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Abstract

Many digital advertisers continue to rely on attribution models to estimate the effectiveness of their
marketing spend, allocate budget, and guide bidding decisions for real time auctions. The work described
in this paper builds on previous efforts to better understand the capabilities and limitations of attribution
models using simulated path data with experiment-based ground truth. While previous efforts were based
on a generic specification of user path characteristics (e.g., ad channels considered, observed events included,
and the transition rates between observed events), here we generalize the process to include a pre-analysis
optimization step that matches the characteristics of the simulated path data with a set of reference path
data from a particular advertiser. An attribution model analysis conducted with path-matched data is more
relevant and applicable to an advertiser than generic path data. We demonstrate this path-fitting process
using data from Booking.com. The simulated matched paths are used to demonstrate a few key capabilities
and limitations for several position-based attribution models.

1 Introduction

1.1 Need for measurement based at-
tribution

As the options for online advertising continue to
grow, it has become increasingly important for ad-
vertisers to have practical and reliable approaches
for measuring the effectiveness of their advertising
spend. This information is needed to inform tactical
and strategic decisions regarding future ad spend.
Multi-touch attribution (MTA) models are a rela-
tively simple, cheap, automated, and continuous ap-
proach for estimating ad effectiveness. However, sys-
tematically assessing the accuracy of these models is
not straightforward.

MTA models use observational user-level path
data to assign credit for conversions back to the mar-
keting events that users encountered prior to convert-
ing. These attribution credits are aggregated across
all of the individual marketing events to determine
the overall value of each marketing channel.

In practice, assessing the accuracy of MTA mod-
els can be problematic because (1) attribution credit
is not well defined relative to the incremental im-
pact of advertising, (2) the same attribution model
may be used to inform multiple decisions that require
different incremental measurement (e.g., ad channel

prioritization, budget allocation across channels, and
real-time bidding), and (3) there is no generally ac-
cepted method for validating MTA models for any
application. Because they are observational, MTA
models make assumptions about how advertising im-
pacts user behavior. These assumptions are usually
not stated and/or understood by advertisers, which
could lead to misconceptions about MTA efficacy [7].

If it is effective, an MTA model should provide
information about the incremental impact of each
marketing channel (e.g., the number of conversions
that would be lost if all marketing spend for an ad
channel was turned off). Because MTA models rely
on observational data, they are susceptible to biases
that would not be present in a well designed random-
ized experiment. Unfortunately, experiments are not
always a practical alternative to MTA. For example,
it is usually not practical to design and execute the
full factorial experiment needed to account for the
primary and synergistic effects of multiple ad chan-
nels that span multiple media and perhaps multiple
publishers (See Appendix A in [4]). Advertisers may
also be reluctant to use experiments as a continuous
form of measurement because experiments require re-
ducing ad spend to support a control group and this
can result in a loss of revenue.
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1.2 Relationship to previous work

Previously, an ad system simulation (DASS) was
used to design ‘unit tests’ for evaluating MTA mod-
els [8]. The simulation is a non-stationary Markov
model that specifies the browsing activities of users
(e.g., search, visit to a third party website, or watch a
video) and the probabilities that determine how users
transition from one activity to the next. It also al-
lows the injection of ads that can modify these tran-
sition probabilities over the course of a user’s path
of activities (e.g., a search ad gives a user the oppor-
tunity to visit the advertiser’s website via a search
ad click, or a display ad makes it more likely that
a user will directly navigate to the advertiser’s web-
site). This framework generates user-level path data
that is used as input for MTA models. At the same
time, it also makes it possible to run experiments in
the simulator environment that deliberately turn ad
activity on or off to measure the true impact of ads
on conversion volume.

If an MTA model is a perfect substitute for the
measurement provided by experiments, then it will
be able to accurately estimate the effectiveness of
every ad channel in every possible advertising sce-
nario and for every potential impact of ads on user
behavior (e.g., search ads that have an impression
value, video ads that drive users to make advertiser-
related searches, and targeted or retargeted display
ads that inspire users to navigate to the advertiser’s
website). To test this supposition, an array of ‘unit
tests’ with known ground truth for ad effectiveness
was created. The application of these tests can help
us better understand the capabilities and limitations
of MTA models as described in [9].

1.3 Need for current work

Simulation-based analysis of attribution models is
more likely to be useful to advertisers if the simulated
data closely resemble their path data (e.g., similar
ad channels, observed events, event-to-event transi-
tion probabilities). The information learned from
generic attribution analysis is most useful for spe-
cific applications like comparing and developing new
attribution models and understanding how they per-
form under different data conditions. Parametrizing
the simulated scenarios to a specific advertiser pro-
vides results that are more immediately relevant to
that advertiser and their measurement concerns and
needs.

The main goal of this paper is to extend the previ-
ous attribution model analysis work (see Section 1.2)
by first fitting a model that can generate path data
that are similar to the path data associated with a
particular advertiser. The approach described be-

low makes use of an intermediate state-space model
during the parameter fitting optimization stage of
the analysis. This model is analogous to the non-
stationary Markov model used in past work [8]. Af-
ter this fitting, the results are translated into a DASS
model parameterization that can be used to perform
MTA model evaluations. The evaluation stage is
analogous to that of prior analysis work – for each
unit test, we make an assumption about how ads im-
pact user behavior, specify a magnitude of ad impact,
generate an associated set of simulated path data,
apply MTA models to the path data, and compare
MTA model results with experiment-based ground
truth.

1.4 Organization of this paper

This paper is organized as follows. Section 2 contains
a description of the target path data from observa-
tions of real advertiser data from Booking.com. Sec-
tion 3 includes an overview of the fitting process used
to generate simulated path data that matches this
target path data. More detailed modeling choices
related to fitting are described in Section 4 and fit-
ting results are shown in Section 5. In Section 6, the
matched path data is used in comparing ad effective-
ness ground truth from simulator-based experiments
to the attribution credit assigned by several position-
based attribution models. Finally, Section 7 includes
a summary and areas of future research.

2 Target Path Data

In this section we describe some key characteristics
of user level path data. While our focus is path data
from Booking.com, we expect some of these charac-
teristics to be similar for many other advertisers as
well.

