained            
10,664 × 10,914 × 5701 voxels with 8 bit intensity values (~664 GB). No contrast           
normalization was performed.  
 
Neuron reconstruction and proofreading 

Neurite reconstruction was carried out by Flood Filling Network (FFN) segmentation of the             
entire (114 µm x 98 µm x 96 µm) data set. Broadly, this was done in two stages: an initial                    
over-segmentation (base segmentation) was created to ensure the near-absence of false           
mergers; next, segments in the base segmentation were then agglomerated into more            
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complete units. Several steps were taken to improve oversegmentation in the initial stage             
(i.e. to further reduce the occurrence of false mergers), and to improve object continuity in               
the second stage (i.e. to reduce the occurence of false splits). In addition to the base                
segmentation described in Januszewski et al.​3​, we created an independent new           
oversegmentation that was then combined with the original base segmentation using           
oversegmentation consensus​3​. The new oversegmentation started with the preexisting base          
segmentation as its initial state. We then used FFN inference with the following adjustments              
to create new neurite fragments:(a) we increased the "disconnected seed threshold"           
parameter from 0 to 0.15, which resulted in the assignment of previously unclaimed voxels in               
the interior of small-diameter axons (36.4B voxels filled); (b) we used a different snapshot of               
FFN weights ("checkpoint") in areas with lower data quality (19.8B voxels filled); (c) we              
recreated objects adjacent to voxels classified as myelin by the tissue type classifier in an               
FFN inference run without the myelin mask (6.9B voxels filled); and (d) in areas adjacent to                
detected irregularities we recreated objects in an FFN inference run with FOV movement             
restriction with the section-to-section shift threshold relaxed from 4 to 6 voxels (1.8B voxels              
filled). The steps a)-d) were carried out sequentially, and the result of every step was               
combined with that of the previous step with oversegmentation consensus. To even further             
reduce the number of false mergers, we took the seed point for every segment in the original                 
base segmentation, and used FFN inference at 2x reduced in-plane resolution to create a              
segmentation with no encumbrance by any other object (note that in this process the              
base-set objects can shrink as well as grow). The results were upsampled and combined              
with the base segmentation, again through oversegmentation consensus. 
 
We then ran FFN agglomeration as described previously ​3​. For every decision point involving             
at least one segment added in (a)-(d) (see paragraph above), we ran FFN agglomeration a               
second time, this time with inference settings matching the conditions (a)-(d) under which the              
segment was created. To detect remaining splits we skeletonized the agglomerated objects            
using TEASAR​47​. For each skeleton node with only one adjacent edge we determined             
whether it was a true neurite endpoint by running FFN segmentation within an empty (no               
pre-existing segments) (201,201,101)-voxel subvolume centered on the seed placed at the           
skeleton node. This was done with both the main FFN checkpoint and the one used in                
condition (b) above. We considered any base segments to be "recovered" if at least 60% of                
their voxels were overlapped by the predicted object map (POM) generated by the FFN in               
this procedure, and thresholded at 0.5. We then merged segments (A, B) in case of               
symmetric recovery, i.e. when the subvolume segmentation described above, seeded from a            
node located in A recovered B, and vice versa. Finally, we identified orphan fragments              
(defined as not reaching the surface of the data set) and iteratively (6 times) connected them                
to the partner fragment with the highest Jaccard score as computed in FFN agglomeration              
for the fragment pair​3​. Only pairs for which at most 15% of the voxels of one of the objects                   
changed POM values from >0.8 to <0.5 during FFN agglomeration inference were            
considered in this step. 
 
The number of orphaned neurite fragments was further reduced by manually inspecting their             
ends. If a split error was detected, a skeleton tracing was initiated. The annotator was               
provided with a seed location and an initial tracing direction but not the actual segmentation.               
Tracing was terminated when the annotator decided that a true neurite ending had been              
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reached or when the newly traced skeleton reached another fragment with > 10 µm skeleton               
length. The thus created connectors (n=36,154 in 911 hours of tracing) were then used to               
combine the appropriate fragments. This reduced the number of fragments from 231,207 to             
212,656. 13 of those contained at least one erroneous merger, identified by the presence of               
at least two somata. All connectors contained in those (n=434) were then removed, resulting              
in 213,076 fragments. This proofreading step was performed using a Python plugin for             
KNOSSOS (​www.knossostool.org ​). 
 
