Distributed Data Processing for Large-Scale
Simulations on Cloud

Tianjian Lu, Stephan Hoyer, Qing Wang, Lily Hu, and Yi-Fan Chen*
Google Research
1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
*Corresponding author: yifanchen@google.com

Abstract—The computational challenges encountered in the
large-scale simulations are accompanied by those from data-
intensive computing. In this work, we proposed a distributed
data pipeline for large-scale simulations by using libraries and
frameworks available on Cloud services. The building blocks
of the proposed data pipeline such as Apache Beam and Zarr
are commonly used in the data science and machine learning
community. Our contribution is to apply the data-science ap-
proaches to handle large-scale simulation data for the hardware
design community. The data pipeline is designed with careful
considerations for the characteristics of the simulation data in
order to achieve high parallel efficiency. The performance of
the data pipeline is analyzed with two examples. In the first
example, the proposed data pipeline is used to process electric
potential obtained with a Poisson solver. In the second example,
the data pipeline is used to process thermal and fluid data
obtained with a computational fluid dynamic solver. Both solvers
are in-house developed and finite-difference based, running in
parallel on Tensor Processing Unit (TPU) clusters and serving
the purpose of data generation. It is worth mentioning that in this
work, the focus is on data processing instead of data generation.
The proposed data pipeline is designed in a general manner
and is suitable for other types of data generators such as full-
wave electromagnetic and multiphysics solvers. The performance
analysis demonstrates good storage and computational efficiency
of the proposed data pipeline. As a reference, it takes 5 hours
and 14 mins to convert simulation data of size 7.8 TB into Zarr
format and the maximum total parallelism is chosen as 10,000.

Index Terms—Apache Beam, Data Pipeline, Distributed Com-
puting, Simulation, Tensor Processing Unit, Zarr

I. INTRODUCTION

The computational simulation and data analytics are crit-
ical in almost all areas of science and engineering. In the
electronics industry, advanced simulations enable the design
and optimization with reduced prototyping cycles and costs;
the predictive data analytics [1] allow extracting meaningful
knowledge of a design from both simulation and measure-
ment data. Large-scale simulations are often computation-
ally challenging: in order to accurately resolve geometrical
complexities and non-uniform material properties in an elec-
tronic design, a three-dimensional (3D) simulation is often
preferred; the large problem size arising from the volumetric
discretization imposes the computational challenges [2]; be-
cause broadband information is often required, the large linear
system resulting from the volumetric discretization needs to be
repeatedly solved for multiple frequencies or time steps, which
exacerbates the computation burden; in addition, with com-
putational electromagnetics (CEM) becoming mature, people

start to address multiphysics problems, which are even more
computationally challenging [3].

The computational challenges encountered in the large-scale
simulations are accompanied by those from data-intensive
computing. The large-scale simulations running on high-
performance computers are considered as a new type of data-
generation instrument beside experiments and sensors [4].
Given the large amount of data being generated through the
simulations, the data processing task becomes more and more
challenging. In fact, the data-generation capabilities grow more
rapidly than the computing capabilities [5]. Many efforts have
been taken to improve the computational efficiency of data-
intensive computing [4]-[9], to name a few: (1) minimizing the
data movement across the memory hierarchy; (2) optimizing
the communication strategy; (3) processing data in parallel;
(4) developing high-speed and low-latency interconnects; and
(5) co-designing the system components from hardware archi-
tecture to software.

Large-scale simulations benefit from efficient data process-
ing: to make a prompt design decision from the simula-
tions, the obtained data must be processed, visualized, and
interpreted in an efficient manner; the knowledge derived
timely from rich historic data in return reduces the amount
of simulation task [10]-[14]. In this work, we proposed a
distributed data pipeline for large-scale simulations by using
libraries and frameworks available on Cloud services. The
building blocks of the proposed data pipeline are commonly
used in the data science and machine learning community.
Our contribution is to apply the data-science approaches to
handle large-scale simulation data for the hardware design
community. The design of the data pipeline is based on the
characteristics of simulation data. The simulation represents
and emulates a physical system or process with computers,
mathematical models, and numerical algorithms [15] and the
obtained data describes physical quantities or fields. With
domain decomposition methods, large-scale simulations run
in parallel on multiple compute cores [2]. Correspondingly,
the data is obtained in parallel and labeled by the identifier
of a process, or process ID. In addition, the simulation data
contains the temporal and/or spectral information of physical
quantities. The implementation of the data pipeline is based
on Apache Beam [16] and Zarr [17]. Beam is a unified,
open-source programming model for building both batch- and
streaming-data parallel-processing pipelines. By using Beam,