2.1 Events and scope

User level path data consists of an ordered sequence
of events such as a search, an ad impression, an ad
click, or a conversion. In general, events are also
timestamped, which we currently ignore for simplic-
ity and because many widely used attribution mod-
els do not use these as input. Attribution models
do not have visibility to all user-level events. We use
the term in-scope to refer to the subset of events that
are included as input to the MTA model. In-scope
events generally include conversions and clicks, but
not ad impressions or third-party site visits. For the
path data used in this paper, the in-scope events in-
clude (1) conversions, (2) paid clicks for ad channels
including search, display, and other, and (3) unpaid
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search clicks, which we denote SEO (search-engine
optimization). In addition, special events are used
to denote the start and end of a path.

Explicitly, the in-scope events are:

• conversion

• search clicks (possibly multiple types)

• display clicks (possibly multiple types)

• other clicks (possibly multiple types)

• SEO clicks, i.e. unpaid visit after a search

• start of path

• end of path

Out-of-scope events include paid ad impressions
(although in other applications of MTA these could
be in-scope), user searches and search ad impres-
sions, third party site visits, and any other possi-
ble user states. These out-of-scope events play an
important role in path generation and the path fit-
ting process. The specific structuring of out-of-scope
events relies on modeling choices with assumptions
about their relationship to observable user behavior.
We elaborate on these choices for out-of-scope events
in Section 4.

2.2 Transition probabilities

The aggregate statistic used for path-fitting is based
on bigram frequencies of in-scope events; the preva-
lence of transitioning from in-scope event A to in-
scope event B. These in-scope events include the
start and end of path. The target path data have
several important characteristics that helped inform
the model choice:

1. Some events are orders of magnitude more
common than others.

2. Repeated in-scope events occur frequently.

3. Transitions are approximately symmetric.

The relative rarity of some bigrams (item 1
above) is illustrated in a histogram of all (row-
normalized) bigrams in Figure 1.

In Section 3.2.4 we discuss how item 2 affects our
modelling choices.

2.3 Fabricated Data

To avoid sharing proprietary information related to
Booking.com path data, we generate fabricated tar-
get bigram frequency data with similar overall char-
acteristics for the purpose of fully illustrating the
path fitting process. The method for generating
fabricated data is described in Appendix A, and a
related set of analysis results is described in Ap-
pendix B.

2.4 Other path characteristics

Bigram frequencies do not completely characterize a
set of user path data. For example, in our target path
data, the path lengths have a ‘long-tailed’ behavior.
Some users have very short paths (often as short as a
single event), while other paths are very long. Since
we only use bigram frequencies in the fitting process,
we do not expect to fully capture this behavior. How-
ever, this is probably not the most important data
feature to capture in an initial evaluation of MTA
models. We discuss possible extensions to our work
to overcome issues of this kind in Section 7.3.

3 Path-Fitting Methodology

Our path-fitting goal is to assign values to the pa-
rameters of a model of the kind discussed in [8] to
generate paths with aggregated statistics that match
those of a target set of paths. This is one version of
path-fitting that we expect will capture much of the
information specific to a given advertiser’s path data.
Of course, it is possible to consider more generalized
forms of path fitting (see Section 7.3). These are not
considered here.

To fully capture the range of possible impacts
that advertising can have on user behavior, we need
an ad system simulation model that allows ads to
change user behavior at the point of ad serving (e.g.,
a click on a search ad impression) and downstream
of ad serving (e.g., a future direct visit to the adver-
tiser’s website). For the purposes of path fitting, we
use a simplified model that only captures that former
type of ad impact and not the latter. This simplifica-
tion does not limit subsequent MTA evaluation be-
cause the path fitted parameters can be mapped to
DASS model parameters, which allows downstream
ad impact to be considered in MTA evaluation, as
illustrated in Section 6.

In this section we discuss in detail how we con-
struct this ‘short-term effect’ Markov model and the
path fitting procedure. In Section 4 we discuss addi-
tional modeling choices needed for the model to be
useful.

3.1 Alternative approaches

The most direct approach to path fitting is to fit
DASS parameters directly using a black-box opti-
mization algorithm. This does not require any mod-
ification or simplification of the DASS model. How-
ever, it has severe shortcomings because the opti-
mization procedure does not have access to analyti-
cally specified gradients. Gradients must be approx-
imated with multiple simulation runs, each of which
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Figure 1: Transition probabilities observed in the Booking.com data. We see a wide spread of transition prob-
abilities, spanning several orders of magnitude.

requires nontrivial computation and run-time. As a
result, this approach does not scale well, especially
when there are many parameters to fit. For a case
with even a moderate number of user groups, the
path fitting process would be required to fit several
hundred parameters which could take many hours to
run. A more practical alternative is needed.

3.2 Scoped Markov model

The main idea for path-fitting is to use an auxiliary
ad system model that does not allow ads to have
a long term impact on user behavior. A Markov
model is used to model user behavior, which de-
scribes transitions among both scoped and unscoped
events. This model has a specified set of constrained
transitions (e.g., a click must follow an impression).
On top of the Markov model, we include scoping (i.e.,
event-hiding), and event grouping (discussed below).

Importantly, our ‘scoped’ Markov model should
not be confused with a hidden Markov model
(HMM). In an HMM, each hidden event in a path
is associated with an observable event, which usu-
ally come from a different and distinct set of events.
In this application, scoping refers to removing hid-
den/unobservable events from the path. The length
of the observable path is shorter than the full path
after unobservable events are removed.

3.2.1 Setup of the scoped Markov model

Each event, which may be in or out of scope, is repre-
sented as a state of a Markov chain. Explicitly, sup-

pose there are k unobservable states u1, ..., uk and n
observable states o1, ..., on. Consider the state-space
to be the ordered set of events

S = {u1, ..., uk, o1, ..., on}. (1)

A user path always starts with a ‘start of path’ event,
which is observable, and transitions at each discrete
step to another state. The user path ends when the
user reaches an ‘end of path’ state. Notice that each
state is either observable or unobservable. The tran-
sition probabilities from each state are specified by
a row of the full transition matrix 1 M . Specifically,
if a user is at a state with index i, then row i of M
indicates the probability distribution of the events in
the next step. Let

M =

[
MUU MUO

MOU MOO

]
. (2)

Here we separate the transition matrix into four
block components MUU , MUO MOU , and MOO, rep-
resenting the transitions from unobservable states to
other unobservable states, from unobservable states
to observable states, and so on.

