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ABSTRACT

Noise robustness remains a challenging problem in on-device key-

word spotting. Using multiple-microphone algorithms like beam-

forming improves accuracy, but it inevitably pushes up computa-

tional complexity and tends to require more memory. In this paper,

we propose a new neural-network based architecture which takes

multiple microphone signals as inputs. It can achieve better accu-

racy and incurs just a minimum increase in model size. Compared

with a single-channel baseline which runs in parallel on each chan-

nel, the proposed architecture reduces the false reject (FR) rate by

27.3% and 31.8% relative on dual-microphone clean and noisy test

sets, respectively, at a fixed false accept rate.

Index Terms— deep neural networks, keyword spotting, multi-

microphone noise reduction, microphone array processing for ma-

chine learning, embedded speech recognition

1. INTRODUCTION

The usage of voice assistants is increasingly popular. Keywords,

such as “Hey Google” are commonly used as the command to initiate

the conversation with voice assistants. Keyword-spotting with low

latency becomes the core technical challenge to achieve the task.

There has been much work trying to solve this problem, like us-

ing traditional Hidden Markov Model (HMM) [1] to make use of

acoustic features from a deep neural networks (DNNs) [2, 3]. Fur-

thermore, several approaches have been proposed to evaluate the out-

puts of the acoustic model and produce one score for keyword spot-

ting system [4, 5, 6]. Besides the desire for high detection accuracy,

small model size, low memory and computational consumption are

all challenging requirements for this on-device application. For ex-

ample, inspired by the causal convolution and gated activation from

Wavenet [7], the keyword spotting system presented in this recent

paper [8] has a small number of model parameters.

Other work, like temporal convolution [9], also shows model

size reduction. Singular value decomposition (SVD) was also ex-

plored to compress DNNs for keyword spotting [10]. Last year an

end-to-end keyword-spotting system using Singular Value Decom-

position Filter (SVDF) op [10] was proposed which showed a large

reduction in model size with improved accuracy [11]. However,

most of the work is for single microphone use cases.

Beamforming is a widely adopted method to utilize multi-

microphone input for speech enhancement [12]. For automatic

speech recognition (ASR), DNNs or convolutional networks have

been widely used [13]. Therefore, there have been many studies

around mimicking beamforming behaviour using neural networks

[14, 15, 16, 17]. For these papers [16, 17], direct use of features from

acoustic signals fed into multi-dimensional convolutional neural net-

works (CNNs) helps with ASR. Besides beamforming, neural-net

based denoising has also been widely explored [18, 19, 20] but those

explorations do not show the effect of performance with smaller

model parameters. This is something we consider exploring in the

future.

For small footprint keyword spotting tasks, not much work has

been done to explore the possible benefits from a microphone ar-

ray. These papers [21, 22] explored an effective noise-cancellation

algorithm using multi-microphone. But the cleaner algorithm is not

integrated in the neural-net based end-to-end system and it adds ex-

tra noticeable latency in front-end preprocessing.

In this paper, we propose a new three-dimensional (3D) SVDF

layer that processes multi-channel audio inputs in a neural-network

based architecture for on-device keyword spotting. This 3D-SVDF

input layer has time, frequency and channel as its three dimensions

and will automatically learn the correlation among different chan-

nels. Compared against a known small-footprint end-to-end single

channel keyword spotting architecture [11], the proposed topology

has shown significant improvements on clean and noisy environ-

ments with a dual-microphone setup.

2. MODEL ARCHITECTURE

2.1. Singular Value Decomposition Filter

This layer topology is proposed in [10]. The idea has its origins in

doing singular value decomposition of a fully connected weight ma-

trix. For a rank-1 SVDF, the weight matrix is decomposed into two

vectors. As shown in Fig. 1, those two vectors can be interpreted as

filters in frequency (α) and time (β) domains. In inference, feature

maps from input will first convolve with 1-D feature filters (α). Then

the output of that current state is pushed into a memory buffer. For

a given memory size M , the buffer will store states in the past M

states. If SVDF is used in the input layer, the past M states corre-

spond to the past M frames. Then states in the memory buffer will

convolve with time-domain filters (β) to produce a final output O, as

shown in Fig. 1.

2.2. 3D-SVDF Based Multi-Channel Architecture

SVDF can work well with single-channel input features [11]. To

support multi-channel features, in this paper, we propose 3D-SVDF

topology, as shown in Fig. 1. It extends existing two dimensions

which cover time × frequency to a 3rd dimension - channel. Filter-

bank energies from each channel are fed into this 3D-SVDF. Fig. 1

shows how a 2-channel 3D-SVDF is created. Each channel learns its

weights of its own time- and frequency-domain filters. The outputs

of all channels are concatenated after the layer. Following the first

3D-SVDF, the encoder has other layers as SVDF and there are some

fully-connected layers as the bottleneck layers to further cut the total

number of parameters. The decoder consists of three SVDF layers
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Fig. 1: Illustration of SVDF and 3D-SVDF cells.
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Fig. 2: Structure of 3D-SVDF based neural network layers for mul-

tichannel hotword detection.

with softmax as the final activation. The whole topology is shown in

Fig. 2.

