
36 COMMUNICATIONS OF THE ACM | SEPTEMBER 2019 | VOL. 62 | NO. 9

practice

FOR DECADES, DISCUSSION of software reuse was more
common than actual software reuse. Today, the situation
is reversed: developers reuse software written by others
every day, in the form of software dependencies, and the
situation goes mostly unexamined.

My background includes a decade of working with
Google’s internal source code system, which treats
software dependencies as a first-class concept,17 as
well as developing support for dependencies in the Go
programming language.2

Software dependencies carry with them serious
risks that are too often overlooked. The shift to easy,
fine-grained software reuse has happened so quickly
that we do not yet understand the best practices for
choosing and using dependencies effectively, or even
for deciding when they are appropriate and when not.
The purpose of this article is to raise awareness of the
risks and encourage more investigation of solutions.

In software development today, a dependency

is additional code a programmer wants
to call. Adding a dependency avoids
repeating work: designing, testing, de-
bugging, and maintaining a specific
unit of code. In this article, that unit of
code is referred to as a package; some
systems use the terms library and mod-
ule instead.

Taking on externally written depen-
dencies is not new. Most programmers
have at one point in their careers had
to go through the steps of manually
installing a required library, such as
C’s PCRE or zlib; C++’s Boost or Qt; or
Java’s JodaTime or JUnit. These pack-
ages contain high-quality, debugged
code that required significant exper-
tise to develop. For a program that
needs the functionality provided by
one of these packages, the tedious
work of manually downloading, in-
stalling, and updating the package is
easier than the work of redeveloping
that functionality from scratch. The
high fixed costs of reuse, however,
mean manually reused packages
tend to be big; a tiny package would
be easier to reimplement.

A dependency manager (a.k.a. pack-
age manager) automates the download-
ing and installation of dependency
packages. As dependency managers
make individual packages easier to
download and install, the lower fixed
costs make smaller packages economi-
cal to publish and reuse. For example,
the Node.js dependency manager NPM
provides access to more than 750,000
packages. One of them, escape-string-
regexp, consists of a single function
that escapes regular expression opera-
tors in its input. The entire implemen-
tation is:

var matchOperatorsRe =
 /[|\\{}()[\]̂ $+*?.]/g;
module.exports = function (str) {
 if (typeof str !== ’string’) {
 throw new TypeError(
 ’Expected a string’);
 }
 return str.replace(
 matchOperatorsRe, ’\\$&’);
};

Surviving
Software
Dependencies

DOI:10.1145/3347446

	� Article development led by
queue.acm.org

Software reuse is finally here
but comes with risks.

BY RUSS COX

http://dx.doi.org/10.1145/3347446

SEPTEMBER 2019 | VOL. 62 | NO. 9 | COMMUNICATIONS OF THE ACM 37

I
M

A
G

E
 B

Y
 T

.
E

M
I

L

Before dependency managers,
publishing an eight-line code library
would have been unthinkable: too
much overhead for too little benefit.
NPM, however, has driven the over-
head approximately to zero, with the
result that nearly trivial functionality
can be packaged and reused. In late
April 2019, the escape-string-regexp
package was explicitly depended
upon by almost a thousand other
NPM packages, not to mention all the
packages developers write for their
own use and don’t share.

Dependency managers now exist
for essentially every programming lan-
guage: Maven Central (Java), NuGet
(.NET), Packagist (PHP), PyPI (Python),

and RubyGems (Ruby) each host more
than 100,000 packages. The arrival of
this kind of fine-grained, widespread
software reuse is one of the most con-
sequential shifts in software develop-
ment over the past two decades. And if
we are not more careful, it will lead to
serious problems.

What Could Go Wrong?
A package, for this discussion, is code
downloaded from the Internet. Adding
a package as a dependency outsources
the work of developing that code—de-
signing, writing, testing, debugging,
and maintaining—to someone else on
the Internet, often unknown to the pro-
grammer. Using that code exposes the
program to all the failures and flaws
in the dependency. The program’s ex-
ecution now literally depends on code
downloaded from this stranger on the
Internet. Presented this way, it sounds
incredibly unsafe. Why would anyone
do this?