To further reduce the number of false mergers, one of us (MJ) inspected 36,653 classified               
neurites using Neuroglancer, identified merge errors by visual evaluation of object shape            
plausibility, and manually removed agglomeration graph edges causing those mergers. In           
total, less than 10 hours were spent for this additional proofreading step, which resulted in               
the removal of 846 edges and the elimination of 840 merge errors. 
 
Unless otherwise mentioned, manual proofreading was performed by student assistants or           
outsourced (ariadne-service gmbh). 

Synapse detection 

In a first step, mitochondria, vesicle clouds, synaptic junctions and synapse type were             
predicted in the data set using two convolutional neural networks ​4​. For each boundary voxel              
of the FFN segmentation, all other neurite IDs were collected in a 6 x 6 x 3 subvolume and                   
the most frequent ID was denoted the partner neurite ID for this boundary voxel. All voxels                
that were both part of such a neurite-neurite contact and classified as a synaptic junction               
were clustered (connected components with a maximum distance of 250 nm) and each             
cluster considered as a putative synapse object. Mitochondria and vesicle clouds were            
assigned to the cells with which they shared the highest voxel overlap. 
 
In a second step, every candidate synapse object was assigned a probability by a random               
forest (RF) classifier trained on manually labeled candidate synapse objects (n=436;           
non-synaptic: 238, synaptic: 198). Candidate synapses below probability 0.5 were          
eliminated. This classifier used 11 hand-designed features extracted from the pre- and            
postsynaptic neuron (collected within a sphere of 4 µm) and from the candidate synapse              
itself, in particular, the synapse size (in voxels), the volume ratios between contact site and               
synaptic junction bounding box, synaptic junction and contact site, as well as the numbers              
and voxel counts of pre- and post-synaptic mitochondria and vesicle clouds. 
The synaptic area of identified synapses was estimated as its surface mesh area (which              
includes pre- and post- synaptic areas) divided by two. Meshes were computed using             
marching cubes applied to the masked synapse voxels after binary closing with seven             
iterations.  
  
We used cellular morphology neural networks (CMN) ​5 to recognize and differentiate cellular            
substructures. The two models, one for spines ​5 and one for axons (axon, terminal bouton,              
en-passant bouton, dendrite, soma; trained on 17 reconstructions; window size of 40.96 µm             
x 20.48 µm x 20.48 µm and 1024 by 512 pixels; 3 projection windows per location; rendering                 
locations were the set of vertices downsampled by a third of the maximum window size),               
classified the cell surface based on 2D-projections of the neurite and its mapped organelles              
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(mitochondria, vesicle clouds) and synaptic junctions. Surface labels were mapped to the            
synapse directly by k-nearest-neighbors in case of spines (k=50). In the axon (dendrite,             
soma and bouton) case the surface labels were first mapped to the skeleton nodes by               
k-nearest-neighbors (k=50) and then averaged using a sliding window approach, which           
collected the labels of skeleton nodes within 10 µm traversal length along the skeleton in               
every direction starting from the source node. The axon (dendrite, soma, bouton) label of              
each synaptic partner was taken from the respective skeleton node closest to the synapse. 

Cell-type classification 

Using the CMN pipeline, we also detected astrocyte fragments, and removed these from all              
subsequent analyses, as described in ​5​. 
The cell types of the remaining FFN reconstructions were then identified with the same              
approach, with a CMN trained on manually labeled neurites (JK), 30 per class, in total n=240                
(HVC, LMAN, MSN, pallidal, subthalamic nucleus like, dopaminergic, cholinergic,         
interneuron; the dopaminergic and cholinergic classes were combined for the classification           
used in this manuscript). We modified the CMN from​5 by extending the latent representation              
returned by the last convolution layer with the synaptic area ratio between symmetric and all               
synapses in the neurite before it was passed to the first fully connected layer. The               
performance was assessed using ten-fold cross-validation ​48​. 
 
