NONUNIFORM FAST FOURIER TRANSFORM ON TPUS

Tianjian Lu* Thibault Marin'

Yue Zhuo'

Yi-Fan Chen* Chao Ma'

* Google Research
fGordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School

ABSTRACT

This work presents a parallel algorithm for implementing the
nonuniform Fast Fourier transform (NUFFT) on Google’s
Tensor Processing Units (TPUs). TPU is a hardware ac-
celerator originally designed for deep learning applications.
NUFFT is considered as the main computation bottleneck
in magnetic resonance (MR) image reconstruction when
k-space data are sampled on a nonuniform grid. The compu-
tation of NUFFT consists of three operations: an apodization,
an FFT, and an interpolation, all being formulated as tensor
operations in order to fully utilize TPU’s strength in matrix
multiplications. The implementation is with TensorFlow. Nu-
merical examples show 20x ~ 80x acceleration of NUFFT
on a single-card TPU compared to CPU implementations.
The strong scaling analysis shows a close-to-linear scaling
of NUFFT on up to 64 TPU cores. The proposed imple-
mentation of NUFFT on TPUs is promising in accelerating
MR image reconstruction and achieving practical runtime for
clinical applications.

Index Terms— Nonuniform fast Fourier transform,
NUFFT, Magnetic Resonance Imaging, Parallel Computing,
TensorFlow, Tensor Processing Unit

1. INTRODUCTION

Nonuniform Fast Fourier transform (NUFFT) [1, 2] is a pow-
erful fast algorithm widely used in a number of scientific and
engineering applications such as medical imaging [3], nu-
merical solutions to differential and integral equations [4],
and synthetic aperture radar (SAR) imaging [5]. NUFFT en-
ables a variety of applications that require unequally spaced
data while inheriting the computation efficiency from FFT
[6]. The state-of-the-art image reconstruction methods[7, 8]
in magnetic resonance imaging (MRI) that build upon large-
scale, iterative, optimization algorithms have an extensive us-
age of NUFFT when k-space data are sampled on a nonuni-
form grid. However, the lag time of these advanced MR im-
age reconstruction algorithms, defined as the delay between
data acquisition and image display, can often be unacceptable

Correspondence to: Y.-F. Chen (yifanchen@google.com) and C. Ma
(cmaS @mgh.harvard.edu)

for clinical use, largely due to the bottleneck in computing
NUFFT.

Graphics Processing Units (GPUs) have been extensively
studied to accelerate NUFFT [9, 10]. In this work, we propose
an alternative implementation of NUFFT on Google’s Tensor
Processing Units (TPUs) [11, 12]. TPU is an application-
specific integrated circuit (ASIC) to run cutting-edge ML
models on Google Cloud [11]. Figure 1 shows the TPU chip
and unit (or board): one TPU unit contains four chips; each
chip has two cores; and each core contains the scalar, vector,
and matrix units (MXU). The chips are connected directly
through dedicated, high-speed, and low-latency intercon-
nects, bypassing the host CPU and networking resources.
MXU provides the bulk of the compute power, which handles
16 K multiply-accumulate (MAC) operations in one single
clock cycle. Each TPU core has 16 GiB high-bandwidth
memory (HBM). Recently, TPU has been studied to tackle
large-scale scientific computing problems [13, 14]. In particu-
lar, TPUs have been successfully used to accelerate magnetic
resonance (MR) image reconstruction with non-Cartesian
sampling [15]. The image reconstruction in [15] has the
nonuniform Fourier transform formulated as dense matrix
multiplications or discrete Fourier transform (DFT). For a
N-point transform, the computation complexity of DFT is
O(N?), whereas it is O(Nlog N) for FFT. The proposed
implementation of NUFFT on TPUs brings in the reduction
of computation complexity and can further accelerate MR
image reconstruction on TPUs.