Because it’s easy, it seems to work,
everyone else is doing it, and, most
importantly, it seems like a natural
continuation of age-old established

practice. But there are important dif-
ferences that are being ignored.

Decades ago, most developers trust-
ed others to write the software they
depended on, such as operating sys-
tems and compilers. That software was
purchased from known sources, often
with some kind of support agreement.
There was still a potential for bugs or
outright mischief,20 but at least the de-
velopers knew who they were dealing
with and usually had commercial or
legal recourses available.

The phenomenon of open source
software, distributed at no cost over the
Internet, has displaced many of those
earlier software purchases. When reuse
was difficult, there were fewer projects
publishing reusable code packages.
Even though their licenses typically dis-
claimed, among other things, any “im-
plied warranties of merchantability and
fitness for a particular purpose,” the
projects built up well-known reputa-
tions that often factored heavily into
people’s decisions about which to
use. The commercial and legal sup-
port for trusting software sources
was replaced by reputational support.

38 COMMUNICATIONS OF THE ACM | SEPTEMBER 2019 | VOL. 62 | NO. 9

practice

No matter what the expected cost,
experiences with larger dependencies
suggest some approaches for estimat-
ing and reducing the risks of adding a
software dependency. Better tooling is
likely needed to help reduce the costs
of these approaches, much as depen-
dency managers have focused to date
on reducing the costs of downloading
and installation.

Inspect the Dependency
You would not hire a software devel-
oper you have never heard of and know
nothing about. You would learn more
about the person first: check referenc-
es, conduct a job interview, run back-
ground checks, and so on. Before you
depend on a package found on the In-
ternet, it is similarly prudent to learn a
bit about it first.

A basic inspection can provide a
sense of how likely you are to run into
problems trying to use this code. If the
inspection reveals likely minor prob-
lems, you can take steps to prepare
for or perhaps avoid them. If the in-
spection reveals major problems, it
may be best not to use the package;
maybe you will find a more suitable
one, or maybe you need to develop
one yourself. Remember that open
source packages are published by
their authors in the hope they will
be useful but with no guarantee of
usability or support. In the middle
of a production outage, you will be
the one debugging the package. As
the original GNU General Public Li-
cense warned, “The entire risk as to
the quality and performance of the
program is with you. Should the pro-
gram prove defective, you assume the
cost of all necessary servicing, repair
or correction.”7

The following are some consider-
ations when inspecting a package and
deciding whether to depend on it:

Design. Is the documentation clear?
Does the API have a clear design? If the
authors can explain the package’s API
and its design well in the documen-
tation, that increases the likelihood
they have explained the implementa-
tion well to the computer in the source
code. Writing code using a clear, well-
designed API is also easier, faster, and
hopefully less error-prone. Have the
authors documented what they expect
from client code in order to make fu-

Many common early packages still en-
joy good reputations: consider BLAS
(published in 1979), Netlib (1987),
libjpeg (1991), LAPACK (1992), HP STL
(1994), and zlib (1995).

Dependency managers have scaled
down this open source code reuse mod-
el. Now, developers can share code at
the granularity of individual functions
consisting of tens of lines of code. This
is a major technical accomplishment.
Myriad packages are available, and
writing code can involve a large num-
ber of them, but the commercial, legal,
and reputational support mechanisms
for trusting the code have not carried
over. Developers trust more code with
less justification for doing so.

The cost of adopting a bad depen-
dency can be viewed as the sum, over
all possible bad outcomes, of the cost
of each bad outcome multiplied by
its probability of happening (risk), as
shown in the equation.

expected cost = cost(b) × probability(b)
b ∈ bad outcomes

∑
The context in which a dependency

will be used determines the cost of a
bad outcome. At one end of the spec-
trum is a personal hobby project,
where the cost of most bad outcomes
is near zero: you are just having fun,
bugs have no real impact other than
wasting time, and even debugging can
be fun. So, the risk probability almost
doesn’t matter—it’s being multiplied
by a failure cost of almost zero. At the
other end of the spectrum is produc-
tion software that must be maintained
for years. Here, the cost of a bug in a
dependency can be very high: servers
may go down, sensitive data may be di-
vulged, customers may be harmed, or
companies may fail. High failure costs
make it much more important to esti-
mate and then reduce any risk of a seri-
ous failure.

