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Abstract
On-device end-to-end (E2E) models have shown improvements
over a conventional model on Search test sets in both quality,
as measured by Word Error Rate (WER) [1], and latency [2],
measured by the time the result is finalized after the user stops
speaking. However, the E2E model is trained on a small frac-
tion of audio-text pairs compared to the 100 billion text utter-
ances that a conventional language model (LM) is trained with.
Thus E2E models perform poorly on rare words and phrases.
In this paper, building upon the two-pass streaming Cascaded
Encoder E2E model [3], we explore using a Hybrid Autore-
gressive Transducer (HAT) [4] factorization to better integrate
an on-device neural LM trained on text-only data. Furthermore,
to further improve decoder latency we introduce a non-recurrent
embedding decoder, in place of the typical LSTM decoder, into
the Cascaded Encoder model. Overall, we present a streaming
on-device model that incorporates an external neural LM and
outperforms the conventional model in both search and rare-
word quality, as well as latency, and is 318X smaller.
Index Terms: on-device end-to-end models

1. Introduction
End-to-end (E2E) models have become a popular technique to
replace the acoustic, pronunciation and language models of a
conventional ASR system [5] with a neural-network. Over the
past few years, developing an on-device E2E model that can
achieve quality and latency comparable to a conventional cloud-
based ASR model [5] has become an active area of research
[6, 7, 8, 9, 10, 11] across many research groups.

On the quality side, in prior work, we found that a 1st-pass
RNN-T model [1] and a 2nd-pass LAS rescoring model [12]
allowed E2E to be on par with conventional on both general
search and proper noun test sets using contextual biasing [13].
However, thus far, in the absence of contextual biasing, we have
not been able to achieve similar performance to conventional
when tested with rare words and phrases. This is a challeng-
ing problem since E2E models are trained with a small fraction
of audio-text pairs compared to the 100-billion text-only utter-
ances that a conventional model is trained with. In addition, the
over-confident peaky posteriors of E2E models [14] and con-
strained beam size during decoding exacerbates this problem.

On the latency side, our goal has been to have an E2E model
that can display words on the screen as they are spoken with
minimum latency [15] and can endpoint quicker [16]. Recently,
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we proposed a system [2] that uses FastEmit [15] to encourage
the model to emit words and endpoint quickly. This model was
shown to achieve these latency goals, while still maintaining
voice search and biasing quality to be on-par or better than the
conventional model.

In this paper, we address one of the remaining challenges
of on-device E2E models compared to conventional models:
performance on rare words and phrases. Our baseline system
builds on our previous works [7, 1, 6]. Specifically, we use a
2-pass cascaded encoder model [3] trained with FastEmit [15].
To improve performance on the rare words, we first introduce a
Hybrid Autoregressive Transducer (HAT) [4] factorization into
the model, which allows us to better incorporate an external lan-
guage model. Next, we train a conformer [17] language model
on text utterances, and integrate this with the cascaded encoder
model as a rescorer to minimize on-device computation. Fi-
nally, to further minimize on-device computation, we replace
the LSTM layers, commonly used in transducer prediction net-
works, with a simple look-up embedding table which reduces
decoder parameters by 12X.

2. Modeling Improvements
2.1. Base Architecture: Cascaded Encoders

As first presented in [3], the baseline model we consider in this
work is a Cascaded Encoders model, as shown in Figure 1. In
this model, the 1st-pass system consists of a causal encoder fol-
lowed by an RNN-T decoder (prediction network + joint layer).
In the second pass, the additional non-causal layers take in both
left and right context of the 1st-pass encoder outputs, and are
fed to the same decoder. A single RNN-T decoder is shared be-
tween the 1st and 2nd-passes for better long-form performance,
and smaller model size and on-device benefits. Improvements
to this model will be discussed below.

2.2. Embedding Prediction Network

The broad success of neural networks in machine learning has
brought customized hardware, both in servers and in consumer
devices, that can process these networks efficiently. However,
these devices are less efficient at processing auto-regressive or
recurrent models. Therefore, in this work we explore making
the auto-regressive prediction + joint layers in Figure 1 as small
and efficient as possible. Specifically, we replace the LSTM
prediction network with an embedding lookup table, and share
the parameters of the embedding table with the softmax layer.
Below we briefly describe the embedding network, shown in
Figure 2, and refer the reader to [18] for more details.