The computation of NUFFT consists of three operations:
an apodization, an FFT, and an interpolation, all being for-
mulated as tensor operations in order to fully utilize TPU’s
strength in matrix multiplications. The apodization operation
is point-wise over the image intensities. With a data decom-
position applied to the spatial coordinates, it can be performed
within individual cores and completely in parallel. The par-
allel algorithm of FFT on TPUs consists of two major opera-
tions, the local transform based on the famous Cooley-Tukey
algorithm [6] on individual cores and the phase adjustment,
the details of which can be found in [14]. The interpola-
tion operation builds upon a convolution, which is formu-
lated as tensor contractions between kernel-function values
and patches extracted from the Fourier transform of an over-
sampled image. In this work, the Kaiser-Bessel function [16]

TPU Chip

TPU Core

TPU Core

1Inn 1 n

MXU MXU MXU MXU
128 X 128 128 X 128 128 X 128 128 X 128

Fig. 1: The TPU v3 (a) chip, (b) unit (or board). One TPU
board has four chips; each chip contains two cores; and a TPU
v3 Pod in a data center contains 2048 cores.

is selected as the convolution kernel. The implementation
of NUFFT on TPUs is with TensorFlow. The strong scaling
analysis demonstrates close-to-linear parallel efficiency of the
proposed algorithm.

2. METHODS

The discrete Fourier transform with unequally sampled data
can be expressed as

N
s (kz,ma ky,m) = Z pneiizw(kz'mInJrky’myn) €))
n=1

where (ky m, kym),m =1,2,--- , M represents the k-space
coordinates on a nonuniform grid, (z,,y,),n =1,2,--- , N
represents the spatial coordinates on a uniform grid, and p,,
denotes the image intensity on grid (2, yn).

Direct computation of Eq. (1) for all k-space samples has
computation complexity of O(MN). NUFFT seeks an ap-
proximate solution to Eq. (1) while leveraging the high com-
putation efficiency of FFT, which can be written concisely in
the following matrix/vector mulplification form:

s = CFDp, 2)
where D is the apodization operator, F' denotes the FFT op-
erator, and C represents the interpolation operator.

2.1. Apodization

The apodization operation is defined as

Pn
Dpl —
{Dp}, q

@n)d(gn) ©)

where d(-) represents the inverse Fourier transform of a con-
volution kernel used in the interpolation operation. In this
work, we choose the Kaiser-Bessel function as the kernel
[16]. The apodization operation is point-wise over the im-
age intensities p,,. With a data decomposition applied to the
spatial coordinates (2, ¥y), the apodization operation can be
parallely performed within individual TPU cores.

2.2, FFT

FFT in NUFFT operates on a zero-padded image ppaq of size
alN, x alNy, which can be obtained by

o il < Fandp <
Ppad = 0 elsewhere '

The parallel algorithm of FFT on TPUs consists of two
major operations, a local transform based on the Cooley-
Tukey algorithm and the phase adjustment. Higher dimen-
sion FFT builds upon the one-dimension (1D) transform, the
formulation of which starts with

k
—ion I8

N,—1
T2 Y e Mo (5)
q=0

and -y, represents the equally-spaced image intensities. The
global index ¢ in Equation (5) can be expressed as

q=Pl+v, (6)

where | = 0,1,---,5¢ —1,» = 0,1,---,P — 1, and P
denotes the number of TPU cores used to perform the 1D
transform. After substituting the global index, Eq. (5) can
be rewritten as

= o (Pz;vr V)k
L'y = Z V(Pi4v)€ a (N
q=0
lk
L —i2m
N g9
= e 4 Z Y(Plv)€ P, (®
v=0 =0

It is shown in Eq. (8) that
Ik

F-1 2

- N
'y = E V(Pi+p)€ P
=0

©))

can be computed with the Cooley-Tukey algorithm locally on
individual cores and completely in parallel. The final results
can be obtained by summing the local transform over all the

—i2mxk .
TPU cores with the phase adjustment term e TR , with v
representing the TPU core index. See [14] for more details of
parallel implementation of FFT on TPUs.