one can simply focus on the logical composition of the data
processing task and bypass the low-level details of distributed
computing. The orchestration of distributed processing is fully
managed by the runner, for example, Dataflow on Google
Cloud [18]. It is worth mentioning that Beam separates the
programming layer from the runtime layer such that the driver
program can be executed across various runners [19]. The
processed simulation data is often represented as multidi-
mensional arrays or tensors. In this work, the storage format
of the output tensor in the data pipeline is Zarr [17], [20].
The physical representation of the Zarr output is a folder
containing one metadata file and multiple chunk files. Zarr
allows concurrent reading and writing, storage on a file system,
and data compression before the storage.

The performance of the proposed data pipeline is analyzed
with two examples. In the first example, the data pipeline is
used to process electric potential distribution obtained with
a Poisson solver. The Poisson solver is widely accepted to
analyze electrostatic behaviors of interconnects [21] and per-
form circuit parameter extractions [22]. The second example
handles data obtained from a computational fluid dynamic
(CFD) solver. The CFD solver is commonly used for thermal
and fluid flow analyses of integrated circuits at the chip,
package, and board levels. Both solvers are in-house developed
and finite-difference based, running in parallel on Tensor
Processing Unit (TPU) [23] clusters and serving the purpose
of data generation. It is worth mentioning that this work
focuses on data processing instead of data generation. In
addition, the proposed pipeline is designed in a general manner
and can be used to process data from other types of data
generators such as full-wave electromagnetic and multiphysics
simulations. The performance analyses consists of both storage
and computational efficiency analysis. The scaling analyses
demonstrate good parallel efficiency of the proposed data
pipeline.

II. DATA PIPELINE

In this section, we provide details on the proposed dis-
tributed data pipeline.

A. Simulation Data

The data in this work is acquired with a large-scale simula-
tion running in parallel. Before building the pipeline, we need
to understand the data and its characteristics.

First, the data describes physical quantities or fields. The
simulation represents and emulates a physical system or pro-
cess with computers [15]. To simulate the system or process
computationally, one must have an appropriate mathematical
model expressed by equations in terms of physical quantities
or fields. For example, if the mathematical model describes the
eddy current phenomena [2] in a voice-coil-actuator system
such as a loudspeaker, a haptic sensor, or a camera module,
the simulation data is magnetic flux density. If the simulation
is used to identify the undesirable electromagnetic interference
in a system consisting of high-speed routings and power
delivery rails, the data is electric field and obtained by solving

the vector wave equation [2]. In modern electronic systems,
multiple distinct physical processes governed by different
physical laws are strongly coupled together at different scales.
Therefore, the simulation data describes multiple fields. For
example, when the thermal effect due to Joule heating becomes
significant in an electronic system, the simulation data should
include the temperature field as in an 1l-thermal co-simulation
[24], [25]. If the integrated micro-channels becomes part of
the cooling solution, the simulation data should also include
velocity and pressure fields [26]. In addition, the simulation
data should also include displacement and stress fields if the
thermally-induced stress causes reliability-related concerns in
an electronic system [27].

Fig. 1: A computational domain is decomposed into multiple
subdomains [2].

Second, the simulation data is obtained in parallel on
multiple processors. One way to enable the simulation in
parallel is domain decomposition. The equations describing the
mathematical model in a simulation are solved numerically. In
general, a numerical algorithm that divides a computational
domain into two or more subdomains [2] is considered as
a domain decomposition method. For an unstructured mesh,
which is often used by the finite element method, a decom-
poser such as METIS [28] divides the computational domain
into a desired number of subdomains with excellent load
balancing. For a structured mesh used by the finite difference
method, the mesh partitioning and load balancing can be easily
achieved and managed through the node indices. For parallel
computing, subdomains are assigned to different processes.
Therefore, the simulation data can be distinguished by the
identifier of the process, or process ID. A process ID is defined
by the virtual topology, specifying the communication pattern
of a group of processes, instead of the physical topology,
representing the connections among cores, chips, and nodes
in the hardware. The virtual topology or the communication
pattern can be graph- or grid-based. If the communication
pattern is represented by a graph, the process ID is an integer
representing a node on the graph. In many applications, the
communication pattern is grid-based such as a ring or torus
and the grid structure is defined by the number of dimensions
and number of processes along each dimension. In a grid-
based virtual topology, a process ID is defined by a set of
Cartesian coordinates. It is worth mentioning that the parallel
computing can also be enabled with spectral decomposition.
In the electromagnetic analysis of an electronic system, the
broadband information is often required. A spectral decompo-