3D-SVDF can be considered as applying SVDF on each channel

and then fusing the results. This enables the neural network to not

only take advantage of the redundancy in frequency features from

each channel but also exploit the temporal variation across channels

to enhance noise robustness. After the signal of each channel is pro-

cessed with filters in 3D-SVDF layer, it is fed into a fully connected

layer which works as a weighted summing of the filtered signal. The

output from that can be treated as the enhanced signal from the multi-

channel audio inputs. Then we can use a similar end-to-end archi-

tecture in [11] for the rest of the layers of the model.

3. MODEL TRAINING

For the multi-channel training setup, we use the same label genera-

tion and similar loss functions from [11]. We concatenate the log-

mel features from all the channels.

3.1. Keyword Label Generation

Suppose that there are C microphones. Preprocessing audio in the

cth (c = 0, 1, · · · , C − 1) channel yields a vector of 40 log-mel

filter-bank energies at the frame in time indexed by t

xt,c ,
[

Xt,c,0, Xt,c,1, · · · , Xt,c,39

]T
, (1)

where (·)T denotes the transpose of a vector or matrix.

The LVCSR system [23] is then used to force-align the class

label of keyword events Ut ∈ {0, 1} with the feature vector of frame

t in the first channel. For example, the keyword of “ok google” is

decomposed into a sequence of phonemes in order as: “ou”, “k”,

“eI”, “〈silence〉”, “g”, “u”, “g”, “@”, and “l”. We then assign 1

only to the last phoneme “l”, but 0 to all the other phonemes. Since

the microphones are close to each other, the time delays among their

signals are much smaller than the frame size and we can safely use

the aligned labels of channel 0 for all the other channels. As a result,

the input feature map at frame t is generated as follows:

xt , 〈xt,0 ⊕ xt,1 ⊕ · · · ⊕ xt,C−1, Ut〉 (2)

where a ⊕ b denotes the concatenation of two vectors a and b.

3.2. Training Loss Function

The neural network is broken down into two parts: encoder and de-

coder. For loss function, we use a frame-level cross-entropy (CE).

Based on the results from [11], we are using a one-stage unified loss

for both encoder and decoder.

3.3. Training Data

The training data we use is 2.1-million single-channel anonymous

audio with “Ok Google” or “Hey Google” in it. Instead of us-

ing the data directly in training, we use a multi-style room simu-

lation with a dual-microphone setup to simulate 2-channel outputs.

The room simulation includes different room dimensions and mi-

crophone spacings (3.3, 5.5, 6.6, and 7.1 cm). To improve the ro-

bustness, it also applies different types of noise sources and different

levels of reverberations. We train our proposed model with these 2-

channel outputs and train the single-channel baseline using channel

0 of the 2-channel outputs.



Table 1: Summary of Re-recorded Data for Testing

Dataset Number of Utterances Length (hours)

Far-Field Clean 13,344 61.9

TV Noise 14,205 68.7

Negative 55,469 1,175.1

4. EXPERIMENTS

To showcase the improvement of proposed architecture, we do the

comparison between our architecture with a small-footprint end-to-

end single-channel keyword spotting topology [11]. In this experi-

ment, we evaluated our architecture with a dual-microphone setup.

Both architectures are evaluated on 2-channel test audios with dif-

ferent runtime strategies.

4.1. Audio Preprocessing

The baseline and the proposed architecture use the same front-

end prepossessing method. Input audio per channel generates 40-

dimensional log-mel filter-bank energies from a 30ms window with

a 10ms overlap.

4.2. Models Setup

The baseline (1ch model) is the architecture proposed in [11]. It is

composed of SVDF layers with fully connected bottleneck layers in

between. It is trained end-to-end with the input of a sequence with

1 frame of left context and 1 frame of right context. The stride is

σ = 2. The baseline topology consists of the front-end described in

Section 4.1, followed by the encoder and decoder. The encoder has

4 rank-1 SVDF layers [10] of 576 nodes and memory M = 8. In

between it has fully-connected bottleneck layers with 64 nodes. The

encoder ends with a softmax function. The decoder has 3 rank-1

SVDF layers with no bottleneck layers. Each SVDF layer has 32

nodes with memory M = 32.

For proposed multi-channel topology (2ch model), we use a

dual-microphone setup (c = 2). It has the front-end setup described

in Section 4.1. Before being fed into the neural-net, xt,0 and xt,1

are concatenated. The proposed architecture has the 3D-SVDF in-

put layer with 576 nodes and has memory M = 8. The encoder also

has three SVDF layers each with 576 nodes and memory M = 8 and

three bottleneck layers each with 64 nodes. Also, a softmax is used

as the activation of the encoder. The proposed architecture has the

same decoder as the baseline which is previously described above.

The whole architecture is illustrated in Fig. 2.

To show the effect of number of model parameters on the model

performance, we also include another model in our comparisons.

This model has the same topology as the baseline but with more

nodes in the SVDF layer. This baseline has the same total number of

parameters as our proposed 3D-SVDF based architecture.

4.3. Runtime Strategies

To evaluate a single channel model on 2-channel audio, there are two

strategies (Fig. 3):

1) Run keyword detection with either channel 0 or channel 1 of the

audio.