patch size
> - -

core 0 core 1 corep

patch
size number of patches

patch size

}’* kernel width

(b)
patch size
’
—-—
—
—-—
-
Ky
corep k, number of
—
k, k-space
samplings
per core
~

patch
size

A)er of
patches
(c)

Fig. 2: The interpolation operation on TPUs is formulated
as tensor contractions: (a) the kernel-function values are pre-
computed on the CPU host; the data decomposition is applied
in the k-space such that each TPU core contains a portion of
the kernel-function values; zero-padding is required and the
nonzero values are highlighted in dark; (b) patches are ex-
tracted from the Fourier transform results of a padded image
with a depth-wise convolution; (c) tensor contraction is ap-
plied between the kernel-function values and the extracted
patches, followed by a patch-selection with Boolean mask
and a dimension reduction.

2.3. Interpolation

The interpolation operation can be written as

p— akym q— akym
C =) C)
€0 -2 (=) o (R e
w w
pilp—kgm| < 3 and ¢ :|qg — kym| < 3
Ny N, N, N,
kx,m S |:2a 2) and ky,m S |:27 2> 3 (10)

where ¢ represents the Fourier transform of a zero-padded
image and C(-) denotes the kernel function. The interpola-
tion operation is formulated as tensor contractions as shown
in Fig. 2. The kernel-function values are computed on the
CPU host. As shown in Fig. 2(a), the kernel-function values

£[J-Total computation time
<O~ Apodization time
-O-FFT time

10”2 | %¥ Interpolation time

Time (seconds)

100

64 128 2.%6 512
Image size

Fig. 3: The breakdown of the total computation time of

NUFFT on eight TPU cores (or one TPU unit). The image

size varies from 64 x 64 to 512 x 512.

corresponding to one k-space sampling point are stored as a
2D slice of a 3D tensor. The size of the 2D slice is larger
than the kernel width because zero-padding is applied to the
computed kernel-function values. Prior to the zero-padding,
the 2D tensor containing the nonzero kernel-function values
has the shape w x w with w denoting the kernel width. The
zero-padding enables the formulation of the interpolation
operation as tensor contractions, which are very efficient on
TPUs. The Fourier transform of the zero-padded image, or
¢ in Equation (10) is extracted into patches. As shown in
Fig. 2(b), the size of an extracted patch is the same as that of
a 2D slice containing the kernel-function values. The patch
extraction is implemented with the depth-wise convolution
tf.nn.depthwise_conv2d. As shown in Fig. 2(c), the
interpolation operation is computed as a tensor contraction
with tf.einsum between the kernel-function values and
the extracted patches. With the data decomposition applied to
the k-space, each TPU core contains a portion of the kernel-
function values. Each TPU core has the full Fourier transform
results of the zero-padded image. The interpolation opera-
tion can be performed locally on individual TPU cores and
completely in parallel.

3. RESULTS

Figure 3 shows the breakdown of the total computation time
in term of the apodization, the FFT, and the interpolation. In
this example, the image size increases from 64 x 64 to 512 x
512 but the number of cores remains as eight (one TPU unit).
The width of the Kaiser-Bessel kernel is chosen as four and
the oversampling factor is two. It can be seen from Fig. 3 that
the interpolation operation is the most expensive operation of
NUFFT in terms of the computation time. The FFT operation
takes a very small portion of the total computation time: for
the image size of 256 x 256, the time on FFT is 4.64% of the
total computation time; and it is 1.45% for the image size of
512 x 512. Given the portion in terms of both the computation

Table 1: Computation time of NUFFT on two types of hardware: CPU-Intel(R) Xeon(R) Silver 4110 8-core 2.10 GHz and

TPU-one TPU v3 unit (eight cores).

