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ABSTRACT: The most efficient known quantum circuits for preparing
unitary coupled cluster states and applying Trotter steps of the arbitrary
basis electronic structure Hamiltonian involve interleaved sequences of
Fermionic Gaussian circuits and Ising interaction-type circuits. These
circuits arise from factorizing the two-body operators generating those
unitaries as a sum of squared one-body operators that are simulated using
product formulas. We introduce a numerical algorithm for performing this
factorization that has an iteration complexity no worse than single particle
basis transformations of the two-body operators and often results in many
times fewer squared one-body operators in the sum of squares, compared
to the analytical decompositions. As an application of this numerical
procedure, we demonstrate that our protocol can be used to approximate
generic unitary coupled cluster operators and prepare the necessary high-
quality initial states for techniques (like ADAPT-VQE) that iteratively construct approximations to the ground state.

1. INTRODUCTION
Efficient quantum circuit compilation is an important task for
performing quantum simulations on near-term and fault-
tolerant quantum devices. Different approximation schemes
can lead to vastly different circuit representations and, thus,
varying runtimes and success probabilities.1−4 In this work, we
focus on the general problem of circuit implementations of
propagators generated by Fermionic many-body operators
relevant to a wide variety of simulation such as time-dynamics
and state preparation in electronic structure simulations of
chemistry and condensed matter models.
The strategy we explore is the decomposition of a generic two-

body operator into a sum-of-squares of normal operators where
each term in the sum can be implemented exactly with
Fermionic Gaussian unitaries (i.e., single-particle rotations)
and unitaries generated by charge−charge (i.e., Ising) type
interactions. Circuits of this form can be implemented exactly
through Givens rotation networks5 and swap networks.3,6 Many
recently proposed simulation strategies for Fermions leverage an
analytical sum-of-squares many-body operator decomposition
or use a sum-of-squares type ansatz for approximate ground
states. Some examples for both near-term quantum computers
and fault-tolerant quantum computers are the double factorized
Trotter steps for chemical Hamiltonians,7 tensor-hypercon-
traction-based Hamiltonian dynamics,8 restricted models of
generalized coupled-cluster,9−11 and compressed density
fitting.12 The sum-of-squares picture unifies these ansaẗze and
suggests a numerical compilation strategy for determining a
sum-of-squares operator decomposition with few terms. In the
context of coherence limited near-term quantum computers, we

highlight how a numerical approach can lead to substantially
shorter circuits for the implementation of many-body operators
relevant to quantum chemistry.
A numerical optimization strategy for a nonorthogonal single

particle basis representation of many-body operators has already
been used in determining one-particle bases to measure
chemical Hamiltonians13 and compressing many-body oper-
ators through numerical density fitting.12 A classical analogue of
these methods is matching pursuit, where the dictionary is a set
of nonorthogonal single particle bases, which are obtained as the
algorithm progresses.14,15 In the context of many-body
operators, these methods are connected by the Lie algebraic
perspective on operator decomposition into bases that maximize
their Cartan subalgebra representations.13 Numerically deter-
mining a unitary that maximizes the Cartan subalgebra of a qubit
operator has also been used to determine efficient compilations
for two-local qubit Hamiltonians.16 A missing component of
many of these proposals is an efficient computational scheme for
determining the basis that maximizes the Cartan subalgebra
components.
We propose an efficient local search (i.e., greedy) algorithm

for recursively decomposing a Fermionic two-body operator
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into a sum-of-squares terms with an iteration cost that scales no
worse than a one-particle basis rotation of the two-body
operator n( )5 , where n is the number of spin−orbitals
describing the problem. A numerical study on decomposition
of the unitary coupled cluster operator indicates that a greedy
search provides substantial improvements over analytical
decompositions such as the singular value decomposition7 or
Takagi17 decomposition and provides a computationally
efficient alternative to nongreedy approaches to unitary tensor
fitting.10,12

