
Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

olaf.zimmermann@ost.ch

INSIGHTS

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 17

MICROSER VICES HAVE BECOME
an essential architectural enabler in
cloud-based software development and
delivery.1 Many organizations, from
large tech companies (e.g., Google,
Amazon, Netflix) to small start-ups,
have adopted microservices as a best
practice.2 This has served them well in
some cases and, as you will see here,
not so well in others.

Briefly, microservices constitute a
service-oriented architectural style in

which server-side applications are con-
structed by combining many single-
purpose, low-footprint distributed
services.3 This significantly impacts
the application’s agility because each
microservice becomes an independent
unit of development, deployment, ver-
sioning, scaling, and management.1 The
other touted benefits of microservices
include reduced testing effort, better
functional composition, environmen-
tal isolation, and development team
autonomy.4 The opposite is a more
monolithic architecture, where several
discrete functions are composed into a

single unit that is tested, deployed, and
scaled as a whole.

Despite their benefits, the adoption
of microservices poses several techni-
cal and organizational challenges, for
example, high operational complexity,
increased technological diversity, and
the need for better coordination among
teams.1,3,4 Early evidence on the practi-
cal gains and pains of microservices have
started to emerge in academic publica-
tions5–7 and industry forums.8 However,
there are still relatively few industrial re-
ports on microservice projects in which
the pains are assessed to outweigh the

The Monolith Strikes
Back: Why Istio Migrated
From Microservices to a
Monolithic Architecture
 Nabor C. Mendonça, Craig Box, Costin Manolache, and Louis Ryan

This work is l icensed under a Creat ive Commons Att r ibut ion 4.0
License. For more informat ion, see https://creat ivecommons.org/
l icenses/by/4.0/deed.ast.

Digital Object Identifier 10.1109/MS.2021.3080335
Date of current version: 20 August 2021

From the Editors

To break or not to break the monolith? This question of modularity is often answered

positively by microservice architects. In this issue’s “Insights” department, authors ar-

gue why the latest version of the popular Istio middleware—which provides the fabric

of many contemporary microservice architectures—has not been released as a set

of independently deployable components, but as a single unit that is tested, deployed,

and scaled as a whole. We learn that modularity affects the entire software lifecycle:

it is not only a development and maintenance concern but also a deployment-time

decision. The operator experience matters, just like user experience and developer

experience.—Cesare Pautasso and Olaf Zimmermann

INSIGHTS

18 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

gains.9,10 In these situations, project de-
velopers may have to face the nontrivial
decision of abandoning microservices in
favor of a monolithic architecture.

This article reports on the de-
sign decisions, tradeoffs, and lessons
learned from one of those projects—
the Istio open source service mesh.11
Istio adopted a microservice archi-
tecture in its control plane early on.
However, less than three years after
Istio was first released, the con-
trol plane microservices were con-
solidated into a monolith. You can
find more information on Istio’s
microservices-to-monolith journey in
the project’s online blog.12

Istio
Istio was released to the public in 2017
as a collaboration among Google, IBM,
and Lyft. The system provides a uni-
form way to connect, secure, manage,
and monitor cloud-native applications

deployed in Kubernetes, an open source
container orchestration platform that
has become the de facto standard for
managing containerized applications.13
Istio is logically split into a data plane
and a control plane from an architec-
tural perspective, similar to other ser-
vice mesh solutions.14 The data plane
is composed of a set of Envoy proxies15
deployed as application service sidecars.
These proxies mediate and control all
network communication between ap-
plication containers. They also collect
and report telemetry on all mesh traf-
fic. The control plane, in turn, manages
and configures the data plane proxies
to monitor and route application traffic
according to user-provided traffic man-
agement rules. A monitoring back end
running systems such as Prometheus,16
a metrics server, and Jaeger,17 a distrib-
uted tracer, is also typically deployed
alongside the control plane to col-
lect and store a variety of mesh- and

application-specific metrics (e.g., latency
and error rate per service).

Istio’s original control plane ar-
chitecture was composed of five in-
dependently deployable microservices
[see Figure 1(a)]:

• Pilot—the core data plane con-
figuration service, which provides
service discovery for the Envoy
proxies, traffic management
capabilities for intelligent routing
(e.g., A/B tests, canary rollouts,
etc.), and resiliency (timeouts,
retries, circuit breakers, etc.)

• Citadel—service respon-
sible for enforcing strong
service-to-service and end-user
authentication with built-in iden-
tity and credential management

• Galley—service responsible for
configuration validation, ingestion,
processing, and distribution of
configuration to the other services

FIGURE 1. The architectural evolution of Istio’s control plane: (a) microservices and (b) monolith.