Next, we would like to find the transition ma-
trix that describes user dynamics when applying the
event scoping (i.e., unobservable events are removed
from the path), which we will call the observable
transition matrix Mobservable. This is the first step we
need to apply to the full model dynamics to arrive at
statistics which are computed from only observable
events.

1The ‘end of path’ is an absorbing state, and M excludes transitions to or from it (i.e., M represents the transient component,
and is not a stochastic matrix). M is ‘full’ in the sense that it represents transitions including both observable and unobservable
events.
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To derive Mobservable, we consider the possible
ways to transition from one observable event to the
next observable event. One way is to transition di-
rectly, while another is to transition through one or
more unobservable events. The number of unobserv-
able events is unknown, so we end up with an infinite
sequence:

Mobservable = MOO︸ ︷︷ ︸
direct

observable
transition

+ (3)

MOU︸ ︷︷ ︸
first

observable
to first

unobservable

(I +MUU +M2
UU + ...)︸ ︷︷ ︸

unobservable
transitions

MUO︸ ︷︷ ︸
last

unobservable
to next

observable

. (4)

Summing the infinite series, we get

Mobservable = MOU (I −MUU )−1MUO +MOO. (5)

3.2.2 Constrained transitions and tunability

Here we describe a few implementation details that
are helpful for fitting the model.

Our model configuration allows for some tran-
sitions to be ‘tunable’ and some to be ‘fixed’. A
tunable transition probability may change over the
course of the optimization used in the path-fitting
process, while a fixed transition does not. The ini-
tial value of each transition can be specified or chosen
at random.

Tunable transitions are represented by their cor-
responding logit values to avoid imposing the posi-
tivity constraint directly. A row-normalization oper-
ation is also needed to ensure that the probabilities
across each row of M always sum to 1 as tunable pa-
rameters change. Fixed transitions are removed from
the normalization procedure to ensure they remain
truly fixed.

3.2.3 Example with one user group

With the scoping operation, we are already equipped
to set up an example with a single user group. The
flowchart in Figure 2 represents the possible transi-
tions among events for a single user group case. The
observable events are shown in white nodes, and un-
observable events in gray. While the full graph rep-
resents all transitions in the Markov chain, it can
be transformed into another Markov chain with only
observable events using the scoping operation. The
scoped model will only have visible events, but im-
portantly will still be parameterized using transitions
from the full model.

3.2.4 Multiple User Groups

We have not been able to find a good model fit for
a model with a single user group discussed in Sec-
tion 3.2.3 (using our optimization process discussed
below). When we compared the bigrams from the
best-fit model with the original input data, the main
source of mismatch seemed to be the repeated bi-
grams. One way to circumvent this would be adding
additional transitions (e.g., from a click back to a
visit of the same channel, representing repeated in-
teraction with a channel after a click).

However, we find it more plausible that different
users are simply more prone to interact more with
specific channels. To capture this inherent difference
in behavior across users, our model uses multiple user
groups that are each allowed to have different under-
lying behavior prior to ad intervention, as described
in Section 3.2.5. In reality, every user has a unique
underlying behavior. So, this modeling choice is well
justified.

3.2.5 Event grouping

In the auxiliary ad system model, it is necessary to
combine multiple observable events before compar-
ing bigram frequencies with the target. More pre-
cisely, suppose that two observable events oi and oj
have transitions specified by distinct rows in M . It’s
possible that their observations in the data should
be regarded as equivalent for the purposes of path
matching.

For example, suppose the auxiliary ad system
model tracks two separate sets of users, each of which
is allowed to have a different baseline browsing be-
havior and/or a different response to ad interven-
tions. While distinct ‘search’ and ‘search click’ states
are used across these two user groups, the observ-
able ‘search click’ states are not distinct when it
comes to path matching comparisons with the tar-
get path data. The target path data does not dif-
ferentiate search clicks across users. So, these search
click events are grouped together before path match-
ing comparisons are made. Analogous statements are
true for the ‘conversion’ events across these two user
groups.

One way to achieve this event grouping is to gen-
erate a large number of paths, generate groups of
equivalent events, and then perform the required
path matching comparison. While straightforward,
the need to generate paths is computationally ex-
pensive, and does not allow us to easily compute gra-
dients. It is more efficient to achieve this grouping
directly from the transition matrix.

Applying the grouping operation for aggregating
bigram statistics requires the relative weights of each
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of the events that are to be combined (i.e., the over-
all proportion each constituent event contributes to
the aggregate). One way to compute these probabil-
ities is to find the fundamental matrix of the Markov
chain with the ‘end of path’ event as an absorbing
state:

F = (1−Mobservable)−1. (6)

The ith row of F corresponds to the expected num-
ber of visits to each event starting from state i (see
for example chapter 11.2 in [3]). Since the starting
event is known, we can use the corresponding row of
F , which we denote by Fstart, to find the expected
number of visits to each constituent state. Notice
that, due to computational considerations, it may be
easier to find the fundamental matrix of the full tran-
sition matrix M first, and then truncate the result
to the observable state.

Suppose that after the grouping operation there
are m remaining observable events. Define the
grouping operator G as the n×m matrix whose rows
one-hot encode how each observable event is mapped
to a grouped event. Then the grouping operation is
represented by

Mgrouped = norm
(
GTdiag(Fstart)MobservableG

)
.
(7)

Here diag(.) is the diagonal matrix whose entries are
the values in its input. The final row-normalization
denoted by norm(.) is needed because the row Fstart

provides unigram expectations that have not been
normalized.

3.3 Loss function

After grouping and row normalization, the observ-
able transition matrix is ready to be compared to
the target bigram rates. We use a slight variation of
the Hellinger distance (see [6]) for matrices as a nat-
ural metric to construct our loss function, although a
wide range of statistical distances may be reasonable
choices. Specifically, we use

DHellinger(A,B) =‖A◦ 1
2 −B◦ 1

2 ‖F (8)

=

√∑
i,j

(
√
Ai,j −

√
Bi,j)2.