Developers trust
more code with
less justification
for doing so.

SEPTEMBER 2019 | VOL. 62 | NO. 9 | COMMUNICATIONS OF THE ACM 39

practice

ture upgrades compatible? (Examples
include the C++23 and Go8 compatibil-
ity documents.)

Code quality. Is the code well writ-
ten? Read some of it. Does it look like
the authors have been careful, consci-
entious, and consistent? Does it look
like code you would want to debug?
You may need to.

Develop your own systematic ways
to check code quality. For example,
something as simple as compiling a C
or C++ program with important com-
piler warnings enabled (for example,
–Wall) can give you a sense of how se-
riously the developers work to avoid
various undefined behaviors. Recent
languages such as Go, Rust, and Swift
use an unsafe keyword to mark code
that violates the type system; look to
see how much unsafe code there is.
More advanced semantic tools such as
Infer6 or SpotBugs19 are helpful, too.
Linters are less helpful: you should
ignore rote suggestions about topics
such as brace style and focus instead
on semantic problems.

Keep an open mind about unfamil-
iar development practices. For exam-
ple, the SQLite library ships as a single
200,000-line C source file and a single
11,000-line header called the amal-
gamation. The sheer size of these files
should raise an initial red flag, but closer
investigation would turn up the actual
development source code, a traditional
file tree with more than 100 C source
files, tests, and support scripts. It turns
out the single-file distribution is built
automatically from the original sources
and is easier for end users, especially
those without dependency managers.
(The compiled code also runs faster, be-
cause the compiler can see more optimi-
zation opportunities.)

Testing. Does the code have tests?
Can you run them? Do they pass? Tests
establish the code’s basic functionality
is correct, and they signal the developer
is serious about keeping it correct. For
example, the SQLite development tree
has an incredibly thorough test suite
with more than 30,000 individual test
cases, as well as developer documenta-
tion explaining the testing strategy.10
On the other hand, if there are few tests
or no tests, or if the tests fail, that’s a
serious red flag. Future changes to
the package are likely to introduce re-
gressions that could easily have been

caught. If you insist on tests in code
you write (you do, right?), you should
insist on tests in code you outsource to
others.

Assuming the tests exist, run, and
pass, you can gather more information
by running them with runtime instru-
mentation such as code coverage analy-
sis, race detection,16 memory-allocation
checking, and memory-leak detection.

Debugging. Find the package’s is-
sue tracker. Are there many open bug
reports? How long have they been
open? Are there many fixed bugs?
Have any bugs been fixed recently? If
you see lots of open issues about what
look like real bugs, especially if they
have been open for a long time, that’s
not a good sign. On the other hand,
if the closed issues show that bugs
are rarely found and promptly fixed,
that’s great.

Maintenance. Look at the pack-
age’s commit history. How long has
the code been actively maintained? Is
it actively maintained now? Packages
that have been actively maintained
for an extended amount of time are
more likely to continue to be main-
tained. How many people work on
the package? Many packages are per-
sonal projects that developers create
and share for fun in their spare time.
Others are the result of thousands of
hours of work by a group of paid de-
velopers. In general, the latter kind of
package is more likely to have prompt
bug fixes, steady improvements, and
general upkeep.

On the other hand, some code really
is “done.” For example, NPM’s escape-
string-regexp, shown earlier, may nev-
er need to be modified again.

Usage. Do many other packages de-
pend on this code? Dependency man-
agers can often provide statistics about
usage, or you can use a Web search to
estimate how often others write about
using the package. More users should

at least mean more people for whom
the code works well enough, along with
faster detection of new bugs. Wide-
spread usage is also a hedge against the
question of continued maintenance; if
a widely used package loses its main-
tainer, an interested user is likely to
step forward.

For example, libraries such as PCRE
or Boost or JUnit are incredibly widely
used. That makes it more likely—al-
though certainly not guaranteed—that
bugs you might otherwise run into
have already been fixed, because others
ran into them first.