INSIGHTS

 SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 19

• Injector—service responsible
for auto-injecting the data plane
proxies in the application con-
tainers and setting up bootstrap

• Mixer—service responsible for en-
forcing access control and usage
policies across the service mesh; it
also collects telemetry data from
the Envoy proxies and other ser-
vices and reports this data to the
monitoring back end.

Microservice Burdens
The Istio team thought microservices
were the right architectural approach
from the very beginning, as many of
the authors had developed and oper-
ated a similar system within Google
and ported what they knew. Thus, they
initially built the control plane as a set
of microservices, like a modern, cloud-
native application. As Istio adoption
increased and the team got feedback
from customers, they realized that
many of the benefits typically associ-
ated with microservices, that is, inde-
pendent rollout, independent scale, and
security isolation, did not apply to the
Istio control plane. In most Istio instal-
lations, all control plane components
are installed and operated by a single
team or individual. This means that
most Istio components are not deliv-
ered and managed independently from
one another. Consequently, Istio opera-
tors were paying the price of the greater
operational complexity inherent to a
microservice architecture without ben-
efiting from it. While the teams oper-
ating Istio may have the skills to offset
these challenges, they did not perceive
any value in performing that work.

From Microservices
to a Monolith
Once the team established that many
of the expected benefits of microser-
vices did not apply to the Istio con-
trol plane, they decided to consolidate

them into a single binary: istiod [see
Figure 1(b)]. This unified service com-
bines the use cases of Pilot, Citadel,
Galley, and Injector. The Mixer com-
ponent was removed in a concurrent
project. The Envoy proxies now di-
rectly enforce policy and report telem-
etry to the monitoring back end, which
had previously been performed using
the Mixer as a central intermediary.
The motivation for this change was
similar to that of istiod in that a design
pattern identified as necessary at mas-
sive operational scale was not justified
against the maintenance and perfor-
mance overheads for typical users.

Compared to Istio’s previous mi -
croservice architecture, this new
monolithic control plane offers several
benefits. Here are some examples. First,
installation is simplified, as fewer Ku-
bernetes deployments and associated
configurations are required. Second,
configuration becomes more straight-
forward, as many of the configuration
options that Istio had before were
ways to orchestrate the control plane
services and therefore are no longer
needed. Third, debugging becomes
less of a burden, as having fewer ser-
vices means less cross-service envi-
ronmental debugging. Scalability is
also simplified, as there is now only
one service to scale. Finally, the time
to start, upgrade, and remove Istio
goes down, as these no longer require
a complicated dance of version de-
pendencies and start-up orders.

Monolith Tradeoffs
Generally, when a team adopts microser-
vices and their inherent complexity, they
look for improvements in other areas
to justify the tradeoffs. After looking at
the Istio control plane through that lens,
the team concluded that the value of mi-
croservices was not greater than the cost
of having to orchestrate them during
setup and operation. For instance, at the

time of writing, computer resource costs
in the Istio control plane are dominated
by a single feature: serving the Envoy
dynamic resource discovery (i.e., xDS)
APIs that program the data plane. Every
other feature has a marginal cost. This
means there is very little value to hav-
ing those features in separately scalable
microservices. Also, full security isola-
tion is not attainable in the control plane
as well. This is because multiple control
plane services hold nearly equivalent
roles in securing behavior of the proxy
and are installed by default into the same
Kubernetes namespace. Thus, exploiting
any of these services would cause near
equal damage. Therefore, moving the
Istio control plane to a monolithic archi-
tecture turned out to be the right archi-
tectural decision.

We should note that internally Istio
still maintains the logical separation be-
tween some of its original control plane
components and that each capability is
exposed as a discrete API. This still en-
ables functions to be swapped and com-
bined with other implementations. This
feature can be particularly useful in
some advanced use cases, such as in
multicluster deployments, where istiod
can be deployed as a single-purpose ser-
vice such as “injection,” “certification
provider,” or “validation.” This design
decision maintains many of the ben-
efits of microservices to more seasoned
Istio operators without the downsides
to those only interested in Istio’s most
common use cases.

Lessons Learned
According to Sam Newman, author of
a recent book on microservice migra-
tion patterns,18 developers should con-
template these three questions before
adopting a microservice architecture:
What are you hoping to achieve? Have
you considered alternatives to using
microservices? How will you know
if the transition is working? Here we

INSIGHTS

20 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

report on the main lessons learned
from the Istio team’s decision to con-
solidate their microservices from the
perspectives of these three questions.
We also discuss whether this decision
aligns with industry best practices.