Here the ‖.‖F represents the Frobenius norm and

(.)◦
1
2 is the Hadamard (i.e., elementwise) square root.

3.4 Optimization algorithm

We wish to match the observed statistics (specifi-
cally bigrams in our case) to the ones generated by

the model with parameter set θ. Denoting Mdata as
the bigrams from the dataset, and using Mgrouped

and DHellinger from Eqs. 7 and 8, the optimization
problem is

minimize
θ

DHellinger(Mdata,Mgrouped(θ)). (9)

The auxiliary ad system model is implemented
in Tensorflow [1] for speed and access to well-known
gradient-based optimization algorithms. Using our
formulation, the gradient of the objective function
can be found in Tensorflow using automatic differen-
tiation. The Adam optimization [5] works very well,
especially when it is used in multiple optimization
stages with a decreasing learning rate. Typically,
only a few hundred steps are enough to converge.
This takes roughly a minute with around ten user
groups and hundreds of model parameters to fit. The
efficiency of this implementation could be improved
further by utilizing the sparsity in M using a sparse
solver (see Section 7.3).

4 Modeling Choices

For the auxiliary ad system model to be useful, it
needs to have sensible structure and behavior. This
includes making reasonable choices for out-of-scope
events and permissible transitions.

4.1 Paid Channels on Third-party
Site visits

Each non-search ad channel (i.e., any display or other
ad channel) has its own unobservable state. A user
can transition among these unobservable states or
initiate searches. Each visit to one of these states ac-
tivates a probability of being served an ad for the cor-
responding ad channel. This is reasonable because,
in real life, two different display ad channels might
each show ads on distinct sets of third party web-
sites. There is also a separate unobservable impres-
sion state for each ad channel. Once an impression
is served, the user also has the opportunity to click
on the ad and transition to the advertiser’s website,
which generates an observable click state.

If the user does not click on the ad impression,
then the user sees the same set of transition proba-
bilities that would have been present without an ad
impression. This behavior is achieved with an un-
observable auxiliary state as depicted in the display
mechanism component of Figure 2.

This modeling choice also allows us to directly
map parameters to DASS, where base transitions in
the absence of ads and ad effects are specified sepa-
rately. The probability of an ad being impressed is
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the ‘share of voice’ of the ad, and the probability of
clicking an impressed ad is the ‘click-through rate’.
When an ad is impressed, the new output click event
is added to the output distribution, and the remain-
ing output probabilities are normalized. To see the
correspondence between the two models, notice that
in DASS the output probabilities given a served ad
conditioned on not clicking the ad is equal to the
original output probabilities. In the scoped Markov
model these two output distributions (no impression,
or impression conditioned on no click) are tied using
the auxiliary state.

4.2 Search states

Search states are similar to third-party visit states,
except that the user can also make a transition to an
unpaid visit (SEO). See the search mechanism com-
ponent of Figure 2.

4.3 Conversions

A conversion can be reached either immediately af-
ter the start of the path (either a user navigated in
an unknown way to the advertiser’s website, or the
initial part of their path was truncated), after a paid
or unpaid click, or after a previous conversion.

4.4 Consistent user behavior

The behavior of a user should not drastically and ar-
bitrarily change over the course of his/her path. For
example, if the transitions from the ‘start of path’
event and the transitions from an advertiser site visit
event are independent then user behavior may be
very different at the very beginning of a path than it
is later in the path2. To prevent erratic changes in
user behavior, we need to link the transitions from
states we expect should be similar. We do this by
including an unobserved generic ‘website visits’ state
that is reached both after ‘start of path’ as well as af-
ter a user reaches the site via either a paid or unpaid
click, or after a conversion (see Figure 2).

4.5 Paid ad click-through rates

The paid ad click-through rate (CTR) is a fixed pa-
rameter in the model. This choice is justified since
CTR can be an observable quantity for real ad cam-
paigns. For the results shown below, the search CTR
is set to 0.1, which is high relative to most real cam-
paigns. If the CTR is set too high, an experiment
where the channel is turned off may amplify other

small output transition probabilities resulting in un-
reasonable channel interaction.

4.6 Channel decoupling

Running a simulator experiment that removes one
ad channel can have unintended consequences on an-
other ad channel. For example, consider the case
with two channels ‘A’ and ‘B’, each having a proba-
bility of ending the path. If we remove ‘A’, we may
see more instances of ‘B’ in each given path to com-
pensate for the loss of a chance to end the path from
‘A’. Similarly, including an ad effect that increases
the number of unobserved ‘third party visits’ asso-
ciated with one ad channel with a higher ‘end of
path’ transition probability may result in a decrease
in the number of ‘third party visits’ associated with
other ad channels. Removing or altering a particular
channel’s effectiveness should have little direct con-
sequences to other unobserved user activities. The
fundamental disconnect between the model config-
uration and reality in these cases is that the user
spends the majority of time disengaged from the ad-
vertiser.

We avoid this modeling issue by introducing an
‘disengaged’ state that can transition to or from third
party visits and searches. Importantly, the only way
to reach the ‘end of path’ is through an disengaged
state. The probability of transitioning from a third
party site visit or a search to a disengaged state is,
somewhat arbitrarily, fixed at 0.5 during the model
fitting step. For scenarios in which the impact of
one ad channel increases the activity in another (e.g.,
a display impression increasing the probability of a
search), the overall transition probabilities to the dis-
engaged state naturally decrease since the output
probabilities from each event must be normalized.
The net result is that this additional state eliminates
the undesirable properties described above, since in-
creased activity in affected ad channels does not com-
pete with other ad channels.

4.7 Summary of events

For this particular application, the out-of-scope
events are

• website visits

• Third-party (non-advertiser) site visits

• Ad impressions

• The auxiliary state associated with each paid
ad channel

• Disengaged state

2This situation differs from the modeling of long-lasting effects of advertising, which could change user behavior across a path
but is not part of the auxiliary model.
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Figure 2: This flowchart represents the allowed transitions for a single user in the ad system model. The grayed-
out nodes represent unobservable events. Representative search and display channels are shown. Advertiser
path data may include multiple search, display, and other ad channels (not shown), which are modeled similarly.