Time (ms) FFT Interpolation Total
Hardware CPU | TPU | CPU | TPU | CPU | TPU
64 x 64 0.56 | 0.02 | 6337 | 0.79 | 64.06 | 0.81
Image
. 128 x 128 | 2.06 | 0.12 | 59.30 | 1.81 | 61.53 1.94
ize
256 x 256 | 11.80 | 0.48 | 240.33 | 9.90 | 252.62 | 10.38
time and the memory usage that FFT takes in NUFFT and the ol :ﬁct};al

large capacity of HBM on each TPU core, we have each core
perform the FFT operation over a non-partitioned image.

As shown in Table 1, we perform a preliminary compari-
son for NUFFT on CPU and TPU. NUFFT on CPU was im-
plemented with SigPy [17]. The CPU used for the comparison
is Intel(R) Xeon(R) Silver 4110 8-core 2.10 GHz. The com-
putation time of FFT on one TPU unit (eight cores) is much
smaller than that on CPU for all three examples in Table 1.
The interpolation is the computation bottleneck of NUFFT for
both types of hardware. Percentage-wise and for the case of
256 x 256, NUFFT on TPU takes 95.4% of the total computa-
tion time and that are 95.1% for CPU. Our current implemen-
tation of NUFFT on TPUs achieved 20x ~ 80x acceleration
compared to CPU implementations.

Figure 4 shows the strong scaling analysis for NUFFT on
TPUs: the image size remains as 1024 x 1024 and the num-
ber of TPU cores increases from 16 to 128. The number of
sampling points in k-space is 1,647,616. The width of the
Kaiser-Bessel kernel is chosen as four and the oversampling
factor is two. The speed-up in Fig. 4 is defined as:

T
11
T (11)

core

speed-up =

where T denotes the computation time with 16 TPU cores
and T, represents the computation time with Ngoe cores.
It can be seen from Fig. 4 that a close-to-linear scaling is
achieved up to 64 cores. The HBM usage for the case with
64 TPU cores is 1.57 GB. The problem size is considered as
small for more than 64 cores, which also explains why the
gain of speed-up starts saturating. The total computation time
is 796.01 ms by using 64 TPU cores and 160.27 ms with 256
cores.

4. DISCUSSION & CONCLUSION

In this proof-of-concept study, we proposed and implemented
a parallel algorithm of NUFFT on TPUs, the domain-specific
hardware originally developed for deep learning applications.
In order to fully utilize TPU’s strength in matrix multipli-
cations, the computation of NUFFT is formulated as tensor

Speed-up

16 B 64 128
Number of TPU cores
Fig. 4: The speed-up of NUFFT on TPUs for an image of size
1024 x 1024 and with up to 128 TPU cores. The number of
sampling points in k-space is 1,647,616.

operations. Numerical examples show that the proposed im-
plementation 20x ~ 80x acceleration compared to CPU im-
plementations. More importantly, the strong scaling analy-
sis shows a close-to-linear scaling of NUFFT on up to 64
TPU cores, indicating that MR image reconstructions can be
efficiently accelerated with multiple TPUs. Several future
work are on going for accelerated MR image reconstruction
on TPUs, including more efficient implementation of the in-
terpolation operator, the implementation of the adjoint opera-
tor of NUFFT, and the implementation of NUFFT-based inter-
ative image reconstruction algorithms, e.g., ADMM. Once ac-
complished, we also plan to perform systematic comparsions
of image reconstruction time on CPUs, GPUs and TPUs.

In conclusion, we propose an implementation of NUFFT
on Google’s TPUs. The proposed method is promising in ac-
celerating MR image reconstruction and achieving practical
runtime for clinical applications.

5. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which no ethical ap-
proval was required.

6. ACKNOWLEDGMENT

Thibault Marin, Yue Zhuo, and Chao Ma were supported
in part by the National Institute of Health under award:
T32EB013180, RO1ICA165221, ROIHL118261, RO1HL137230
and P41EB022544.

Tianjian Lu and Yi-Fan Chen are Google employees.
Tianjian Lu and Yi-Fan Chen would like to thank Tao Wang
and Blake Hechtman at Google for valuable discussions and
helpful comments.