Security. Will you be processing un-
trusted inputs with the package? If so,
does it seem to be robust against mali-
cious inputs? Does it have a history of
security problems listed in the NVD
(National Vulnerability Database)?13

For example, in 2006 when Jeff
Dean and I started work on Google
Code Search5—grep over public source
code—the popular PCRE regular ex-
pression library seemed like an ob-
vious choice. In an early discussion
with Google’s security team, however,
we learned that PCRE had a history
of problems such as buffer overflows,
especially in its parser. We could have
learned the same by searching for
PCRE in the NVD. That discovery did
not immediately cause us to abandon
PCRE, but it did make us think more
carefully about testing and isolation.

Licensing. Is the code properly li-
censed? Does it have a license at all?
Is the license acceptable for your proj-
ect or company? A surprising fraction
of projects on GitHub have no clear
license. Your project or company may
impose further restrictions on the al-
lowed licenses of dependencies. For
example, Google disallows the use of
code licensed under AGPL-like licens-
es (too onerous), as well as WTFPL-like
licenses (too vague).9

Dependencies. Does the code have

40 COMMUNICATIONS OF THE ACM | SEPTEMBER 2019 | VOL. 62 | NO. 9

practice

tute a different, equally appropriate
dependency later, by changing only
the wrapper. Migrating your per-proj-
ect tests to use the new interface will
test the interface and wrapper imple-
mentation, as well as making it easy
to test any potential replacements for
the dependency.

For Code Search, we developed an
abstract Regexp class that defined
the interface Code Search needed
from any regular expression engine.
Then we wrote a thin wrapper around
PCRE implementing that interface.
The indirection made it easy to test
alternate libraries, and it prevented
accidentally introducing knowledge
of PCRE internals into the rest of the
source tree. That in turn ensured it
would be easy to switch to a different
dependency if needed.

Isolate the Dependency
Isolating a dependency at runtime may
also be appropriate in order to limit
the possible damage caused by bugs.
For example, Google Chrome allows
users to add dependencies—extension
code—to the browser. When Chrome
launched in 2008, it introduced the
critical feature (now standard in all
browsers) of isolating each extension
in a sandbox running in a separate op-
erating-system process.18

An exploitable bug in a badly writ-
ten extension therefore did not au-
tomatically have access to the entire
memory of the browser itself and
could be stopped from making inap-
propriate system calls.12 For Code
Search, until we dropped PCRE en-
tirely, the plan was to isolate at least
the PCRE parser in a similar sandbox.
Today, another option would be a
lightweight hypervisor-based sand-
box such as gVisor.11 Isolating depen-
dencies reduces the associated risks
of running that code.

Even with these examples and oth-

dependencies of its own? Flaws in in-
direct dependencies are just as bad
for your program as flaws in direct
dependencies. Dependency managers
can list all the transitive dependen-
cies of a given package, and each of
them should ideally be inspected as
described here. A package with many
dependencies incurs additional in-
spection work, because those same
dependencies incur additional risk
that needs to be evaluated.

Many developers have never looked
at the full list of transitive dependen-
cies of their code and do not know
what they depend on. For example,
the NPM user community discovered
in March 2016 that many popular
projects—including Babel, Ember,
and React—all depended indirectly
on a tiny package called left-pad, con-
sisting of a single eight-line function
body. They discovered this when the
author of left-pad deleted that pack-
age from NPM, inadvertently break-
ing most Node.js users’ builds.22
And left-pad is hardly exceptional in
this regard. For example, 30% of the
750,000 packages published on NPM
depend—at least indirectly—on es-
cape-string-regexp. Adapting Leslie
Lamport’s observation about distrib-
uted systems, a dependency manager
can easily create a situation in which
the failure of a package you did not
even know existed can render your
own code unusable.

Test the Dependency
The inspection process should in-
clude running a package’s own tests.
If the package passes the inspection
and you decide to make your project
depend on it, the next step should
be to write new tests focused on the
functionality needed by your appli-
cation. These tests often start out as
short stand-alone programs written
to ensure you can understand the

package’s API and that it does what
you think it does. (If you can’t or it
doesn’t, turn back now!) It is worth
making the extra effort to turn those
programs into automated tests that
can be run against newer versions
of the package. If you find a bug and
have a potential fix, you will want to
be able to rerun these project-specific
tests easily, to ensure the fix did not
break anything else.