Figure 2 depicts the model configuration used to gen-
erate the results shared in the following sections. To
simplify the presentation, only a single search and a
single display channel are included in this flowchart.

4.8 Multiple user groups

As discussed in Section 2.2, the model that we use for
path fitting includes multiple groups of users. Each
user group is allowed to have its own set of baseline
behavior. To easily fit these into our framework, we
use a single ‘start of path’ state that can transition
to a separate ‘start of path’ state for each user group.
These secondary ‘start of path’ transition probabili-
ties correspond to the mixture probabilities (i.e., the
proportions of each user group) and are determined
as part of the path matching process. Aside from this
common starting event, the user groups are disjoint
copies with different randomly initialized transition
probabilities.

5 Path-Fitting Results

This section describes the quality of fit for Book-
ing.com path data. Appendix A describes the qual-
ity of fit for a set of fabricated data that includes
more explicit bigram matching results.

5.1 Increasing the number of user
groups

The ad system model allows for the use of multiple
user groups. This generalization is necessary because
a single user group does not provide a quality path
match when there is a high prevalence of repeated
bigrams, as is the case for the target path data (see
Section 2.2). As the number of user groups increases,
the fitting error decreases rapidly before eventually
plateauing (see Figure 3). For our set of target path
data, nine user groups is sufficient to allow for a qual-
ity path match.

Increasing the number of user groups provides the
ad system model with additional degrees of freedom.
As noted previously, each real path is generated by
a unique user. So, allowing for nine different types
of users is quite reasonable. While it’s not surprising
that more user groups leads to better path matching,
adding arbitrary flexibility isn’t necessarily helpful
and it provides an additional burden on the opti-
mization to fit additional parameters.
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Figure 3: The loss of the fitted model as a function of
the number of user groups decreases until the num-
ber of user groups is sufficiently large, at which point
it plateaus at a small value. Intuitively, the ‘knee’ of
this plot corresponds to the number of user groups
needed to adequately represent the diversity of user
behavior.

5.2 Bigram match error

The path matching results for Booking.com path
data are shown in Figure 4. Figure 4a shows the
distribution of absolute errors for the observable bi-
grams. These errors are the absolute value of the
difference between each bigram transition rate gen-
erated by the fitted ad system model and the bigrams
in the target path data. All of the transition proba-
bility errors are reasonable small.

Figure 4b shows the relative error for the fit and
observed transition probabilities. The outliers in
the plot correspond to transitions in a rarely vis-
ited channel, which is of no consequence for the post-
matching analysis described below.

Note that to avoid sharing proprietary informa-
tion related to Booking.com path data, these fitted
results do not show the bigram probability fit more
directly. See Appendix B to see this comparison for
fabricated target data.

5.3 Path lengths

Because the path length is a function of the bi-
grams being fit (the aggregation step preserves ex-
pected path lengths), the average path length closely
matches the real data (relative error of less than
0.1%). However, since the objective function only
includes bigram rate matching, the model does not
fully characterize the distribution of path lengths,
especially the long-tailed behavior of the path data.

6 Attribution Analysis with
Matched Paths

In this section we use the fitted model to generate
several attribution model unit tests, which we apply
to three position-based models; last interaction - all
credit for a conversion is assigned to the event that
immediately precedes the conversion, first interac-
tion - all credit is assigned to the earliest event in the
conversion path, and linear - credit is divided equally
among the events in the converting path. The analy-
sis is completely analogous to the one described in [9].

A ‘scenario’ is defined as the specification of a sin-
gle set of DASS parameters. In our case, this is the
fitted model. A ‘scenario family’ corresponds to mul-
tiple sets of closely related parameter specifications.
These specifications differ in the value assigned to a
single parameter that changes the magnitude of the
impact of a single ad channel. Most often, the pa-
rameter that is varied changes the magnitude of the
ad. A scenario family can be used to determine an
attribution model’s ability to detect changes in ad
effectiveness for different mechanisms of ad impact.

For each scenario in a scenario family, the ground
truth impact of an ad channel on the conversion vol-
ume is found using an experiment that is run within
the ad system simulator. The credit attributed by an
MTA model to the target ad channel is compared to
this ground truth, as shown in Figure 5. The exper-
iment involves comparing the number of conversions
with the ad channel turned on versus off. Turning off
the ad doesn’t mean removing the underlying third
party of search state – instead it means setting the
transition to the corresponding impressed state to
zero.

Recall that the fitted model does not include ad
effects that last beyond the ad impression by con-
struction as a trade-off for efficient model fitting.
However, after fitting the model and mapping the
parameter values to the DASS model parameters, it
is possible to introduce downstream ad effects with-
out limitation.

6.1 Search click-through rate

In the unit test corresponding to this first family of
scenarios, the click-through rate (CTR) of a search
channel is varied across the scenarios. A search ad
impacts user behavior by increasing the probability
of a visit to the advertiser’s website by providing the
opportunity for a paid click.

To implement this scenario, the transition prob-
ability from an impressed state to its corresponding
click is increased. Recall the impression state may
transition to either a click state or an auxiliary state
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(a) The absolute errors are defined as the difference
Tm−To between each transition probability generated by
our model Tm in the fitting process and the correspond-
ing observed transition rate To. All transition probability
errors are all reasonably small.

(b) Each relative error is defined as Tm−To
To

for observed
and modeled transition probabilities To and Tm respec-
tively. There are some outliers (relative error greater than
10% or so). These outliers all associated with transitions
to an extremely rare channel and are not important for
our application.

Figure 4: The absolute and relative errors for the matched path data. In general, the choice of loss function
will determine the importance of relative versus absolute errors.

for the corresponding channel (Figure 2). As a re-
sult, the transition probability to the auxiliary state
must be decreased.

The last interaction attribution model does very
well in this situation (see Figure 5a). The cor-
responding curve nearly matches the ground truth
curve. This is expected, since the implicit assump-
tions of this model are satisfied: ad impact (genera-
tion of an incremental site visit) can only occur with
a click and there is no effect beyond the point of the
click, the click is observable (in-scope) for the path
data, and no observable event can appear between
the click and a conversion generated by the click. The
first interaction and linear models aren’t as effective
in recognizing or responding to changes in magnitude
(CTR) for this type of ad impact. However, they still
track the ground truth curve reasonably well. These
results are consistent with the findings in Figure 5
of [8].