To cluster the neurites for an unsupervised cell type identification, independent of the             
supervised approach based on the CMN-pipeline, we designed three sets of neurite            
compartment specific features (soma, axon and dendrite). These consisted of 62           
neurite-specific morphology features (e.g., caliber variation, synaptic density, mitochondrial         
density), as well as 15 features that were computed based on its synaptic connectivity: e.g.,               
for axons, we computed for every of its outgoing synapse a feature of the postsynaptic               
dendrite, and then used the synaptic area to compute a weighted average of those              
postsynaptic properties. The full set of features is described in Extended Data Table 1. Each               
neurite corresponds to a point in this 62 dimensional space which was then projected onto a                
plane using either the Uniform Manifold Approximation and Projection, UMAP ​49 or the            
t-distributed stochastic neighbor algorithm (see Supplementary Note 2) ​50​(Python        
sklearn.manifold.TSNE) with a random seed of 0. The pairwise distance of two neurites A              
and B, was calculated by averaging the Euclidean distance of the separate feature vectors of               
the three compartments (axon, dendrite, soma). In case a compartment did not exist in A or                
B (compartments with less than 15 synapses associated), it did not contribute to the              
averaging. The embeddings were visually similar over a range of perplexities (tested from 10              
to 320, Extended Data Fig. 2a,b), a parameter which controls in t-SNE how many neighbors               
should be considered for the embedding, and the actual number of neighbors in UMAP, also               
a controllable parameter (tested from 10 to 320). After visually inspecting neurites from             
different clusters and confirming that they agree largely with our supervised results (Fig. 1d;              
UMAP parameters: n_neighbors=15, min_dist=0.25), we applied Hierarchical density based         
clustering (HDBSCAN)​51 to the down-projected feature space (UMAP parameters:         
n_neighbors=40, min_distance=0.0; HDBSCAN parameters: min_cluster_size=100,     
min_samples of 5) to assign cluster labels to each neurite (HDBSCAN clustering on the full               
feature dimensions led to no meaningful results). Agreement with the supervised CMN            
classifier was calculated by first identifying for each CMN celltype class the unsupervised             
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cluster label with the greatest overlap that was then compared to the supervised CMN cell               
type of the same neurite and used to calculate per class F1-scores, shown in Supplementary               
Note 2. 
 

Synapse-size distribution analysis of HVC and LMAN axons 

Synaptic size (contact area) was computed as described in the ‘Synapse detection’ section             
of the methods. 
 
Synapse sizes were log-10 transformed and the distribution was fit to a mixture of two               
truncated (lower boundary of 0.01 µm ​2​, no upper boundary) normal distributions (Python            
scipy.stats.truncnorm) by minimizing the negative log-likelihood function using Sequential         
Least Squares Programming (Python scipy.optimize.fmin_slsqp). Bayesian Information       
Criterion (BIC) and Akaike Information Criterion (AIC) comparisons were performed by fitting            
n-component (n ranging from 1 to 10) normal distributions using Python’s           
sklearn.mixture.GMM to the log-10 transformed synapse sizes. 
 
We computed the fraction of excitatory synaptic area onto different post-synaptic           
compartments of MSNs. These fractions were computed separately for synapses arising           
from HVC, LMAN and STN-like axons as follows. We divided the total synaptic area from               
one axon class formed onto one MSN post-synaptic compartment class (spine head, neck,             
dendritic shaft or soma; determined by the morphology classifier ​5​) by the sum of the synaptic               
area from that axon class onto all MSN compartments. For example, the data set-wide spine               
fraction for HVC onto MSNs was computed as follows: 
 

fHV C−MSN spine
=

rea(HV C−MSN )∑
 

 
A all

rea(HV C−MSN )∑
 

 
A spine

 

In addition to computing these quantities for the entire data set, we also performed the same                
analysis restricted to individual axons (Fig. 2c) or MSN dendrites (only for neurites with > 50                
synapses) (Fig. 2d). This was done to estimate the distribution of targeted MSN postsynaptic              
compartments over individual neurites. 
 
Synapse pair size correlation analysis of HVC and LMAN synapses 

To identify signatures of Hebbian plasticity we computed several measures of size            
correlation in synapse pairs with the same pre- and postsynaptic neurites (Fig. 3, Extended              
Data Fig. 4, Extended Data Table 1). Specifically, 1) we analyzed normalized pair synapse              
size differences (coefficient of variation), 2) calculated the non-parametric Spearman rank           
correlation, 3) performed an analysis of variance (ANOVA) and 4) performed a comparison             
of the variances along the first two principal components. 
 