To further highlight the utility of this approach, we
demonstrate how compressed unitary coupled cluster doubles
can serve as a starting point for iterative wave function methods
that rely on the initial wave function overlap with the ground
state to succeed. In classical quantum chemistry, iterative
approaches based on similarity transformations of a state18,19 or
reduced-density-matrix propagation20 require high accuracy
initial states if a high-quality approximations to the true ground
state is desired. We validate that quantum versions of these
techniques, such as ADAPT-VQE21 or the quantum anti-
hermitian-contracted Schrödinger equation solver,22 can also be
sensitive to initial states by studying the performance of
ADAPT-VQE on finding a high-accuracy approximation to the
ground state of O2. This example highlights how iterative circuit
construction techniques can fail in the absence of high initial
overlap with the target state, even when one introduces artificial
symmetry breaking.
In Section 2, we describe the sum-of-squares decomposition

of a generic Fermionic two-body operator and how this
translates into the Gaussian unitary and Ising swap network
circuit primitives under a Trotter approximation. In Section 3,
we describe our greedy algorithm for performing the
decomposition of a generic two-body operator into a sum-of-
squares form. In Section 4, we compare the numerical sum-of-
squares decomposition to analytical techniques for unitary
coupled-cluster generators and electron−electron interaction
operators, along with an application to iterative circuit
constructions. We close with perspectives on the numerical
compression and when it is most applicable in the context of
quantum computing for simulating Fermions.

2. A SUM-OF-SQUARES NORMAL OPERATOR
REPRESENTATION
2.1. Background on Simulating Two-Body Fermion

Operators as a Sum-of-Squares One-Body Operators.
Starting from a generic antihermitian two-body operator,

∑= † †G A a a a a
pqrs

rs
pq

p q s r
(1)

where {p, q, r, s} index Fermionic modes, the charge−charge
form can be obtained by reordering ladder operators under the
Fermionic anticommutation relations,

∑ δ= −† † †G A a a a a a a( )
pq rs

sr
pq

p s q r s
q

p r
, (2)

where ∈ ⊗A n and is antisymmetric in the upper and lower
indices. A sum-of-squares of normal operator decomposition of
G has the form

∑ ∑ ∑= − =† †G Z S a a Z z l a a( )
l

l
pr

pr p r l
pq

pq p q
2

(3)

where z(l)pq is a collection of coefficients such that Zl is a normal
operator and Spr = ∑qsArs

pqδs
q. Ansaẗze generated by G can be

viewed as a unitary form of the generalized coupled-cluster
ansatz of Nooijen23 or, if A is an imaginary antihermitian tensor
with the correct symmetries, a generic quantum chemistry
Hamiltonian evolution.
Under the exponential map, the operator G expressed in the

form of eq 3 admits a simple compilation strategy through a first-
order Trotter approximation:

∏≈ −e eeG S

l

Zl
2

(4)

By representing each Zl in its eigenbasis, each Zl
2 term in eq 4

can be exactly implemented as

= ∑ †e Ue UZ
l

J l n n
l

( )l pq pq p q
2

(5)

where Ul is a Fermionic Gaussian unitary rotating to the
eigenbasis of Zl and J(l)pq corresponds to the outer product of
eigenvalues of z(l). Equation 4 becomes

∏≈ ̃− ∑ †

=

∑†
e e U e UG S a a

L
l

L
J l n n

l
1

( )pq pq p q pq pq p q

(6)

where Ũl = UlUl−1
† is the concatenation of single-particle basis

rotations−we take U0 to be identity. This concatenation can be
performed classically and implemented on the quantum
computer as a linear depth Givens rotation network.5,24−27

The charge−charge component of this sequence of unitaries
∑e J l n n( )pq pq p q can be implemented with a linear depth swap
network.3,6

The Trotterized form of eG is thus implemented as a sequence
of linear depth circuits alternating between Givens rotations
networks and charge−charge type networks, all of which require
only nearest-neighbor connectivity between a linear array of
qubits. Furthermore, these compilations are conjectured to be
optimal for these decompositions. The scaling of this
implementation is linear in the rank of the matrix Ã, which is
the super matrix formed from reshaping A such that the row and
column indices are labeled by pair indices ps and qr (see the
Supporting Information for a detailed discussion on geminal
ordering of the supermatrix).