With the embedding network, given the 5 previous non-



Figure 1: A block diagram of the Cascaded Encoders model.

Figure 2: Block diagram of Embedding Prediction Network.

blank predictions from the model, which we denote as Yprev =
{yu−5, . . . , yu−1}, we look up the embedding of each of these
outputs, denoted as {e5, . . . , e1}. The embedding table is of
size |V |×de, where |V | is the vocabulary size (i.e. wordpieces)
and de is the embedding dimension. Thus each ei is of size de.
For each position in the label history Yprev , we create a ran-
dom, constant position vector PV = {p5, . . . , p1} and take
a dot product of each pi with embedding ei, and average this,
giving output ā1. The intuition for the PV is that it allows for
embeddings to be attended over in proportion to how relevant
they are to their respective positions. Motivated by [19], the op-
eration from embeddings {e5, . . . , e1} to embedding averaging
ā1 is replicated across multiple heads H , which improves per-
formance at the cost of a small parameter increase. Each head
shares the same embedding table, but has unique PV s. The
embeddings across each head are also averaged together to get
the final embedding vector āfinal = 1

H

∑H
i āi.

Neural networks can model a more complex function with
additional linear-layer + non-linearity. Since the embedding
layer is a simple lookup table, we improved modeling expres-
siveness, again at the cost of a small parameter increase, by
passing the final averaged embedding vector, āfinal, through a
projection layer and Swish non-linearity, to get output r.

Finally, the joint layer, as shown in Figure 1, takes the
output of the prediction network, r, and encoder network, cet
(causal) or ncet (non-causal), projects this to dimension dh and
then passes it to a softmax layer, which is of size dh×(|V |+1),
with the extra output for the blank token. By setting de = dh,
we share the weights between the embedding and softmax ma-
trices for all non-blank tokens, to further reduce decoder size.

This is similar to weight tying used in language modeling [20].

2.3. HAT Factorization

An E2E model directly estimates the posterior of word se-
quence, y, conditioned on the acoustic features, x, i.e., p(y|x).
A common way to integrate an E2E model with an external LM
that estimates pLM (y) is to perform shallow fusion (Eq 1).

y∗ = arg max
y

[log p(y|x) + λ1 log pLM (y)] (1)

Here, λ1 is the weight given to the LM. Since E2E models tend
to be over-confident in their posterior estimates, weighting the
two terms becomes difficult and can often lead to high dele-
tions [14]. To address this issue, Hybrid Autoregressive Trans-
ducer (HAT) proposes a way to factor out an internal LM score,
pILM (y), so that the likelihood score from the E2E model,
p(x|y), can be approximated by Equation 2:

log p(x|y) ≈ log p(y|x)− log pILM (y) (2)

The HAT factorization makes it mathematically more stable
to then integrate an E2E model with an external LM, without
needing additional coverage penalties:

y∗ = arg max
y

[log p(y|x)− λ2 log pILM (y) + λ1 log pLM (y)]

(3)

Here, λ1 and λ2 are the weights on the LM and ILM, respec-
tively. We train the cascaded encoder with a HAT factorization
to allow for better integration with a neural LM and biasing LM.

2.4. Neural Language Model

Our large-scale text-data corpus has ∼100 billion utterances,
and spans domains of Maps, News, Google Play, Web and
YouTube. In contrast, the supervised audio-text pairs used to
train the E2E model is much smaller (300 million) and in-
cludes domains such as Search, Dictation, YouTube and Tele-
phony [21]. Challenges related to domain-mismatch and data
scale make it difficult to train neural LMs using both these
datasets.

N-gram LMs attempt to handle the scale and domain-
mismatch of the data by training a separate model on each
individual domain and then performing a Bayesian interpola-
tion [22] to optimize performance on a target domain of interest.
Maximum entropy training, used to train such models, incorpo-
rates various optimization strategies to speed up model training,
resulting in training on billions of examples taking less than one
day [23]. Furthermore, to address domain-mismatch, [24] pro-
poses fine-tuning just on the supervised set after pre-training on
all the data. In this work, we address these challenges by simply
mixing the LM data and transcripts form the supervised training
data with equal probability.