1) We computed the normalized size difference of the two synapse sizes in a pair (minimum                
Euclidean distance of 1 µm) as with being the larger synapse size in µm ​2 ​40​.      vc = √2 s1+s2

s1−s2   1s          
As control we sampled 200,000 pairs randomly from different populations of synapses:            
synapse pairs that shared the same axon (sA_dD), and random synapse pairs (rand), but all               
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restricted pre-synaptically to either HVC or LMAN axons and post-synaptically to MSN            
dendrites. The shuffle control pair population was established by performing 1000 random            
pairings (without replacement) of the observed pair synapse sizes (Fig. 3d,e and Extended             
Data Fig. 4a-c). Mann Whitney U tests were performed on the cv distributions to assess               
statistical significance (Python’s scipy.stats.mannwhitneyu). 
2) Spearman rank correlation was calculated using Python’s scipy.stats.spearmanr on          
mirrored pair sizes to account for the arbitrary order of synapses in a pair, i.e. for each pair                  
we considered (s1, s2) and (s2, s1). 
3) We further tested for correlated synapse pair sizes using a one-way ANOVA of              
log10-transformed synapse sizes, and a Kruskal-Wallis test of non-transformed synapse          
sizes. In both cases, the synapse sizes of a pre-post synapse pair were considered a group,                
which has the advantage that no artificial ordering has to be introduced, as in the case of the                  
Spearman correlation coefficient. If synapse sizes in pre-post pairs were not independently            
drawn from the same size distribution, due to a size correlation, the ANOVA test would reject                
the null hypothesis of no difference in mean between the groups. The same argument              
applies to the rank based Kruskal-Wallis test (Extended Data Table 3). 
4) We projected the mirrored pair synapse sizes on the (1,1) diagonal (s.d.1) and the (-1,1)                
diagonal (s.d.2) and then calculated the ratio of the standard deviations (s.d.1/s.d.2) along             
these axes in comparison to the shuffle control (Extended Data Fig. 4e). 
 
 
Computational model of learning in Area X 

A numerical simulation of the basal ganglia circuit underlying songbird vocal learning,            
focusing on HVC, LMAN, and MSN interactions, was implemented as a firing rate model in               
Python ​52​. The total song duration was 300 ms (corresponding to a short typical zebra finch               
song), and the simulation was carried out with 1 ms temporal resolution. The model was               
implemented with 300 sparsely firing MSNs​39​, each receiving temporally specific input from a             
single dedicated HVC neuron that is active at a single 7ms interval in the song               
(delta-function peak smoothed by a Gaussian kernel with , corresponding to a         ms  σ = 3     
full-width-at-half-maximum of ~7 ms; activity of adjacent HVC neurons staggered by 1 ms).             
During singing, the HVC neurons form a continuous sequence ​53,54​. The LMAN-MSN synapse            
is assumed to be non-plastic (one axon shared across all MSNs. LMAN activity is generated               
as random fluctuations between 0 and 1 (smoothed by a 3 ms box kernel). LMAN inputs to                 
MSNs do not activate the MSN, but rather serve to gate plasticity at HVC-MSN synapses.               
Each HVC-MSN synapse has an eligibility trace defined as 
 

HV C (t) ) (t)  T (t)i = ( i  * LMAN (t)i  ⊗ f  
 
where is a delayed Gaussian kernel with the same width and delay as the DA kernel (t)f                 
(see below and Fig. 4c). The weight update rule for HVC-MSN synapses is defined as 
 

 w (t) A(t)Δ = β ∑
tmax

t
T * D  
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with learning rate and a DA signal that depends on the song performance on the   β = 2              
current trial compared to recent past trial(s), encoded as performance prediction error            pe(t)p  
(positive when performance is better than expected) 
 

A(t) pe(t) (t)D = p ⊗ f  
 

where 
 

pe(t) (t) (t)p = Ei−1 − Ei  
 

and 
 

 .(t)Ei = vocal (t) (t)|
| target − vocaloutput |

|  
 

is a delayed Gaussian kernel with (corresponding to ~100 ms(t)f       σ 2 ms   = 4      
full-width-at-half-maximum), shifted to peak at 125 ms delay, consistent with experimental           
findings in the zebra finch ​21​. The vocal output for each iteration was 
 

(t) (t) .05 MAN (t)vocaloutput = ∑
MSN

j
MSN  

j + 0 × L  

 
where 

 
.(t) (t)MSN j = HV C j * wj  

 
The vocal output in Fig. 4b,d shows the model output after 20,000 iterations, without the               
contribution from LMAN, corresponding the zebra finch song in the “directed” social context             
in which LMAN is known to be relatively silent​55​. The coherence (Fig. 4d) between the               
template and the vocal output at the end of learning was computed using Python’s              
scipy.signal.coherence (parameter nperseg = 64) and averaged over 100 simulations. As an            
additional test of the temporal resolution of the learning model, the simulation was run again               
(with identical simulation parameters) with a template consisting of a single peak (7 ms              
width). The full-width-at-half-maximum of the resulting simulation peak (Fig. 4c) was           
determined using Python’s scipy.signal.find_peaks and peak_widths. 