Map Shuffle Reduce
Turn data into key-value pairs Group by key Combine each key
[Eoc |
[e |
[Eoc |
[Hoo |
[Hoo |
[Hoc |
[Eoc |
| Eoc |
Simulation m
vur WG
[_Hoc |
.]
| B |
[Hoo, |
[Hoo, |
| H.c |
(2)
Map Shuffle Reduce
Turn data into key-value pairs Group by key Combine each key
[fco |
mm [foc [0
— IEuETE .
[o |
[6o |
T
(b)

Fig. 2: Merge electric and magnetic fields obtained on different
processes for visualization with an Map-Reduce operation,
where (a) the field components and (b) the frequency sampling
points as chosen as keys, respectively.

sition distributes the solutions of the vector wave equation in
the frequency domain across multiple processors.

Third, the simulation data contains the temporal or spectral
information of a physical system or a process, depending
on whether the mathematical model is formulated in the
time- or frequency-domain. In a multiphysics simulation, the
data may contain both the temporal and spectral information,
for example, electrical fields in the frequency domain and
temperature fields in the time domain. This results from the
multi-scale nature of the coupled physical events.

B. A Map-Reduce Operation over Simulation Data

As a technique for processing large-scale data, Map-Reduce
is first published in 2004 [6]. Nowadays there are multiple
prominent frameworks for distributed data processing, but the
Map-Reduce operation is considered as the basis of these
modern frameworks.

In this section, we use an example shown in Fig. 2 to
illustrate the usage of a Map-Reduce operation through which

the simulation data are merged for visualization. We assume
the simulation data are electric and magnetic fields, which
are obtained with a 3D frequency-domain full-wave electro-
magnetic solver running in parallel on three processors. The
process ID is denoted by (co, ¢1, c2). A domain decomposition
method is used by the simulation such that the obtained electric
and magnetic fields on each process contains partial spatial
information. Both the electric and magnetic fields, denoted by
E = (E,,E,,E.) and H = (H,, H,, H.), respectively, are
solved for at four frequency sampling points f;, i = 0,1, 2, 3.
Therefore, a chunk of the simulation data can be labeled and
distinguished by: (1) the field component, (2) the frequency
sampling point, and (3) the process ID.

As shown in Fig. 2, there are three stages for a Map-Reduce
operation: (1) at the map stage, the simulation data is turned
into key-value pairs through a map function; in Fig. 2(a), the
key is a field component; in Fig. 2(b), the key is a frequency
sampling point; the value is simply a chunk of simulation data
that contains partial spatial information and is obtained on one
process; it is worth mentioning that the key is not necessarily
unique; (2) at the shuffle stage, the chunks of simulation data
is first redistributed and then grouped by the keys; and (3) at
the reduce stage, the chunks of simulation data is merged by
the keys with a reduce function .

Key-value pairs are important to the Map-Reduce operation.
A larger number of key-value pairs in general allows finer-
grained load balancing. For example, using field components
as the key in Fig. 2(a) has higher parallelism than using
the frequency sampling points in Fig. 2(b). An even higher
parallelism can be achieved if both the field components and
the frequency sampling points are used as the keys. However,
higher parallelism incurs bigger cost, know as the overhead.
All the operations shown in Fig. 2 are assigned to workers
by a master program; the larger the number of key-value
pairs, the more efforts it takes the master to keep track of
the computation state and make scheduling decisions. The
actual execution of a distributed data processing task is very
complicated, especially when multiple Map-Reduce operations
are chained together.