Because of the on-device latency limitations, we ex-
plore using a conformer LM to rescore hypotheses from the
2nd-pass non-causal decoder. One of the benefits of trans-
former/conformer LMs is that there is no self-recurrence in
the model. This means that model outputs can be computed
for multiple inputs in parallel. This is particularly effective in
rescoring when the inputs to the LM is known ahead of time.
Transformer LMs have shown promising results in the litera-
ture [25, 26, 27]. In this work, given our promising results with
conformer encoder [17], we explore using a unidirectional con-
former LM, where we only attend on previous tokens.



2.5. Biasing

Contextual biasing [28] increases the likelihood of the ASR sys-
tem recognizing contextually-relevant phrases, such as names
from the user’s contact list. The typical approach for bias-
ing is to interpolate scores from the E2E model log p(y|x) and
a contextual LM log pC(y), represented by a weighted finite-
state transducer (FST), via shallow fusion during the beam
search [13]. We explore how biasing performance is improved
with HAT, as shown in Equation 4. When contextual biasing
is applied during beam search to the causal and non-causal de-
coders, the weight of the neural LM λ1 = 0. Note that λ1 6= 0
during rescoring with the neural LM, and the contextual LM is
reapplied so as to not undo the effects of biasing when applied
during beam search. β is the cost on the contextual LM.

y∗ = arg max
y

[ log p(y|x)− λ2 log pILM (y) +

λ1 log pLM (y) + β log pC(y)]
(4)

2.6. Latency

To decode the cascade model in the streaming system, we run
the 1st-pass causal decoder and the 2nd-pass non-causal de-
coder in parallel. The causal decoder is faster while the non-
causal decoder is more accurate. Hence, to reduce latency, the
causal decoder is responsible for emitting the partial recognition
results [15] and endpointing [16] quickly. Once the endpoint-
ing decision is declared, the system then closes the microphone
and sends the final recognition result decoded thus far by the
non-causal decoder to the server.

An additional way to reduce latency is to fetch results even
before the final recognition is ready, which is referred to as
prefetching [29]. If the partial result matches the final recog-
nition result, the response fetched for the partial result can be
delivered to the user instantly and save the execution latency
that typically happens after recognition is completed.

In the cascade model, partial results and final results are
emitted by separate decoders. The mismatch can increase
prefetch miss, which makes the prefetched results unusable,
thereby increasing latency. To reduce the mismatch, we pro-
pose to prefetch results based on the combination of both de-
coders, referred to as hybrid prefetching. To merge the prefetch
decision from the causal and non-casual decoders, the system
first generates prefetch candidates from both decoders indepen-
dently and then discards the results if they are stale. A prefetch
candidate is marked as stale if the top hypotheses is a substring
of the latest valid prefetch. For example, “navigate” is a stale
result as compared to “navigate to home” so that prefetch is not
overridden by the late hypothesis. In the hybrid scenario, the
quicker prefetch by the causal decoder would dominate while
more accurate prefetch by the non-causal decoder could still re-
vert incorrect prefetching for corner cases.

3. Experiments
3.1. Datasets

Similar to [1], all E2E models are trained on multidomain
audio-text pairs [21]. All domains are anonymized and hand-
transcribed, except for YouTube where the transcription is done
in a semi-supervised fashion [30]. In addition to the diverse
training sets, multi-condition training (MTR) [31], random data
down-sampling to 8kHz [32] and SpecAug [33] are also used to
further increase data diversity.

The text-only data, used to train the conformer language
model, consists of more than 100B utterances across domains
described in Section 2.4. Since the LM data spans across do-
mains different than the multidomain data, each mini-batch in
training uses 50% multi-domain and 50% text-only data, so as
to not degrade Search quality. This is standard practice done for
both n-gram [22] and maximum-entropy [24] models.