What Was the Team
Hoping to Achieve With
Microservices?
Initially, the Istio team expected to
benefit from microservices’ well-
known advantages, such as indepen-
dent rollout and independent scale.
However, as they regularly talked
to customers and teams running Is-
tio in the real world, they were told
that none of these were the case for
the Istio control plane. The first les-
son learned then is that good teams
should look back upon their design
choices and, with the benefit of hind-
sight, revisit them.19

Had the Team Considered
Alternatives to Using
Microservices?
In retrospect, the team admits that
they favored microservices because
they confused their operational ex-
perience for that of the end-user.
For Istio, they are not the operator.
Thus, the need for the control plane
services to communicate securely
and be observable provided oppor-
tunities for Istio to “eat its own dog
food.” To put it another way, be-
cause Istio was targeted explicitly
at securing and observing individ-
ual microservices, the team thought
implementing the Istio control plane
as secure and observable microser-
vices was a natural choice. As we
have seen, this wasn’t necessarily the
case. In summary, the team believes
honesty and courage are required
to undo a previous design, which is

facilitated when done in an open and
constructive “error culture.”

How Did the Team Know
Microservices Were Not
Working?
At first, the Istio team did not pay
much attention to the burden of
managing Istio’s control plane as
independently deployable microser-
vices. However, after the team
started receiving feedback from
other Istio users, they soon real-
ized that microservices were not
as beneficial as they initially had
thought. The main reason was that
all control plane services were be-
ing deployed and used together and
shared the same administrative and
security domains. Thus, moving the
Istio control plane to a monolithic
architecture was a welcome deci-
sion, as it greatly reduced Istio’s
operational complexity. While this
decision may seem like a significant
change, the Istio team is confident
that it has paid off and verifiably
made the lives of Istio users better.
Thus, the team thinks this change
shows a willingness to change based
on user feedback and a continued
focus on simplification for all users.

How Well Does the Decision to
Consolidate the Control Plane
Microservices Align With
Industry Best Practices?
To answer this question, we again re-
sort to Sam Newman’s microservice
recommendations, in particular, to his
list of four situations in which microser-
vices might be a bad idea.16 Table 1
briefly describes those four situations
and whether they apply to Istio. As
you can see, all of them apply to Istio,
either partially or in full. Notably, us-
ing microservices in customer-installed
and -managed software was the clear
reason that microservices were a bad

Table 1. Sam Newman’s recommendations on when not
to use microservices and whether they apply to Istio.

Situation Why Microservices Are Bad Does It Apply to Istio?

Unclear
domain

Getting service boundaries wrong can
be expensive.

In part. From the perspective of fault
and security isolation, it can be argued
that splitting the Istio control plane into
multiple independent services was an
unnecessary decision.

Start-ups A start-up needs to focus all its
attention on finding the right fit for its
product. Microservices primarily solve
the sorts of problems start-ups have
once they’ve found that fit with their
customer base.

In part. While Istio was initially designed
by mature organizations, it was run like
a start-up and did indeed need to focus
on finding the right fit. As it turned out,
microservices were solving a problem
Istio didn’t actually have.

Customer-
installed and
managed
software

Microservices push a lot of complexity
into the operational domain. Coping
with this complexity isn’t something
you can typically expect of your end
customers.

Yes. Negative user feedback on the
complexity of deploying and managing
Istio was the main reason for the team’s
decision to consolidate the control plane
microservices into a single binary.

Not having
a good
reason!

Do not adopt microservices if you
don’t have a clear idea of what exactly
it is that you’re trying to achieve.

In part. Although the Istio team had a
clear view of the benefits and cost of
microservices, they didn’t realize right
from the start that, in their case, the
costs would outweigh the benefits.

INSIGHTS

SEPTEMBER/OCTOBER 2021 | IEEE SOFTWARE 21

idea in Istio’s case. The others are par-
tial and might not be very convincing,
but this one has clear guidance rel-
evant to readers: if you ship customer-
installed software, be wary of shipping
a bunch of microservices. One final
lesson learned then is that although
the Istio team was aware of Sam New-
man’s microservice recommendations,
they didn’t give appropriate weight to
the guidance around operations. This
shows the importance of sharing real-
world microservice experiences with a
broader audience, especially those that
did not turn out as well as expected.

A s microservices become in-
creasingly popular, they
are more likely to be used

in situations where the costs far out-
weigh the benefits. Istio’s recent deci-
sion to migrate its control plane from
microservices to a monolithic architec-
ture is a real-world example of some
of these situations. While the Istio
team recognizes that microservices
can work well in some systems and use
cases, their unmet expectations with
microservices are a timely reminder

that microservices are not, and never
will be, the right solution in all cases.
Microservices are a tool in a toolbox,
and they work best when reflected in
the organizational reality.

Acknowle dgment
Nabor C. Mendonça was partly sup-
ported by Brazil’s National Council for
Scientific and Technological Develop-
ment under grants 424160/2018-8
and 311344/2020-8.