6.2 Permanent click effect

The purpose of this next family of scenarios is to un-
derstand how MTA models identify the downstream
impact of a click on a search ad. As was the case for
the first scenario family, a search ad impacts user be-
havior by increasing the probability of a visit to the
advertiser’s website by providing the opportunity for
a paid click. Additionally, a paid search click for one
of the search channels results in an increased down-

stream probability of another search ad click, as well
as an increased probability of an unpaid click (SEO).
So, a search ad can modify the behavior of a user be-
yond the click-through visit to the advertiser’s web-
site. This type of ad effectiveness is relevant to so
called ‘generic search ads’ that generate awareness
and sustained interest in an advertiser without im-
mediately generating a conversion.

To implement this scenario, a user’s probability
of transitioning to a search or SEO event is scaled
by a factor of 1 + ε after each occurrence of a click
on the relevant search channel. Here, ε is the pa-
rameter that scales ad effectiveness (i.e., the x-axis
in Figure 5b). In a follow-up step, each row of the
transition matrix is re-normalized. This scaling and
re-normalization remains in effect for all subsequent
event generation for this user.

Figure 5b shows results for this family of scenar-
ios. The difference between the results of these attri-
bution models and the ground truth for incremental
conversions grows as the downstream impact from a
search ad click grows. None of these simple attribu-
tion models are able to effectively interpret this type
of ad effectiveness.

6.3 Display impression effect on
search

In this family of scenarios a display impression has a
downstream impact on search activity. Specifically,
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(a) A search ad impacts user behavior by increasing the
probability of a visit to the advertiser’s website via a paid
click. The click-through rate (CTR) of a search channel
is varied from 0.1 to 0.2. The last interaction attribu-
tion model is the most successful of the three models at
matching the ground truth incremental conversions gen-
erated by this search channel.

(b) A search ad impressions gives the user an opportunity
to visit the advertiser’s website via a search click, and the
search click increases the probability that the user will do
an advertiser-related search downstream. All three of the
attribution models struggle to recognize the full value of
the downstream ad impact.

(c) Exposure to an display ad impression increases the
probability that the user will do an advertiser-related
search downstream. None of the attribution models are
able to recognize this type of ad effectiveness because the
path data they use as input does not include display ad
impressions

(d) The probability of an unpaid search click (SEO) is
decreased conditional on a search ad impression. This
models a situation in which unpaid search clicks are can-
nibalized by paid search ad clicks (see Section 6.4 for full
details). The volume of incremental clicks generated by
a paid channel decreases as the rate of cannibalization
increases.

Figure 5: Attribution unit test results for four different type of change in ad effectiveness. For each degree of
change in ad effectiveness, the ground truth is found by running an experiment in the simulated environment
in which the target ad channel is on versus off.
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an impression generated by one of the display chan-
nels increases the probability that the user exposed
to the ad will do an advertiser-related search in their
downstream activity

This ad impact is implemented by introducing the
scaling factor 1 + ε where ε > 0. When a user visits
a third party search state and is exposed to a corre-
sponding display ad, every transition probability to
a search state for that user is scaled by this factor.
In a follow-up step, each row of the transition matrix
is re-normalized. This scaling and re-normalization
remains in effect for all subsequent event generation
for this user.

None of the three attribution models are able to
recognize this type of ad effectiveness. All three mod-
els are completely insensitive to the magnitude of ad
effectiveness (see Figure 5c). The primary reason
for this failure is that display impressions are out-of-
scope, i.e., they are not included in the observable
path data. In this situation, the path data provided
to the attribution models does not include the in-
formation needed to accurately estimate ad impact.
No attribution will perform well with this observ-
able path data. This result is very similar to the one
shown in Figure 6 of [8] in which out-of-scope search
ad impressions have a downstream impact on user
behavior.

6.4 Paid search cannibalization

The potential cannibalization of unpaid search clicks
by paid search clicks is a common concern for adver-
tisers. This occurs when a user does a search and
the results page includes the opportunity to click on
a paid search ad and the opportunity to click on an
unpaid search result. A user might click on the paid
search ad even though he/she would have clicked on
the unpaid search result had the search ad not been
shown. In this situation, the advertiser pays for a
visit that it could have been obtained for free.

In this scenario, we simulate the effect of can-
nibalization by decreasing the probability of transi-
tioning from a search state to an unpaid search click
(SEO) when a search ad impression is shown. That
is, we hypothesize that some fraction of the observed
paid clicks were really replacements for unpaid clicks
that would have occurred if the search ad had not
been shown. The cannibalization rate is adjusted by
varying a single parameter, α, across all user groups
from 0 (no cannibalization) to 1 (maximum canni-
balization). More specifically, α is used across each
user group in one of two ways:

• If the original probability of an unpaid click,
U , is larger than that of a paid click, P , the

maximum cannibalization rate (i.e., loss of un-
paid click probability) is P . More generally, the
probability of an unpaid click after a search ad
impression is U − αP , which allows the canni-
balized unpaid click probability to vary from U
(no cannibalization) to U − P (maximum can-
nibalization).

• If U is smaller than P , the maximum cannibal-
ization rate is the entirety of the unpaid click
probability U . In this case, the probability of
an unpaid click after a search ad impression is
(1−α)U , which can vary from U (no cannibal-
ization) to 0 (maximum cannibalization).

Figure 5d shows the number of incremental con-
versions generated by paid search as a function of
α. As the cannibalization rate increases, the number
of ground truth incremental conversions decreases.
Note that the CTR for paid visits does not change
across scenarios in this plot. As a result, the vol-
ume of paid visits remains relatively constant. How-
ever, as cannibalization increases, more and more of
these paid visits are actually replacements for visits
via SEO clicks. So, when search ads are turned off
to measure their incrementality, fewer and fewer site
visits and conversion opportunities are lost.