It is especially worth exercising the
likely problem areas identified by the
basic inspection. For Code Search,
we knew from past experience that
PCRE sometimes took a long time to
execute certain regular expression
searches. The initial plan was to have
separate thread pools for “simple”
and “complicated” regular expres-
sion searches. One of the first tests
was a benchmark comparing pcre-
grep with a few other grep implemen-
tations. For one basic test case, pcre-
grep was 70 times slower than the
fastest grep available, so we started
to rethink the plan to use PCRE. Even
though PCRE was eventually dropped
entirely, that benchmark remains in
the code base today.

Abstract the Dependency
Depending on a package is a decision
likely to be revisited later. Perhaps
updates will take the package in a
new direction. Perhaps serious secu-
rity problems will be found. Perhaps a
better option will come along. For all
these reasons, it is worth the effort to
make it easy to migrate your project to
a new dependency.

If the package will be used from
many places in your project’s source
code, migrating to a new dependen-
cy would require making changes to
all those different source locations.
Worse, if the package will be exposed
in your own project’s API, migrat-
ing to a new dependency would re-
quire making changes in all the code
calling your API, which you might
not control. To avoid these costs, it
makes sense to define an interface of
your own, along with a thin wrapper
implementing that interface using
the dependency. Note that the wrap-
per should include only what your
project needs from the dependency,
not everything the dependency of-
fers. Ideally, that allows you to substi-

SEPTEMBER 2019 | VOL. 62 | NO. 9 | COMMUNICATIONS OF THE ACM 41

practice

er off-the-shelf options, runtime iso-
lation of suspect code is still too dif-
ficult and rarely done. True isolation
would require a completely memory-
safe language, with no escape hatch
into untyped code. That’s challeng-
ing not just in entirely unsafe lan-
guages such as C and C++, but also in
languages that provide restricted un-
safe operations, such as Java when
including JNI (Java Native Interface),
or Go, Rust, and Swift when includ-
ing their “unsafe” features. Even in
a memory-safe language such as Ja-
vaScript, code often has access to
far more than it needs. In November
2018, the latest version of the NPM
package event-stream, which pro-
vided a functional streaming API for
JavaScript events, was discovered to
contain obfuscated malicious code
that had been added 2.5 months ear-
lier. The code, which harvested large
Bitcoin wallets from users of the Co-
pay mobile app, was accessing system
resources entirely unrelated to pro-
cessing event streams.1 One of many
possible defenses to this kind of prob-
lem would be to better restrict what
dependencies can access.

Avoid the Dependency
If a dependency seems too risky and
you can’t find a way to isolate it, the
best answer may be to avoid it entirely,
or at least to avoid the parts you have
identified as most problematic.

For example, as we better under-
stood the risks and costs associated
with PCRE, our plan for Google Code
Search evolved from “use PCRE di-
rectly,” to “use PCRE but sandbox the
parser,” to “write a new regular ex-
pression parser but keep the PCRE ex-
ecution engine,” to “write a new pars-
er and connect it to a different, more
efficient open source execution en-
gine.” Later we rewrote the execution
engine as well, so that no dependen-
cies were left, and we open sourced
the result: RE2.4

If you need only a tiny fraction
of a dependency, the simplest solu-
tion may be to make a copy of what
you need (preserving appropriate
copyright and other legal notices, of
course). You are taking on responsi-
bility for fixing bugs, maintenance,
and so on, but you are also completely
isolated from the larger risks. The Go

developer community has a proverb
about this: “A little copying is better
than a little dependency.”14

Upgrade the Dependency
For a long time, the conventional wis-
dom about software was, “If it ain’t
broke, don’t fix it.” Upgrading carries a
chance of introducing new bugs; with-
out a corresponding reward—such as
a new feature you need—why take the
risk? This analysis ignores two costs.
The first is the cost of the eventual
upgrade. In software, the difficulty of
making code changes does not scale
linearly: making 10 small changes is
less work and easier to get right than
making one equivalent large change.
The second is the cost of discovering
already-fixed bugs the hard way. Es-
pecially in a security context, where
known bugs are actively exploited, ev-
ery day you wait is another day that at-
tackers can break in.