7. REFERENCES

[1] Qing Huo Liu and Nhu Nguyen, “An accurate algorithm
for nonuniform fast fourier transforms (NUFFT’s),”
IEEE Microwave and guided wave letters, vol. 8, no.
1, pp. 18-20, 1998.

[2] Jeftrey A. Fessler and Bradley P. Sutton, ‘“Nonuniform
fast Fourier transforms using min-max interpolation,”

IEEE Transactions on Signal Processing, vol. 51, no.
2, pp. 560-574, 2003.

[3] Jeftrey A Fessler, “On NUFFT-based gridding for non-
cartesian MRI,” Journal of magnetic resonance, vol.
188, no. 2, pp. 191-195, 2007.

[4] Qing Huo Liu, Xue Min Xu, Bo Tian, and Zhong Qing
Zhang, “Applications of nonuniform fast transform al-
gorithms in numerical solutions of differential and inte-

gral equations,” IEEE Transactions on geoscience and
remote sensing, vol. 38, no. 4, pp. 1551-1560, 2000.

[5] B Subiza, E Gimeno-Nieves, JM Lopez-Sanchez, and
J Fortuny-Guasch, “An approach to SAR imaging by
means of non-uniform FFTs,” in IGARSS 2003. 2003
IEEE International Geoscience and Remote Sensing
Symposium. Proceedings (IEEE Cat. No. 03CH37477).
IEEE, 2003, vol. 6, pp. 4089-4091.

[6] James W Cooley and John W Tukey, “An algorithm
for the machine calculation of complex Fourier series,”
Mathematics of computation, vol. 19, no. 90, pp. 297—
301, 1965.

[7] Michael Lustig, David L Donoho, Juan M Santos, and
John M Pauly, “Compressed sensing MR1,” IEEE signal
processing magazine, vol. 25, no. 2, pp. 72-82, 2008.

[8] Zhi-Pei Liang, “Spatiotemporal imaging with partially
separable functions,” in 2007 4th IEEE International
Symposium on Biomedical Imaging: From Nano to
Macro. IEEE, 2007, pp. 988-991.

[9] Sam S Stone, Justin P Haldar, Stephanie C Tsao,
BP Sutton, Z-P Liang, et al., “Accelerating advanced
MRI reconstructions on GPUS,” Journal of parallel and

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

distributed computing, vol. 68, no. 10, pp. 1307-1318,
2008.

Yue Zhuo, Xiao-Long Wu, Justin P Haldar, Wen-mei
Hwu, Zhi-Pei Liang, and Bradley P Sutton, “Acceler-
ating iterative field-compensated MR image reconstruc-
tion on GPUs,” in 2010 IEEE International Symposium
on Biomedical Imaging: From Nano to Macro. 1EEE,
2010, pp. 820-823.

“Cloud TPUs @ONLINE,” https://cloud.
google.com/tpu/.

Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al., “In-
datacenter performance analysis of a tensor processing
unit,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). 1EEE,
2017, pp. 1-12.

Kun Yang, Yi-Fan Chen, Georgios Roumpos, Chris
Colby, and John Anderson, “High performance Monte
Carlo simulation of Ising model on TPU clusters,”
in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis. 2019, SC ’19, pp. 83:1-83:15, ACM.

Tianjian Lu, Yi-Fan Chen, Blake Hechtman, Tao Wang,
and John Anderson, “Large-scale discrete Fourier trans-
form on TPUs,” arXiv preprint arXiv:2002.03260,
2020.

Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen,
and Chao Ma, “Accelerating MRI reconstruction on
TPUs,” arXiv preprint arXiv:2006.14080, 2020.

Robert M Lewitt, “Multidimensional digital image rep-
resentations using generalized Kaiser—Bessel window
functions,” JOSA A, vol. 7, no. 10, pp. 1834-1846, 1990.

F Ong and M Lustig, “Sigpy: a python package for high
performance iterative reconstruction,” in Proceedings
of the ISMRM 27th Annual Meeting, Montreal, Quebec,
Canada, 2019, vol. 4819.