C. Beam Driver Program and Runner

By using Beam, one can simply focus on the logical
composition of the data processing task and bypass the low-
level details of distributed computing. The orchestration of
distributed processing is fully managed by the runner.

PTransform PTransform
PCollection PCollection

Fig. 3: A pipeline example with Beam SDKs.

PTransform

Output

To create a pipeline for distributed data processing, one
needs to write a driver program with Beam SDKs. The
driver program contains the inputs, operations, outputs, and
execution options for the pipeline runner. Beam currently

supports three language-specific SDKs: Java, Python, and Go.
We used Python SDK in this work. Beam SDKs offer a
number of abstractions such as Pipeline, PCollection,
and PTransform. A distributed data set is represented by a
PCollection object. A data processing operation is repre-
sented by a PTransform object. The PTransform object
takes PCollection as input, operates on its elements, and
possibly yields another PCollection object as the output.
Because PCollection is immutable, the PTransform
object does not modify its input PCollection object.
A Pipeline object integrates the PCollection and
PTransform objects into a directed acyclic graph. The driver
program must have a Pipeline object. As shown in Fig.
3, the Pipeline object consists of multiple stages such as
reading the simulation data, transforming the data, and writing
to the output. The Beam SDKs provide a number of core
transforms such as ParDo, GroupByKey, and Combine,
etc.

Beam separates the programming layer from the runtime
layer such that the driver program can be executed across
various execution engines, or runners. Beam capability matrix
[19] provides details on the capabilities of individual runners.

D. Parallel Output with Zarr

The post-processed simulation data is often represented as
multidimensional arrays or tensors. In this work, the storage
format of the output tensor is Zarr: the physical representation
of the output is a folder containing one metadata file and
multiple chunk files; and the chunk files are arranged by the
fields (or components of a vector field) and coordinates from
the simulation. The coordinates include the spatial, temporal,
and spectral directions.

There are four major reasons for using Zarr. First, Zarr
allows multiple processes to concurrently write to the output
tensor. Many applications that build upon the simulation data
are I/O bound: the data processing operations are in parallel
and their computation complexity is often low. By having
the tensor storage in parallel, it increases the throughput.
In addition, the chunks of simulation data are often aligned
between the computation and storage. Second, a Zarr tensor
can also be read concurrently by multiple processes. In other
words, the applications following the data processing task can
access the Zarr tensor in parallel. Third, a Zarr tensor can be
stored on a file system. The output tensor is often too large
to fit into the main memory. For example, when six different
fields (or field components, e.g. E and H with a 3D full-
wave electromagnetic solver) of interest are computed with
512 processors for 1000 frequency points and each chunk of
the data is 100 MB, the size of the output tensor is around
300 TB. Forth, each data chunk is compressed before storage
in Zarr format. A number of libraries can be used for the
compression.

III. PERFORMANCE ANALYSES

In this section, we analyze the performance of the proposed
data pipeline with two examples. Because the data pipeline

TABLE I: Features of the simulation data obtained with the
Poisson solver.

Field Process ID | Time Step

Electric potential ¢ | (co,c1,c2) t

has multiple stages and the required computing resources vary
across stages, we use the maximum number of map worker
threads among all worker processes as the control parameter
when we conduct the scaling analysis. For simplicity, we name
the control parameter as the maximum total parallelism.

A. Process Electric Potential Distribution

In this example, the simulation data represents the distri-
bution of electric potential, which is obtained with a Poisson
solver. The Poisson solver is based on the finite difference
method and is implemented in TensorFlow. The Poisson solver
runs in parallel on Tensor Processing Unit (TPU) [23] clusters.
The features of the obtained simulation data are listed in
Table I, which include (1) the field: electric potential ¢;
(2) TPU process IDs (cg,c1,¢2); and (3) the time step t.
The TPU logical processes are arranged in a 3D grid-based
structure and a process ID represented by the coordinates along
three dimensions. A key in the form of (field, ¢, c1, ca,t) is
assigned to a chunk of the simulation data, representing a
field or a field component obtained on the process (cg, c1, ¢2)
at time step ¢. The computation domain is a slab and the
mesh size is 32 x 2044 x 110376 along z-, y-, and z-axis,
respectively. The domain decomposition is one-way and is
applied along the z-axis. There are a total number of 54
subdomains and each has the mesh size of 32 x 2044 x 2044.