 References
1. P. Jamshidi, C. Pahl, N. C. Men-

donça, J. Lewis, and S. Tilkov,

“Microservices: The journey so

far and challenges ahead,” IEEE

Softw., vol. 35, no. 3, pp. 24–35,

May/June 2018. doi: 10.1109/

MS.2018.2141039.

2. C. Pautasso, O. Zimmermann, M.

Amundsen, J. Lewis, and N. Josuttis,

“Microservices in practice, part 1:

Reality check and service design,”

IEEE Softw., vol. 34, no. 1, pp. 91–

98, Jan./Feb. 2017. doi: 10.1109/

MS.2017.24.

3. J. Lewis and M. Fowler. “Microser-

vices: A definition of this new

architectural term.” martinFowler,

Mar. 2014. https://martinfowler.com/

articles/microservices.html (accessed

May 28, 2021).

4. O. Zimmermann, “Microservices

tenets: Agile approach to service

development and deployment,” Com-

put. Sci.—Res. Develop., vol. 32,

nos. 3–4, pp. 301–310, 2017. doi:

10.1007/s00450-016-0337-0.

5. J. Soldani, D. A. Tamburri, and

W. J. Van Den Heuvel, “The pains

and gains of microservices: A sys-

tematic grey literature review,” J.

Syst. Softw., vol. 146, pp. 215–

223, Dec. 2018. doi: 10.1016/j.

jss.2018.09.082.

6. H. Zhang, S. Li, Z. Jia, C. Zhong and

C. Zhang, “Microservice architec-

ture in reality: An industrial inquiry,”

Proc. IEEE Int. Conf. Softw. Archi-

tecture (ICSA 19), 2019, pp. 51–60.

doi: 10.1109/ICSA.2019.00014.

7. H. Knoche and W. Hasselbring,

“Drivers and barriers for microser-

vice adoption—A survey among pro-

fessionals in Germany,” Enterprise

Model. Inform. Syst. Architectures,

vol. 14, no. 1, pp. 1–35, 2019. doi:

10.18417/emisa.14.1.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

NABOR C. MENDONÇA is a full professor

at the University of Fortaleza, Fortaleza, Ceará,

CEP 60811-905, Brazil. Contact him at nabor@

unifor.br.

C OSTIN MANOLACHE is a software

engineer at Google. Contact him at costin@

google.com.

CRAIG BOX is a developer advocate at

Google. Contact him at craigbox@google.com.

L OUIS RYAN is a principal engineer at

Google. Contact him at lryan@google.com.

22 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

INSIGHTS

8. “Panel: Microservices—Are they still

worth it?” InfoQ, Apr. 2020. https://

www.infoq.com/presentations/

microservices-panel-value/ (accessed

May 28, 2021).

9. A. Noonan. “Goodbye microser-

vices: From 100s of problem children

to 1 superstar.” Segment, July 2018.

https://segment.com/blog/goodbye\

-microservices/ (accessed May 28, 2021).

10. C. Posta. “Istio as an example of when

not to do microservices,” Jan. 2020.

https://blog.christianposta.com/

microservices/istio-as-an-example

-of-when-not-to-do-microservices/

(accessed May 28, 2021).

11. “Istio—Connect, secure, control, and

observe services.” Istio.io. https://

istio.io/ (accessed May 28,

2021).

12. C. Box. “Introducing istiod: Simplify-

ing the control plane.” Istio.io, Mar.

2020. https://istio.io/v1.5/blog/

2020/istiod/ (accessed May 28,

2021).

13. “Kubernetes—Production-grade con-

tainer orchestration.” Kubernetes.io.

https://kubernetes.io/ (accessed May

28, 2021).

14. L. Calcote, The Enterprise Path

to Service Mesh Architectures.

O’Reilly, 2018. (accessed May 28,

2021).

15. “EnvoyProxy.io.” Envoy. https://

www.envoyproxy.io/ (accessed

May 28, 2021).

16. “Prometheus—From metrics to

 insight.” Prometheus.io. https://

prometheus.io/ (accessed May 28,

2021).

17. “Jaeger: Open source, end-to-end

distributed tracing.” JaegerTracing

.io. https://www.jaegertracing

.io/ (accessed May 28, 2021).

18. S. Newman, Monolith to Microser-

vices: Evolutionary Patterns to

Transform Your Monolith. Sebasto-

pol, CA: O’Reilly, 2020.

19. O. Zimmermann. “A definition of

done for architectural decisions.”

Medium, May 2020. https://medium

.com/olzzio/a-definition-of-done

-for-architectural-decisions-426cf5

a952b9 (accessed May 28, 2021).

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for
papers, and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MS.2021.3099675