For example, consider what hap-
pened at Equifax in 2017, as recounted
by executives in detailed Congressional
testimony.21 On March 7, a new vulner-
ability in Apache Struts was disclosed,
and a patched version was released.
On March 8, Equifax received a notice
from US-CERT (United States Comput-
er Emergency Readiness Team) about
the need to update any uses of Apache
Struts. Equifax ran source code and
network scans on March 9 and March
15, respectively; neither scan turned
up a particular group of public-facing
Web servers. On May 13, attackers
found the servers that Equifax’s se-
curity teams could not. They used the
Apache Struts vulnerability to breach
Equifax’s network and then steal de-
tailed personal and financial informa-
tion about 148 million people over the
next two months. Equifax finally no-
ticed the breach on July 29 and publicly
disclosed it on September 4. By the end
of September, Equifax’s CEO, CIO, and

Even after
all that work,
you are not done
tending your
dependencies.
It’s important
to continue to
monitor them
and perhaps
even re-evaluate
your decision
to use them.

42 COMMUNICATIONS OF THE ACM | SEPTEMBER 2019 | VOL. 62 | NO. 9

practice

reach production, then in most cases
delaying an upgrade is riskier than up-
grading quickly.

The window for security-critical
upgrades is especially short. In the
aftermath of the Equifax breach, fo-
rensic security teams found evidence
that attackers (perhaps different
ones) had successfully exploited the
Apache Struts vulnerability on the
affected servers on March 10, only
three days after it was publicly dis-
closed, but they had run only a single
whoami command.

Watch Your Dependencies
Even after all that work, you are not
done tending your dependencies. It’s
important to continue to monitor
them and perhaps even re-evaluate
your decision to use them.

First, ensure you keep using the
specific package versions you think
you are. Most dependency managers
now make it easy or even automatic to
record the cryptographic hash of the
expected source code for a given pack-
age version and then to check that
hash when redownloading the pack-
age on another computer or in a test
environment. This ensures your build
uses the same dependency source
code you inspected and tested. These
kinds of checks prevented the event-
stream attacker, described earlier,
from silently inserting malicious code
in the already-released version 3.3.5.
Instead, the attacker had to create a
new version, 3.3.6, and wait for people
to upgrade (without looking closely at
the changes).

It is also important to watch for
new indirect dependencies creeping
in. Upgrades can easily introduce new
packages upon which the success of
your project now depends. They de-
serve your attention as well. In the
case of event-stream, the malicious
code was hidden in a different pack-
age, flatmap-stream, which the new
event-stream release added as a new
dependency.

Creeping dependencies can also
affect the size of your project. Dur-
ing the development of Google’s
Sawzall15—a JIT’ed logs processing
language—the authors discovered
at various times that the main inter-
preter binary contained not just Saw-
zall’s JIT but also (unused) PostScript,

CSO had all resigned, and a Congres-
sional investigation was underway.

Equifax’s experience drives home
the point that although dependency
managers know the versions they are
using at build time, other arrange-
ments must be made to track that
information through the produc-
tion deployment process. For the
Go language, we are experimenting
with automatically including a ver-
sion manifest in every binary, so that
deployment processes can scan bi-
naries for dependencies that need
upgrading. Go also makes that in-
formation available at runtime, so
that servers can consult databases of
known bugs and self-report to moni-
toring software when they are in need
of upgrades.

Upgrading promptly is important,
but it means adding new code to your
project, which should mean updating
your evaluation of the risks of using
the dependency based on the new ver-
sion. At minimum, you would want to
skim the diffs showing the changes
being made from the current version
to the upgraded versions, or at least
read the release notes, to identify the
most likely areas of concern in the up-
graded code. If a lot of code is chang-
ing, so that the diffs are difficult to di-
gest, you can incorporate that fact into
your risk-assessment update.