Data and Code Availability 
The source code, aligned EM data, neuron reconstructions, synapse annotations and           
cellular morphology classifications will be made available upon peer-reviewed publication. 
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Supplementary Note 1 - Analysis of automatically reconstructed connectome 
To assess the degree to which the proofreading of the automated reconstructions affected             
our conclusions, we created a fully automated connectome without manual healing of splits             
(reconnects) or false mergers. The resulting segmentation contained slightly more neurites           
(n=46,033 vs. 41,324), due to a higher split rate. This was not offset by the additional false                 
mergers, and had a marginal effect on the overall neurite length distributions (Extended Data              
Fig. 1a). We recreated key analyses regarding the model predictions, and found virtually no              
differences (Extended Data Fig. 1 b-d). While our results demonstrate the dramatic progress             
of automated reconstruction methods for EM data sets, we stress that manual proofreading             
still improved the quality of the data set. Other connectomic studies requiring more complete              
circuit-level analysis might still benefit from manual neurite proofreading. 
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Extended Data Fig. 1: Analysis of connectome without manually corrected reconstruction 
errors. 
For panels b-f, analyses from panels in main figures are re-computed for data set without manual 
proofreading.​ a​, Left: Distribution of neurite skeleton path lengths for the manually proofread 
connectome. Right: without manual proofreading.​ b​, UMAP embeddings of data set neurites, as in 
Fig. 1d. ​c ​, Synapse size distribution of as in Fig. 2e, fitted by two slightly truncated log-normal 
distributions. ​d​, Normalized histograms of the fraction of synaptic area with spine head synapses for 
different axon classes, corresponding to Fig. 1c,d. ​e​, Observed pair cv values for dually connected 
HVC-on-MSN spine synapse pairs minus cv values for different sets of control synapse pairs, as in 
Fig. 3d. Error bars are  of histogram bin. ​f​, Change of HVC-on-MSN spine synapse size similarity± √n  
relative to controls as in Fig. 3e. Error bars show relative s.e.m.. 
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Supplementary Note 2 - Cell types 
For further validation, we quantified the agreement between our supervised cell type            
classification method and an unsupervised clustering method on the UMAP down-projected           
space using HDBSCAN to automatically assign cluster labels (Extended Data Fig. 2c). For             
HVC, LMAN and MSNs neurites. The agreement F1-scores were 0.96, 0.81, 0.98,            
respectively, consistent with the mostly uniform coloring of the respective clusters in Fig. 1d. 
 