The Search test set includes around 12K Voice Search ut-
terances with an average length of 5.5 seconds. They are
anonymized and hand-transcribed, and are representative of
Google’s Voice Search traffic. In addition, to measure the tail,
we create a synthetic Rare-word test set, described in more de-
tail in [34]. Specifically, we look for words in the LM training
data that are rare (i.e., occurs less than 5 times) in the multi-
domain data. In addition, we also look at words that have sur-
prising pronunciations given their spellings, with rarity mea-
sured as those words with a low grapheme-to-phoneme (G2P)
score. Words are selected across all 5 LM domains, and overall
we synthesize [35] around 19K utterances to create a rare-word
set.

3.2. Modeling

The cascaded encoder model architecture is very similar to [2].
Specifically, all models are trained on 400k hours of data, a
128D log-mel feature frontend with a 16-D one-hot domain-id
vector appended to it [21]. Causal convolution and left-context
attention layers are used for the Conformer layer to strictly re-
strict the model to use no future inputs. 8-head attention is used
in the self-attention layer and the Convolution kernel size used
is 15. The encoder consists of 12 Conformer layers. Five cas-
caded encoder layers process input 900 milliseconds into the
future, and this feeds into the decoder.

The RNN-T decoder consists of a prediction network and a
joint network with a single feed-forward layer with 640 units.
The baseline system is with 2 LSTM layers with 2,048 units
projected down to 640 output units (23.4M params). The em-
bedding prediction network [18] from Section 2.2, uses an em-
bedding dimension of 320, and has 1.96M parameters, ∼12X
smaller than the LSTM. The baseline cascaded models do
not use HAT factorization [2]. All remaining E2E models
are trained with the HAT factorization to predict 4,096 word
pieces [36]. The cascaded encoder with embedding decoder is
0.15G in model size.

The conformer LM, at 0.13G, has a look back attention con-
text of 31 left tokens for each output wordpiece model we want
to predict. The LM is 12 layers, where each layer has a model
dimension of 768 and a feedforward layer dim of 2048. Over-
all the number of attention heads is 6. During inference, the
conformer LM is used to rescore the lattice after the non-causal
CascEnc. HAT LM weights in Equation 4 (λ1, λ2, β) are opti-
mized to minimize WER on small subset of the language model,
search and biasing test data.

The conventional model is a low-frame-rate [5] LSTM
acoustic model (0.1GB) trained on 20k hours of data, to predict
context-dependent phonemes [37]. It uses a phonetic lexicon
(2.2GB), a 4.9GB 1st-pass FST LM [22], and a 2nd-pass 82GB
Maximum Entropy rescoring LM [23].

4. Results
4.1. Modeling Improvements

First, Table 1 shows that the embedding decoder (E0) does
not degrade performance over the LSTM decoder (B1) on the



Search set, while being 12X smaller. Next, exploring LM inte-
gration, E1 without HAT (i.e. setting λ2 = 0 in Equation 3),
results in a degradation on Search, but a small win on the Rare
Words sets. However, when we use HAT with λ2 6= 0 (i.e.,
E2), we see improvements on both Search and rare words sets,
compared to cascaded encoder with no LM (E0).

Table 1: WER on Search and Rare words Sets

Exp Model Search Rare
B0 CascEnc, LSTM dec-causal 6.7 -
B1 CascEnc, LSTM dec-noncausal 5.6 -
E0 CascEnc, emb dec-noncausal 5.6 32.8
E1 E0 + no HAT, LM Resc 5.8 28.2
E2 E0 + LM Resc 5.5 26.8

4.2. Comparison to Conventional

4.2.1. Latency

Table 2 compares the WER, endpointer and prefetch latencies of
conventional and CascEnc+LM on the Search test set. The End-
pointer latency (median latency: EP50 and 90th latency: EP90)
measures (in ms) the time between when the user stops speak-
ing and the model declares the microphone to be closed. The
prefetch latency (median latency: PF50 and 90th latency: PF90)
measures (in ms) the latency of a correct prefetch relative to the
end of the speech. When using CascEnc+LM (E2) with hybrid
prefetching (HP), the PF90 is reduced by 130 ms. Overall, the
on-device model has better WER, faster endpointer latency, on
par prefetch latency, and is more than 318 times smaller than
conventional. Note we do not report rare word performance
with conventional since it uses the same pronunciation lexicon
as the one used to synthesize the test set. Instead, this perfor-
mance will be explored on held-out logs data in Section 4.2.3.