You will also want to rerun the tests
you have written that are specific to
your project, to ensure the upgraded
package is at least as suitable for the
project as the earlier version. Rerun-
ning the package’s own tests also
makes sense. If the package has its
own dependencies, it is entirely pos-
sible that your project’s configuration
uses versions of those dependencies
(either older or newer ones) different
from those used by the package’s au-
thors. Running the package’s own tests
can quickly identify problems specific
to your configuration.

Again, upgrades should not be
completely automatic. You must ver-
ify the upgraded versions are appro-
priate for your environment before
deploying them.3

If your upgrade process includes re-
running the integration and qualifica-
tion tests you have already written for
the dependency, so that you are likely
to identify new problems before they

If a dependency
seems too risky and
you can’t find a
way to isolate it,
the best answer
may be to avoid
it entirely, or at
least to avoid the
parts you have
identified as most
problematic.

SEPTEMBER 2019 | VOL. 62 | NO. 9 | COMMUNICATIONS OF THE ACM 43

practice

Python, and JavaScript interpreters.
Each time, the culprit turned out to
be unused dependencies declared
by some library Sawzall did depend
on, combined with the fact that
Google’s build system eliminated
any manual effort needed to start us-
ing a new dependency. This kind of
error is the reason the Go language
makes importing an unused package
a compile-time error.

Upgrading is a natural time to re-
visit the decision to use a dependency
that’s changing. It’s also important
to periodically revisit any dependen-
cy that isn’t changing. Does it seem
plausible that there are no security
problems or other bugs to fix? Has the
project been abandoned? Maybe it’s
time to start planning to replace that
dependency.

It’s also important to recheck the
security history of each dependency.
For example, Apache Struts disclosed
different major remote code execution
vulnerabilities in 2016, 2017, and 2018.
Even if you have a list of all the servers
that run it and update them promptly,
that track record might make you re-
think using it at all.

Conclusion
Software reuse is finally here, and its
benefits should not be understated. It
has brought an enormously positive
transformation for software develop-
ers. Even so, we have accepted this
transformation without completely
thinking through the potential conse-
quences. The old reasons for trusting
dependencies are becoming less valid
at exactly the same time there are more
dependencies than ever.

The kind of critical examination of
specific dependencies outlined in this
article is a significant amount of work
and remains the exception rather than
the rule. It’s unlikely that any develop-
ers actually make the effort to do this
for every possible new dependency. I

have done only a subset of them for a
subset of my own dependencies. Most
of the time the entirety of the decision
is, “Let’s see what happens.” Too often,
anything more than that seems like too
much effort.

The Copay and Equifax attacks are
clear warnings of real problems in the
way software dependencies are con-
sumed today. We should not ignore
the warnings. Here are three broad
recommendations:

1.	 Recognize the problem. If noth-
ing else, this article hopefully con-
vinced you that there is a problem
here worth addressing. We need
many people to focus significant ef-
fort on solving it.

2.	 Establish best practices for today.
Best practices are needed for manag-
ing dependencies using what is avail-
able today. This means working out
processes that evaluate, reduce, and
track risk, from the original adoption
decision through production use. In
fact, just as some engineers specialize
in testing, others may need to special-
ize in managing dependencies.

3.	 Develop better dependency tech-
nology for tomorrow. Dependency
managers have essentially eliminated
the cost of downloading and install-
ing a dependency. Future develop-
ment efforts should focus on reducing
the cost of the kind of evaluation and
maintenance necessary to use a de-
pendency. For example, package-dis-
covery sites might work to find more
ways to allow developers to share
their findings. Build tools should, at
the least, make it easy to run a pack-
age’s own tests. More aggressively,
build tools and package-management
systems could also work together to
allow package authors to test new
changes against all public clients of
their APIs. Languages should also
provide easy ways to isolate a suspect
package.

There is a lot of good software out
there. Let’s work together to find out
how to reuse it safely. 	