In this scenario, no attribution model matches
the decrease in incremental conversions of the ground
truth curve. The last event curve remains relatively
flat with increasing cannibalization. This happens
because the main impact of cannibalization in this
scenario family is to decrease the number of unpaid
visits. The number of paid visits does not change,
and therefore the number of paths with paid visits
that are immediately followed by a conversion does
not change. So, the last event allocation of conver-
sion credit does not change either.

On the other hand, the first event and linear mod-
els give progressively more credit to the paid search
channel. Paid and unpaid search clicks are strongly
correlated in the observed bigrams of the target path
data. There is also a degree of asymmetry – the tran-
sition probability from unpaid to paid clicks is signif-
icantly higher than vice versa. So, when increasing
cannibalization removes unpaid clicks that are up-
stream in these converting paths (and moreover this
effect is stronger than the reverse effect, switching
paid and unpaid clicks), more credit is allocated to
the paid ad channel.

This idea is supported by a plot of the conver-
sion credit attributed to the unpaid click channel (see
Figure 6). When the cannibalization rate is zero, the
linear and first-touch attribution models assign more
credit to the unpaid click channel. As the cannibal-
ization rate increases, the removal of unpaid events
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from converting paths affects the credit assigned by
the first event and linear models much more than the
last event model.

While it is not possible to determine the canni-
balization rate in general without an experiment due
to unknown covariates, an attribution model should
minimally be able to compare unpaid click rates with
a search impression versus without.

Figure 6: The conversion credit attributed to the un-
paid search channel across cannibalization rates for
real data.

7 Conclusion

7.1 Summary

In this paper, we describe and demonstrate a pro-
cess for generating user level path data that matches
the characteristics of path data for a particular ad-
vertiser. Here, the objective is to match the chan-
nels, observable events, and the frequencies of event
bigrams. Although, in principle, it’s possible to gen-
eralize this notion of matching to include additional
characteristics (e.g., trigrams or the distribution of
path lengths). Path matching is achieved by solving
an optimization that identifies the input parameters
for an ad system simulation. This minimizes the dif-
ference between the bigram frequencies for path data
generated by a candidate set of input parameters
and the target bigram frequencies from the adver-
tiser path data.

Once the appropriate parameters have been iden-
tified for the ad system simulation, it is possible to
generate unit tests that can be used to better under-
stand the capabilities and limitations of MTA mod-
els. Because the simulated data are more specific to
the advertiser than generic path data, the results of

these unit tests are more relevant and actionable to
the advertiser. We explored a few example scenar-
ios that are illustrative of situations that may be of
concern to advertisers that use MTA models.

7.2 Limitations

The path matching process described in this paper
has several limitations. First, and most importantly,
the matching process cannot be used to directly de-
termine the level of ad effectiveness of any ad channel
from the advertiser path data. The observable data is
not sufficient to do this. Many user covariates aren’t
observable, many complexities aren’t represented in
the ad system model, and the components and true
functional form of ad effectiveness are unknown.

The deficiency of information in the user level
path data leads to another limitation. There is more
than one set of ad system parameters that match the
path data. In the optimization process, a different
initial guess can lead to a different path matching
solution. Although our testing found that the unit
test results are generally robust to different initial
guesses, there is no guarantee that this will always
be the case.

Finally, only the base level of ad effectiveness (i.e.,
the leftmost data point in Figure 5) corresponds to
simulated path data that matches the target path
data. This is partly because it is not possible to
include long-term ad effects in the auxiliary ad sys-
tem model used to match the advertiser path data.
A more general auxiliary model would not have this
limitation (see Section 7.3).

7.3 Future work

In this section we discuss how the work in this pa-
per can be extended and how shortcomings can be
addressed.

7.3.1 Long-term ad effects

One very notable limitation of the approach de-
scribed above is that the model fitting step assumes
stationary Markovian behavior. This does not allow
ads to impact the downstream behavior of users be-
yond the action that immediately follows a search im-
pression. It would be useful to fit an ad system model
with fixed non-stationary behavior instead of adding
this behavior as a separate follow-up step. For exam-
ple, this capability would be useful in studying the
extent to which ad effects are identifiable for a par-
ticular set of path data. That is, we want to know
if many different types and magnitudes of ad effec-
tiveness can lead to the same observable path data
by changing unobservable user behavior.
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7.3.2 Time component

In [9] a method is introduced to include the decay
of ad impact across time without drastically increas-
ing the size of the state-space. Specifically, a ‘unen-
gaged’ state is introduced, and the passage of time
is captured by transitions between engaged and dis-
engaged states. Such a method can be incorporated
into the current methodology as well. So, along with
the inclusion of long-term ad impact, the fitting pro-
cess could also incorporate a long-term decay of ad
impact, as long as the target path data includes time
stamps.

7.3.3 Sparsity

When the ad system model includes multiple user
groups the full Markov model transition matrix is
very sparse. Performance can likely be improved by
performing the scoping and grouping using efficient
sparse operators. In particular, the matrix inverses
in Eq. 5 and Eq. 6 do not have to be generated explic-
itly. Instead, it is possible to solve a number of linear
equations using methods like GMRES or BiCGSTAB
(for example, see chapter 11 in [2]).

7.3.4 Other objectives

If the target data includes additional aggregate path
statistics then objectives beyond bigram frequency
can be used in the matching optimization. For exam-
ple, matching trigram frequency may better capture
the evolution of user behavior. Also, matching the
distribution of path lengths would better capture the
long-tail of user behavior.

For fitting in the most general case in which the
target data includes a complete set of user level path
data, it should be possible to use a maximum like-
lihood estimate (MLE) to find an optimal set of ad
system parameters. This possibility is appealing, but
the use of individual user paths would require a step
to preserve user privacy (e.g., removing low volume
paths from the analysis).
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Appendix A

Generation of Fabricated Target
Data

The goal is to generate bigram data that is qualita-
tively similar to that of real user path data, including
data from Booking.com. The main features of the
data are:

• High probabilities for repeated events (diago-
nal terms in the transition matrix).

• A significant degree of symmetry in the transi-
tion matrix.

• High imbalance across the frequencies of
events.

• High probability of EOP (‘end of path’) after
most events.