Table 2: WER, Latency and Model Size on Search

Model Search EP50 EP90 PF50 PF90 Size(G)
Conv 6.7 460 870 90 190 89.2

E2 5.5 350 700 130 380 0.28
+ HP 5.5 350 700 110 250 0.28

4.2.2. Contextual Biasing

We evaluate contextual biasing, described in Section 2.5, when
biasing towards the names in a user’s contact list. We biased
towards a list of artificial contact names and measured perfor-
mance against two test sets consisting of anonymized utterances
from a Search application: an “in-context” set of utterances with
intent to start a communication action such as “call $contact” or
“message $contact,” and an “anti-context” set of general voice
search utterances in which communication action queries are
rare. The in-context test set shows biasing performance when
the context is relevant, and the anti-context set shows us how
much general recognition degrades when we optimize for a bi-
asing use case.

The results are shown in Table 3, where the “(Base)” value
indicates the WER without biasing applied. The CascEnc+LM
with HAT (E2) is observed to show improvement over the Cas-
cEnc+LM no HAT (E1). A large portion of the improvement
here comes from the change to using HAT. We see improvement
in both the in-context and anti-context sets for both the biased
and no-bias variants. The relative WER improvements from
biasing in the in-context set decreases and the relative WER re-

gression in the anti-context set increases when using HAT com-
pared to without HAT, but this is likely due to the no-bias variant
performing better with HAT.

Table 3: WER on Communication Test Sets

Model In-Context (Base) Anti-Context (Base)
Conventional 8.7 (16.7) 6.9 (6.9)
E1 (no HAT) 5.3 (14.4) 5.9 (5.8)

E2 (HAT) 5.0 (13.2) 5.8 (5.4)

4.2.3. Rare Word Modeling With SXS

To better compare performance of our proposed CascEnc+LM
model to conventional, we perform a “side-by-side” (SxS) on
previously unseen utterances. We collect 500 utterances where
the transcription differs between the two models, and send these
utterances to be rated by two human transcribers. Each tran-
script is rated as either a win by CascEnc+LM over conven-
tional (only CascEnc+LM is correct), a loss in CascEnc+LM
over conventional (only the conventional model is correct), or
neutral (both models are correct or incorrect). Note there is
a neutral category since two models can output different text
(Main St. vs Main Street) that are semantically similar.

We report five statistics to evaluate the SxS. Changed is %
of utterances in which the two models produced different hy-
potheses. Wins is the # of utts the two-pass hypothesis is cor-
rect and conventional model is incorrect. Losses is the # of utts
the two-pass hypothesis is incorrect and conventional model is
correct. Neutral is the # of utts the two-pass and conventional
model are both correct or incorrect. Finally, p-Value is the sta-
tistical significance of WER change with cascaded encoder+LM
compared to conventional model.

Table 4 shows that the cascaded-encoder+LM model
changes about 18% of traffic. The cascaded-encoder+LM
model has significantly more wins (130) than losses (36) com-
pared to the conventional model. Overall, the p-Value of <
0.1% shows the performance difference between the two mod-
els is statistically very significant.

Table 4: SxS: Conventional vs. Cascaded-Encoder+LM

Changed (%) Win Loss Neutral p-Value
18.4 130 36 334 <0.1%

Table 5 shows the wins and losses of the model. The E2E
model has some endpointer (EP) deletion losses since it oper-
ates at a faster latency. This seems to be the majority of losses
in the SXS. There are a few lexicon(Lex) losses as well since
conventional uses a lexicon, but the examples are few. The SXS
shows very few losses in rare words, which indicates the E2E
model is now addressing this issue. In comparison, the E2E
model has many more wins in the LM area.

Table 5: Error Analysis of Conventional vs. CascEnc+LM

Type Conventional CascEnc+LM
Loss EP cookies from cookies from

brownie mix
Lex play idealism play idealism

phosphenes phosphines

Win LM kyle parkway sears call parkway terrace
in tupelo, mississippi in tupelo mississippi

LM what is celtic what is shell tuck
stitching used for stitching used for
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