Array Chunk . 1 L NN
Bytes 26.02 TB 534.78 MB . | |
(901,32, 2044, (1,32,2044, 901
Shape 1, 0376) 2044) S 110976
Count 48655 Tasks 48654 Chunks

Type float32 numpy.ndarray

Fig. 4: The data pipeline converts the electric potential distri-
bution into Zarr tensors. The size of each data chunk is 534.8
MB before compression and 2.1 MB after being compressed
into Zarr format.

1) Storage efficiency: As shown in Fig. 4, the data pipeline
converts the electric potential into Zarr format. The physical
representation of the output is a folder containing metadata
file and chunks of simulation data. The original size of each
data chunk is 534.8 MB, which is compressed into 2.1 MB
with Zarr storage.

2) Strong scaling: In the strong scaling analysis, the
amount of simulation data to be processed remains as 318 GB
and the maximum total parallelism is proportionally increased.
The strong scaling is shown in Fig. 5. The speed-up is defined
by

T

speed-up = Ty’ (1)

- Actual

8 @-Ideal
a4r
7
=
Q
Q
=%
n

2 |

1 L L L

5 10 20 40

Maximum total parallelism

Fig. 5: Strong scaling of the proposed distributed data pipeline
in processing electric potential. Maximum total parallelism is
defined as the maximum number of map worker threads among
all worker processes.

where NN denotes the maximum total parallelism and 75
represents the run time with the maximum total parallelism
equal to 5. It can be seen from Fig. 5 that as the maximum
total parallelism increases from 5 to 20, the strong scaling
is approximately linear. When the maximum total parallelism
exceeds 40, the gain of the speed-up saturates. It is because
the work load is relatively small when the maximum total
parallelism becomes greater than 40. As a reference, the
runtime of the proposed data pipeline is 190.9 seconds when
the maximum total parallelism is 40.

B. Process Thermal and Fluid Data

The simulation data in this example is obtained with a CFD
solver. The features of the simulation data include (1) the
fields: velocity field components u, v, w, pressure field p, a
transported scalar Z, and temperature 7; (2) TPU process IDs
(co, €1, c2); and (3) the time step ¢. The computation domain is
a slab and the mesh size is 16 x 2044 x 65280 along x-, y-, and
z-axis, respectively. The domain decomposition is one-way
and is applied along the z-axis. There are a total number of
64 subdomains and each has the mesh size of 16 x 2044 x 1020.
One subdomain is handled by one TPU core and there are 64
cores in total. For testing purpose, the CFD solver runs for 11
time steps.

1) Storage efficiency: The data pipeline converts five fields
or field components obtained through the in-house CFD solver
into Zarr format. Figure 6 shows the output Zarr tensors. Each
Zarr tensor corresponds to one field. There are four coordinates
associated with each field: x, y, z, and time_step. The physical
representation of the output is a folder containing metadata file
and chunks of simulation data. There are a total number of 704
data chunks associated with each Zarr tensor. The original size
of each data chunk is 133 MB, which is compressed into 526
KB with Zarr storage. The original size of the simulation data
in the test run is 470 GB, whereas in Zarr format, it is 1.8 GB.

In Fig. 6, the number of tasks is 705, one larger than the total
number of chunks. This is due to the fact that one dummy
data chunk is used to initialize the parallel Zarr storage.

Dimensions:
» Coordinates: (4)
¥ Data variables:

(time_step: 11, x: 16, y: 2044, z: 65280)

z (time_step, x,y,2) float32 dask

bcZ.2.0 (time_step, x,y,2) float32

bc_u_0_0 (time_step, x,y,2) float32 dask.array<chunksize=(1, 16, 204

bc_w_2_0 (time_step, x,y,2) float32

p (time_step, x,y,2) float32 dask array<chunksize=(
Chunk 1 N

133.43 MB

wow

rray
Bytes 93.94 GB

(11, 16,2044, (1,16,2044, 1

Shape ¢ 280) 1020)