To duplicate these characteristics we use the fol-
lowing process. For clarity, we use an index for the
D matrices, but in practice updates can be done in
place:

1. Generate two matrices Dsym and Dasym by
sampling elements from the uniform distribu-
tion U(αfloor, 1) and compute

D1 =
Dsym +Dasym

2
+ αasymDasym. (10)

The parameter αasym ≥ 0 controls the degree of
asymmetry, and the parameter 0 ≤ αfloor ≤ 1
controls how widely the distribution can vary.

2. Multiply the columns of D1 by a power distri-
bution with parameter αpower > 0, forming D2.
This ensures some events are much more likely
to occur than others.

3. Compute D3 = D2 + αdiagdiag(Vd) where
Vd is a vector with elements sampled from
U(αfloor, 1) and αdiag ≥ 0. This ensures di-
agonal terms are significantly larger than non-
diagonal terms.

4. Add αEOP ≥ 0 to the column of D3 represent-
ing transitions to the EOP, forming D4. This
makes events more likely to transition to EOP.

5. Set specific entries of D4 to zero, forming D5:

• Start of path to EOP (this would be an
empty path).

• All event transitions to the ‘start of path’
event.
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• EOP to all other events.

6. Normalize the rows of D5 to form D. This step
ensures that D is a valid transition matrix.

Typically, we want specific types of events to oc-
cur more or less frequently than others (e.g., con-
version is a low frequency event). To meet this re-
quirement, unigram frequencies are computed using
D and then the events associated with the columns
of D are reassigned accordingly.

Appendix B

Fabricated Data Results

This appendix includes path matching and attribu-
tion analysis results generated using bigram data fab-
ricated using the process described in Appendix A.
This fabricated bigram data is analogous to the real
data from Booking.com. The target data includes 8
observable events (not including the start and end of
path). The parameters used to generate the fabri-
cated data are:

Parameter Value
αpower 0.6
αdiag 3.0
αEOP 1.0
αasym 0.3
αfloor 0.2

Figure 7 contains the distribution of transitions
in the fabricated data generated using the process de-
scribed in Appendix A. This distribution is qualita-
tively similar to that of the Booking.com data (com-
pare to Figure 1).

Figure 8 shows the distribution of relative and ab-
solute errors for the transition probabilities of the fit-
ted model compared with the fabricated target tran-
sitions. The errors are somewhat larger than those
of the fit generated using the target data from Book-
ing.com with the exception of the outliers in the rela-
tive errors in Figure 8 (which are due to the presence
of a rarely visited event in the Booking.com data).
These errors do not decrease significantly with an in-
creasing number of user groups, which suggests that
other characteristics of the underlying model are the
limiting factor.

Figure 9a shows the distribution of unigrams in
the path matched data generated using the fabri-
cated target data. The unigrams are computed from
the transition probabilities in each case using the fun-
damental matrix of the (observable) Markov transi-

tions, and compared to the original fabricated transi-
tions D. Figure 9b shows the distribution of bigram
transitions from one sample observable event to the
other observable events. Notice the procedure out-
lined in Appendix A produces a large proportion of
repeated bigrams (in this sample, transitions from
dsp2 to dsp2), as desired. In addition, there is a
large difference between the frequency of some uni-
grams and bigrams, which also matches the desired
behavior.

Figure 10 shows the results of the attribution unit
tests. The procedure applied to the fabricated data
was exactly analogous to the one applied to the path
data matched to the Booking.com target. Both sets
of results are qualitatively similar in the ability of
these attribution models to track the ground truth
curve, although there are a few differences. For ex-
ample, in Figure 10a the curve corresponding to last-
touch attribution does not match the ground truth
curve as closely as it does in Figure 5a. The slopes
are very similar, but there is an offset. This discrep-
ancy is most likely due to channel interaction that is
enhanced with this particular set of target data.

In Figure 10d the first touch and linear attribu-
tion models are relatively insensitive to the cannibal-
ization of unpaid clicks, whereas in Figure 5d these
models assign progressively more credit to the paid
search channel. The first touch and linear attribu-
tion models also assign less credit to unpaid clicks
than last touch before including cannibalization, so
there is less credit to shift from unpaid to paid clicks
with increasing cannibalization (compare Figure 6
and Figure 11). This is partly due to the unpaid
and paid click channels being less strongly correlated
and occurring less frequently together in converting
paths. Moreover, the transition rates from paid to
unpaid click events versus unpaid to paid click events
are much closer to equal (see the discussion in Sec-
tion 6.4). We intentionally made the fabricated data
bigrams approximately symmetric, since we observed
some general symmetry in the real data, but the tran-
sitions between paid and unpaid clicks in this case
were less symmetric in the real data than the fabri-
cated data.
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Figure 7: The transition rates in the fabricated target data are similar to those of the real data (compare to
Figure 1) in that they have a ‘tail’ of low-probability transitions. In the fabricated data, this is a result of using
a power distribution for the overall prevalence of particular observable events.

(a) The absolute errors of the transition probabilities for
the matched path data are generally small, although not
as small as those from matching to the Booking.com data
(compare to Figure 4a).

(b) The relative transition errors of the transition prob-
abilities for the matched path data are generally small
(with some exceptions). These errors do not include the
large outliers observed in the match to Booking.com data
(compare to Figure 4b). This may be because the rare
events were less rare in the fabricated data (compare Fig-
ures 1 and 7).

Figure 8: The absolute and relative errors in the transition rates of the matched path data compared to the
fabricated target transition rates.
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(a) The unigram rates for the fabricated target data and
the matched path data.

(b) The reference transition probabilities from one sam-
ple observable event (dsp2, i.e., an ad click for the dsp2
channel) to every other observable event for the fabricated
target data and the matched path data.

Figure 9: Unigram rates and sample bigram transition probabilities. We show both the target results for the
fabricated target bigrams and the matched path data. The events shown are the observable (i.e., in-scope)
events: ‘start of path’, ‘end of path’, conversion, and click events for each paid channel.

Figure 11: The conversion credit attributed to the
unpaid search channel across cannibalization rates
for fabricated data.
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(a) (b)

(c) (d)

Figure 10: Attribution unit test results using path data matched to the fabricated target data. These results
are analogous to those for the Booking.com data (shown in Figure 5).
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