2) Run keyword detection with the same model on each channel

given a fixed threshold. Use logical OR to produce a final result

based on the binary outcome of each channel.

Table 2: Model Comparisons

Models (#Params, FR Rate

MAC/10ms) Clean TV noise

1ch model on Ch0|Ch1 (318K, 0.32M) 2.2% 28.6%

1ch model on Ch0|Ch1 (429K, 0.43M) 1.96% 24.8%

1ch model on Ch0 (429K, 0.21M) 1.98% 25.8%

1ch model on Ch1 (429K, 0.21M) 2.0% 26.0%

1ch model on Broadside-BF (429K, 0.21M) 1.93% 24.1%

2ch model on Ch0+Ch1 (429K, 0.21M) 1.6% 19.5%
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Fig. 3: Runtime strategies with 2-channel audio: (a) 1ch model on

either Ch0 or Ch1 alone, (b) 1ch model on Ch0 | Ch1, and (c) 2ch

model on Ch0 + Ch1.

The 3rd strategy in Fig. 3 is for our proposed multi-channel

model.

4.4. Testing Data

For testing data, we use prompts from anonymized and aggregated

search queries, randomly prepended or appended with the keyword.

These prompts were spoken by mechanical turk contributors and vol-

unteers, and re-recorded with a dual-microphone setup. We collect

the re-recorded data for our testing. The summary of the data is

shown in Table 1. For positive dataset which contains either “Ok

Google” or “Hey Google” in the audio, we cover two conditions: far-

field clean and TV background noise. Data with TV noise has 10dB

SNR. The negative set is collected from internal far-field Google

Home devices with only random TV audio without any keyword.

4.5. Evaluation Metrics

For keyword spotting task, it is common to use FR (false reject) and

FA (false accept) to measure the performance of a system. We draw

Receiver Operating Characteristic Curve (ROC curve) whose axes

are FR per instance and FA per hour.

5. RESULTS

Our experiments aim to compare the quality improvement using the

proposed 3D-SVDF based multi-channel keyword spotting system

against a small size but high accuracy baseline [11]. Our evaluation

is on a dual-microphone setup. We first compare the proposed sys-

tem with the baseline and its size-matching alternative. We use the

2nd strategy from Section 4.3 to run these single-channel models.

It shows increasing number of parameters does help a little given

the same topology. However, the proposed architecture has a clear

improvement over the two single-channel models in both clean and

noisy conditions. The ROC curves in Fig. 4. show the consistent
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Fig. 4: ROCs comparing performance of two 1-channel models us-

ing the logical-or runtime strategy and a 2-channel model on (a)

clean and (b) TV-noise data sets. These three models are different in

size: 1x and 1.35x have 318k and 429k parameters, respectively.

improvement at different operating points. Besides that, as shown in

Table 2, proposed architecture also shows the advantage in compu-

tation. Its MAC/10ms is only 65.6% of the baseline model and 50%

of the size-matching alternative. This translates into the runtime la-

tency improvement of the proposed model.

We also compare the proposed architecture with the baseline al-

ternative running with different strategies. As shown in Fig. 5, we

run the detection on either channel 0 or channel 1. Also, we run

the model on each channel and use logical OR for the final de-

tection results. We can see the 2nd strategy has the better ROC

curves compared with running on either channel 0 or channel 1. The

proposed architecture outperforms all of the single-channel models

shown from Fig. 5.

Finally, we experimented with a simple, fixed broadside delay-

and-sum beamformer [24] and the result is shown in Table 2 and

Fig. 5. When the test data was recorded, the position of the speech

source with respect to the microphone array was unfortunately not

saved. But we believe that the speech sources were in the broadside

in most of the recordings. This is also in consistent with the finding

that the broadside beamformer yields better results than the endfire

beamformer in our research. As shown by Table 2, the relative im-

provements of the proposed architecture against this beamformer are

20.6% and 23.4% on the clean and noisy datasets, respectively. This

implies that the proposed approach is more adaptable to variations

in signal directions.

In summary, the proposed 3D-SVDF based multi-channel key-
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Fig. 5: ROCs comparing performance of the three different runtime

strategies on (a) clean and (b) TV-noise data sets. The involved 1-

channel and 2-channel models are all in the same size of 429k pa-

rameters.

word spotting has the best performance on both the clean and noisy

datasets with a dual-microphone setup, given the same number of

model parameters. This can translate into an implementation with-

out any increase in memory or computation.

6. CONCLUSIONS

In this paper we have presented a 3D-SVDF based architecture for

keyword spotting which not only enables detection improvement

from a multi-microphone setup, but also keeps the model size small.

We compared with a known memory and computationally efficient

end-to-end single-channel keyword spotting architecture [11]. We

also compared with a simple broadside delay-and-sum beamformer.

With two microphones, the proposed architecture has a significant

improvement on both clean and noisy data. Our method provides

the possibility by utilizing multi-channel information directly in a

neural-net architecture with a small footprint in memory. Future

work includes integrating the architecture with the known adaptive

noise-cancellation methods from these papers [21, 22].
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