 Related articles
 on queue.acm.org

The Calculus of Service Availability
Ben Treynor, Mike Dahlin,
Vivek Rau, and Betsy Beyer
https://queue.acm.org/detail.cfm?id=3096459

Tracking and Controlling
Microservice Dependencies
Silvia Esparrachiari, Tanya Reilly,
and Ashleigh Rentz
https://queue.acm.org/detail.cfm?id=3277541

Thou Shalt Not Depend on Me
Tobias Lauinger, Abdelberi Chaabane,
and Christo B. Wilson
https://queue.acm.org/detail.cfm?id=3205288

References
1.	 Baldwin, A. Details about the event-stream incident.

The npm Blog (Nov. 2018); https://bit.ly/2DRjySJ
2.	 Cox, R. Go & Versioning, 2018; https://research.swtch.

com/vgo.
3.	 Cox, R. The principles of versioning in Go. GopherCon

Singapore (May 2018); https://www.youtube.com/
watch?v=F8nrpe0XWRg.

4.	 Cox, R. RE2: A principled approach to regular
expression matching. Google Open Source Blog (Mar.
2010); https://bit.ly/2XoLFzC.

5.	 Cox, R. Regular expression matching with a trigram
index or how Google Code Search worked. Swtch.com
(Jan. 2012); https://swtch.com/~rsc/regexp/regexp4.
html.

6.	 Facebook. Infer: A tool to detect bugs in Java and C/
C++/Objective-C code before it ships; https://fbinfer.
com/.

7.	 GNU Project. GNU General Public License, version
1, 1989; https://www.gnu.org/licenses/old-licenses/
gpl-1.0.html.

8.	 Go Project. Go 1 and the future of Go programs, 2013;
https://golang.org/doc/go1compat.

9.	 Google Open Source. Using third-party licenses;
https://opensource.google.com/docs/thirdparty/
licenses/#banned.

10.	 Hipp, D. R. How SQLite is tested; https://www.sqlite.
org/testing.html.

11.	 Lacasse, N., Open-sourcing gVisor, a sandboxed
container runtime. Google Cloud (May 2018); http://
bit.ly/2wzA84D.

12.	 Langley, A. Chromium’s seccomp sandbox.
ImperialViolet (Aug. 2009); https://www.
imperialviolet.org/2009/08/26/seccomp.html.

13.	 National Institute of Standards and Technology.
National Vulnerability Database—Search and
Statistics; https://nvd.nist.gov/vuln/search.

14.	 Pike, R. Go Proverbs, 2015; https://go-proverbs.
github.io/.

15.	 Pike, R., Dorward, S., Griesemer, R. and Quinlan, S.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming J. 13, 4 (2005), 277–298;
https://doi.org/10.1155/2005/962135.

16.	 Potapenko, A. Testing Chromium: ThreadSanitizer v2,
a next-gen data race detector. Chromium Blog (Apr.
2014); http://bit.ly/2WN29o0.

17.	 Potvin, R., Levenberg, J. Why Google stores billions of
lines of code in a single repository. Commun. ACM 59,
7 (July 2016), 78–87; https://doi.org/10.1145/2854146.

18.	 Reis, C. Multi-process architecture. Chromium Blog
(Sept. 2008); https://blog.chromium.org/2008/09/
multi-process-architecture.html.

19.	 SpotBugs: Find bugs in Java programs; https://
spotbugs.github.io/.

20.	 Thompson, K. Reflections on trusting trust. Commun.
ACM 27, 8 (Aug. 1984), 761–763; https://doi.
org/10.1145/358198.358210.

21.	 U.S. House of Representatives Committee on
Oversight and Government Reform. The Equifax Data
Breach, Majority Staff Report, 115th Congress (Dec.
2018); http://bit.ly/2Gf53IJ.

22.	 Willis, N. A single Node of failure. LWN.net (Mar. 2016);
https://lwn.net/Articles/681410/.

23.	 Winters, T. SD-8: Standard library compatibility, C++
standing document, 2018; http://bit.ly/2QNhT5k.

Russ Cox leads the development of the Go programming
language at Google, with a current focus on improving the
security and reliability of using software dependencies.
With Jeff Dean, he created Google Code Search. He
worked for many years on the Plan 9 from Bell Labs
operating system.

Copyright held by author/owner.