Count 705 Tasks 704 Chunks

Type float32 numpy.ndarray

u (time_step, x,y,z) float32 =
Array Chunk 1 SN N LN

By 253408 s e LTI %

Shay e(11, 16,2044, (1,16,2044, 1 B ~

Pe 65280) 1020) s 65280

Count 705 Tasks 704 Chunks

Type float32 numpy.ndarray

v (time_step, x,y,z) float32 dask.array=<c =
Array Chunk ﬂm]”ml 1

Bytes 93.94GB 133.43MB
(11, 16,2044, (1,16,2044, 1

Shape ¢ 380) 1020)

Count 705 Tasks 704 Chunks

Type float32 numpy.ndarray

w (time_step, x,y,2) float32 =]
Array Chunk ﬂﬂ]]ﬂﬂ]l 1

Bytes 93.94GB 133.43 MB
(11, 16,2044, (1,16, 2044, 1

Shape ¢5750) 1020) s 65280

Count 705 Tasks
Type float32

Attributes: (0)

704 Chunks
numpy.ndarray

Fig. 6: The data pipeline converts the simulation data from
a CFD solver on TPUs into Zarr tensors. The size of each
data chunk is 133 MB before compression and 526 KB with
compression in Zarr format.

- Actual

8r @-Ideal
adr
3
=
Q
5]
=%
N

2 .

1 L L L

5 10 20 40

Maximum total parallelism

Fig. 7: Strong scaling of the proposed distributed data pipeline
in processing thermal and fluid data. Maximum total paral-
lelism is defined as the maximum number of map worker
threads among all worker processes.

2) Strong scaling: In the strong scaling analysis, the
amount of simulation data to be processed remain as 376 GB
and the maximum total parallelism is proportionally increased.
The strong scaling is shown in Fig. 7. It can be seen from Fig.
7 that as the maximum total parallelism increases from 5 to 20,
the strong scaling is approximately linear. When the maximum
total parallelism exceeds 40, the gain of the speed-up saturates.
It is because the work load is considered as small for the
maximum total parallelism greater than 40. As a reference, the

runtime of the proposed data pipeline is 362.1 seconds while
processing the simulation data of 376 GB when the maximum
total parallelism is chosen as 40.

3) Weak scaling: In the weak scaling analysis, the ratio
between the amount of simulation data to be processed and
the maximum total parallelism is kept the same. The weak
scaling is shown in Fig. 8. As the maximum total parallelism
increases from 5 all the way to 20, the runtime remains almost
the same. As a reference, the runtime is 503.1 seconds when
the size of simulation data is 188 GB and the maximum
total parallelism equals 10. However, as the maximum total
parallelism increases from 20 to 40, the runtime increases from
525.4 seconds to 671.5 seconds. The increase of runtime is due
to the increase of work load at the stages other than the map
stage. By using maximum total parallelism in the weak scaling
analysis, the work load across all the threads remains the same
only for the map operations.

700 T T T T

600 -

Runtime (seconds)
w IS wn
(=3 (=} (=3
(=] (=] (=

: : :

)

=3

=
T

)
3
-

Maximum total parallelism

Fig. 8: Weak scaling of the proposed distributed data pipeline.
Maximum total parallelism is defined as the maximum number
of map worker threads among all worker processes.

4) Large example: We further apply the proposed pipeline
to a larger example. The discretization to the 3D computational
domain yields 8.03 billion nodes. The simulation data of 34
time steps are saved for data processing. As a reference, it
takes 5 hours and 14 mins to convert the 7.8 TB simulation
data into Zarr format. The maximum total parallelism is
chosen as 10,000.

IV. CONCLUSION

We proposed a distributed data pipeline for large-scale simu-
lations. We designed the data pipeline by carefully considering
the characteristics of simulation data. The data pipeline is
implemented with Beam and Zarr and can be executed on
multiple environments offered by Cloud services. The perfor-
mance analysis demonstrates good storage and computational
efficiency of the proposed data pipeline.

REFERENCES

[1] T. Hey, S. Tansley, K. Tolle et al., The fourth paradigm: data-intensive
scientific discovery. Microsoft research Redmond, WA, 2009, vol. 1.

[2] J.-M. Jin, The finite element method in electromagnetics. John Wiley
& Sons, 2015.

[3] J.-M. Jin and S. Yan, “Multiphysics modeling in electromagnetics:
Technical challenges and potential solutions,” IEEE Antennas and Prop-
agation Magazine, vol. 61, no. 2, pp. 14-26, 2019.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson,
R. Mount, V. Sarkar, V. White, and D. Williams, “Synergistic challenges
in data-intensive science and exascale computing: DOE ASCAC data
subcommittee report,” 2013.