While not further analyzed in this study, we also identified other neuron types in the data set.                 
Some axon fragments (Extended Data Fig. 2d) resembled a recently described           
glutamatergic neuron of Area X in their innervation pattern ​1​. The axons formed large             
asymmetric multi-synaptic contacts with pallidal-like neurons (Extended Data Fig. 2e), which           
would also be consistent with a reported thalamic projection into Area X ​2​. These other              
classes of glutamatergic axons are easily distinguished from HVC and LMAN axons by the              
prevalence of these contacts with pallidal neurons. We furthermore found interneurons           
forming symmetric synapses, primarily with MSNs. We were able to tentatively identify            
multiple classes of Area X interneurons on the basis of morphological descriptions in the              
literature (Extended Data Table 1). Putative cholinergic and dopaminergic axons were           
similarly identified (Extended Data Table 1). The F1-scores for the supervised CMN            
classification for all classes were: 0.90 (STN, n=30), 0.93 (modulatory, 60), 0.93 (MSN, 30),              
0.95 (LMAN, 30), 0.91 (HVC, 30), 0.96 (GP, 30), 0.91 (INT, 30), the overall accuracy: 0.93                
(n=240).  
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Extended Data Fig. 2: Cell types of the data set 
a ​, UMAP embeddings of all data set neurites with at least 15 synapses (n=7120) with increasing 
values of the n_neighbors parameter (min_distance=0.1, n_epochs=500). Color labels are based on 
the Cellular Morphology Neural Network (CMN) cell type classifier: HVC (blue), MSN (purple), LMAN 
(red), modulatory (light red), subthalamic-nucleus like (green), pallidal-like (yellow), inhibitory 
interneurons (turquoise) ​b​, tSNE embeddings with increasing values of the perplexity parameter, 
otherwise as in a. Note how larger perplexity values increasingly reveal global structure in the data, 
i.e. an increasingly large gap between mostly axonic neurites and mostly dendritic neurites. ​c​, Top: 
Labels (arbitrary colors) determined by clustering (using HDBSCAN algorithm) on 2d UMAP 
embedding (n_neighbors=40), to calculate the agreement between the supervised CMN cell type 
classification method and the unsupervised feature-based clustering. Bottom: Labels determined by 
naive HDSCAN clustering on full feature space, without parameter tuning. Black neurites represent 
outliers neurites that were not assigned by HDBSCAN. ​d​, rendering of axon fragment of a 
subthalamic nucleus-like neuron (red), forming an asymmetric synapse (inset) with the pallidal neuron 
in ​e ​ that is densely filled with mitochondria. Synaptic clefts in black, vesicle clouds in green and 
mitochondria in blue. 
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Extended Data Fig. 3: Examples of HVC, LMAN and MSN neurites 
a) ​Renderings of 10 randomly selected HVC axons, ​b) ​LMAN axons and ​c)​ MSN dendrites. Minimum 
neurite length 50 µm skeleton path length. The zoomed insets show characteristics of the particular 
cell types, namely regular boutons for HVC axons, a perforated morphology of LMAN axons, and 
spiny dendrites of MSNs. Excitatory synapses (red), as determined by the synapse type classifier, 
mitochondria (blue), vesicle clouds (green). Scale bar is 50 µm. 
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Extended Data Table 1 
Cell types and characteristics of neurons. 
Cell type Soma Dendrites Axon Synapses Incoming  Outgoing  References 

Medium spiny 
neuron 

Small 
diameter 
(< 10 µm) 

Spiny - Inhibitory/ 
modulatory 

HVC, 
LMAN, FS 
and LTS 

Innervate GP, 
MSNs, 
interneurons 

3 

Cholinergic 
neuron 

Large 
diameter 
(> 10 µm) 

Aspiny, 
sparse 

- Inhibitory/ 
modulatory 

- MSN 4​,​3 

HVC axon - - Unbranched, 
regular 
en-passant 
boutons 

Excitatory - Innervate 
MSNs, 
interneurons, 
GP 

5 

LMAN axon - - Branched, 
cohesive 
terminal 
domains 

Excitatory - Innervate 
MSNs, 
interneurons, 
pallidal 

6 

Thalamic axon - - Large 
diameter 

Excitatory - Pallidal 
neurons 

2 

Fast-spiking 
interneuron 
(FS) 

Large 
diameter 
(>10 µm) 

Aspiny, dense Densely 
branched 

Inhibitory - Innervate 
MSNs, 
interneurons, 
GP 

3 

Low-threshold 
spiking 
interneuron 
(LTS) 

Large 
diameter 
(>10 µm) 

Aspiny, 
sparse 

Sparse Inhibitory - Innervate 
MSNs, 
interneurons, 
GP 

3 

Dopaminergic 
axon (DA) 

- - Few synaptic 
junctions in 
boutons 

Inhibitory/ 
modulatory 

- MSN 4​(in reptile) 

Pallidal internal 
(GPi) 

Large 
diameter 
(>10 µm) 

Aspiny Large 
boutons 

Inhibitory HVC, MSN Pallidal 
neurons 

3 

Pallidal 
external (GPe) 

Large 
diameter 
(>10 µm) 

Aspiny Large 
boutons 

Inhibitory HVC, MSN GP 3 

Subthalamic 
nucleus (STN) 

- - - Excitatory Pallidal Pallidal 
neurons 

1 
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Extended Data Table 2 
Compartment specific hand-designed neurite features for clustering; trans-synaptic features, i.e. 
features that require first-order connectivity information for their calculation with yellow background. 
Latent features were calculated using a triplet-loss cellular morphology network​7 ​. 
Axon Dendrite Soma 

Synapse / path length Synapse / path length Asymmetric area / total synapse area 

Synapse volume / path length Synapse volume / path length Median(mito volumes) 