D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56-68, 2015.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

R. T. Kouzes, G. A. Anderson, S. T. Elbert, 1. Gorton, and D. K. Gra-
cio, “The changing paradigm of data-intensive computing,” Computer,
vol. 42, no. 1, pp. 26-34, 2009.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). leee, 2010, pp. 1-10.

V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, “Hyracks:
A flexible and extensible foundation for data-intensive computing,” in
2011 IEEE 27th International Conference on Data Engineering. 1EEE,
2011, pp. 1151-1162.

Q. Huang and J. Fan, “Machine learning based source reconstruction
for RF desense,” IEEE Transactions on Electromagnetic Compatibility,
vol. 60, no. 6, pp. 1640-1647, 2018.

T. Lu, J. Sun, K. Wu, and Z. Yang, “High-speed channel modeling
with machine learning methods for signal integrity analysis,” IEEE
Transactions on Electromagnetic Compatibility, vol. 60, no. 6, pp. 1957—
1964, 2018.

T. Nguyen, T. Lu, J. Sun, Q. Le, K. We, and J. Schut-Aine, “Transient
simulation for high-speed channels with recurrent neural network,” in
2018 IEEE 27th Conference on Electrical Performance of Electronic
Packaging and Systems (EPEPS). 1EEE, 2018, pp. 303-305.

J. Wen, X.-C. Wei, Y.-L. Zhang, and T.-H. Song, “Near-field prediction
in complex environment based on phaseless scanned fields and machine
learning,” IEEE Transactions on Electromagnetic Compatibility, 2020.
M. Swaminathan, H. M. Torun, H. Yu, J. A. Hejase, and W. D.
Becker, “Demystifying machine learning for signal and power integrity
problems in packaging,” IEEE Transactions on Components, Packaging
and Manufacturing Technology, vol. 10, no. 8, pp. 1276-1295, 2020.
M. T. Heath, Scientific Computing: An Introductory Survey, Revised
Second Edition. SIAM, 2018.

Apache Beam. [Online]. Available: https://beam.apache.org/

Zarr. [Online]. Available: https://zarr.readthedocs.io/en/stable/
Dataflow. [Online]. Available: https://cloud.google.com/dataflow

Beam capability matrix. [Online]. Available:
https://beam.apache.org/documentation/runners/capability-matrix/

Zarr - scalable storage of tensor data for parallel and distributed com-
puting. [Online]. Available: https://zarr-developers.github.io/slides/scipy-
2019.html

T. Lu and J-M. Jin, “Transient electrical-thermal analysis of 3-D
power distribution network with FETI-enabled parallel computing,”
IEEE Transactions on Components, Packaging and Manufacturing Tech-
nology, vol. 4, no. 10, pp. 1684-1695, 2014.

S.-C. Wong, G.-Y. Lee, and D.-J. Ma, “Modeling of interconnect
capacitance, delay, and crosstalk in VLSL” IEEE Transactions on
semiconductor manufacturing, vol. 13, no. 1, pp. 108-111, 2000.
Cloud TPUs. [Online]. Available: https://cloud.google.com/tpu/

T. Lu and J.-M. Jin, “Electrical-thermal co-simulation for DC IR-
drop analysis of large-scale power delivery,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 4, no. 2,
pp- 323-331, 2013.

——, “Electrical-thermal co-simulation for analysis of high-power
RF/microwave components,” IEEE Transactions on Electromagnetic
Compatibility, vol. 59, no. 1, pp. 93-102, 2016.

T. Lu, FE. Zhang, and J.-M. Jin, “Multiphysics simulation of 3-D ICs with
integrated microchannel cooling,” IEEE Transactions on Components,
Packaging and Manufacturing Technology, vol. 6, no. 11, pp. 1620—
1629, 2016.

T. Lu and J.-M. Jin, “Coupled electrical-thermal-mechanical simulation
for the reliability analysis of large-scale 3-D interconnects,” IEEE Trans-
actions on Components, Packaging and Manufacturing Technology,
vol. 7, no. 2, pp. 229-237, 2017.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359-392, 1998.