Mitos / path length Mitos / path length Std(mito volumes) 

Mito volume / path length Mito volume / path length Sum(mito volumes) 

Vesicles / path length Asymmetric area / total synapse area Mitos / path length 

Vesicle volume / path length Terminal synapses / all synapses Synapse / path length 

Asymmetric area / total synapse area Asym. head / path length Median(|synapse size|) 

Terminal synapses / all synapses Sym. head / path length Std(|synapse size|) 

Radius histogram feature bin0 Radius histogram feature bin0  

Radius histogram feature bin1 Radius histogram feature bin1  

Radius histogram feature bin2 Radius histogram feature bin2  

Head synapses / all synapses Head synapses / all synapses  

Median(mito volume) Median(mito volumes)  

Std(mito volume) Std(mito volumes)  

Median(vesicle volume) Median(|synapse size|)  

Std(vesicle volume) Weighted presynaptic asymmetric area / total area  

Median(|synapse size|) 
Weighted presynaptic head synapses / all 
synapses 

 

Std(|synapse size|)   

Weighted postsynaptic asymmetric area / 
total area 

  

Weighted postsynaptic head synapses / 
all synapses 

  

Synapses / Vesicles   

Per synapse mean latent feature 1-10   

Weighted postsynaptic per synapse mean 
latent feature 1-10 
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Extended Data Table 3 
Statistical analysis of joint pre-post pairs of HVC and LMAN synapses onto MSNs. In shuffle controls 
random pairs were drawn from the same pre-post pair synapse size pool. Green background: p < 
0.01. 

Pre-post pair 
synapse type 

Number 
pairs 

One-way 
ANOVA F 

One-way 
ANOVA p-value 

Kruskal-Wallis 
H 

Kruskal-Wallis 
p-value 

HVC spine 1950 1.2709 6.2x10​-8 2199.7 5.5x10​-5 

HVC shaft 128 0.8670 0.79 118.86 0.68 

LMAN spine 443 1.2746 0.005 486.9 0.068 

LMAN shaft 215 1.0176 0.45 222.59  0.33 

HVC spine shuffle 1950 1.0244 0.30 1978.3 0.32 

HVC shaft shuffle 128  0.8837 0.76 119.60 0.67 

LMAN spine shuffle 443 0.9176 0.82 430.3 0.64 

LMAN shaft shuffle 215 1.0586 0.34 223.10 0.32 
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Extended Data Fig. 4: Synapse pair similarity analysis for further synapse classes 
Left: Observed pair cv values for dually connected synapse pairs minus cv values for different sets of 
control synapse pairs, with both synapses sampled from the same axon but connecting to different 
dendrites (sA_dD) from all synapses (rand); from only synapses in dual pairs (shuffle). Error bars are 

 of histogram bin. Right: Change of HVC-on-MSN spine synapse size similarity relative to± √n  
controls (percentage mean cv change) for different pair mean synapses size bins. Error bars show 
relative s.e.m.. ​a ​, for LMAN-on-MSN spine synapses, ​b​, for LMAN-on-MSN shaft synapses and ​c​, for 
HVC-on-MSN shaft synapses. ​d​, Left: Spearman rank correlation coefficient ρ observed (dashed 
lines) and for n=1000 shuffles of HVC-on-MSN spine (Spearman ρ = 0.13; p < 10 ​-7 ​) and 
LMAN-on-MSN spine pair synapses (Spearman ρ = 0.10; p = 0.03); Right: For MSN-shaft synapses, 
otherwise as in the left panel.​ e,​ Left: Ratio of s.d.’s (Methods) observed (dashed lines) and for 
n=1000 shuffles of HVC-on-MSN spine and LMAN-on-MSN spine pair synapses; Right: For 
MSN-shaft synapses, otherwise as in the left panel. 
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Extended Data Fig. 5: HVC and LMAN axon synapse size distributions 
a ​, Gaussian mixture models of HVC on MSN spine synapses (left) and HVC on MSN shaft synapses 
(right), with underlying truncated normal distributions (synapses below 0.01 µm ​2 ​ not considered). ​b​, as 
in a, but for LMAN on MSN spine synapses (left) and LMAN on MSN shaft synapses (right). ​c​ and ​d​, 
Bayesian (BIC) and Akaike Information Criterion (AIC) analysis (lowest score indicates “best fitting” 
model) of Gaussian mixture models ranging from 1 to 10 gaussian components. 
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