2.2. Determining Normal Operators. There are a variety
of methods for decomposing G into sum-of-squares normal
operators as eq 3. In ref 7, the double factorization technique,
similar to the Cholesky decomposition, is applied to the Ã super
matrix to produce a sum-of-squares representation. The factors
from the Cholesky decomposition can be reshaped and
factorized again, via an eigenvalue decomposition, because of
the 4-fold symmetry of the Hamiltonian coefficients coming
from the two-electron integral coefficients. Reference 7 also
demonstrated a general decomposition of a unitary coupled
cluster operator that relies on a singular value decomposition
(SVD) of Ã. In the Supporting Information, we derive the SVD
decomposition for an arbitrary operatorGwithout the structural
requirements of a coupled cluster doubles operator. A slightly
more efficient decomposition for unitary coupled-cluster
doubles operators is pointed out by Mastsuzawa et al.10 in the
context of implementing Jastrow inspired sum-of-squares many-
body operators by leveraging the Takagi decomposition.17 The
Takagi decomposition is applicable to complex symmetric
matrices as the decomposition
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σ σ̃ =A U Udiag( , ..., )m1
T

(7)

where σi ≥ 0 and U is unitary. Generally, the Takagi
decomposition is not equivalent to a scaled SVD28 as U is
complex. To form a sum-of-squares decomposition from the
Takagi decomposition, we follow ref 10 and reshape the
columns ofU into matrices u(l), where l indexes the column and
define

σ=y l l u l( ) ( ) ( ) (8)

such that

∑=A y l y l( ) ( )qr
ps

l
ps qr

(9)

Because y(l) is not generally a normal matrix, we can form one
by taking linear combinations

= ±± †y l y l iy l( ) ( ) ( ) (10)

such that

∑= ++ + − −A y l y l y l y l
1
4

( ( ) ( ) ( ) ( ) )qr
ps

l
ps qr ps qr

(11)

The coefficients of y(l)± can be thought of as the coefficients
for the one-body operators z(l) in eq 3. Thus, they can be
diagonalized by a unitaries μ± such that

∑ μ μ μ μ

μ μ μ μ

=

+

+* + + +* +

−* − − −* −

A l l J l l l

l l J l l l

1
4

( ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))

cd
ab

l pq
ap cp pq bq dq

ap cp pq bq dq

,

(12)

where Jpq
± (l) = λp

±(l)λq
±(l) and λp

±(l) come from diagonalizing
y(l)±. A full derivation of this general form is described in the
Supporting Information. Written more abstractly,

∑ μ μ μ μ= * *A l l J l l l( ) ( ) ( ) ( ) ( )cd
ab

l
ap cp pq bq dq

(13)

where we have moved the ± terms into the l sum. Both the
Takagi decomposition and the SVD sum-of-squares decom-
position form an operator decomposition like eq 13. It was
previously noted that Jpq(l) is a rank-one matrix, and thus carries
little information.10 This justifies a numerical optimization of
this doubles term, as is performed in the unitary cluster Jastrow
factor ansatz10 (k-uCJ) and its variants.9,11 Reference 12
proposed an approach based on a gradient descent least-squares
fitting of μ(l) and J(l) for Ã under the constraint that the
coefficients have the proper symmetry to represent a spin-free
chemical Hamiltonian. Although ref 12 introduces a clever
optimization strategy that alternates between one particle basis
μ(l) optimization and J(l) coefficient optimization, the overall
convergence of the least-squares fitting is unknown and seems to
be limited to six tensor factors before numerical difficulties make
optimization challenging. In Section 3, we propose a fitting
algorithm that determines a decomposition ofA, according to eq
13, which has comparable performance but is substantially more
computationally efficient.
2.3. Sz-Symmetry Adaptation. Both the SVD scheme and

Takagi scheme can be implemented in such a fashion that all
generators commute with Ŝz1. Specifically, this can be achieved
by applying the decompositions to Ã partitioned into the
nonredundant spin components Ãα,α

α,α, Ãα,β
α,β, and Ãβ,β

β,β. Consider
the spin-indexed generator G̃,

δ̃ = −σ σ τ τ σ σ τ τ σ τ τ
σ† † †G a a a a a ap s q r p s q r p r q

s
, (14)

We can view the spin-block structure in Ã in matrix form (via the
same supermatrix formed in the Takagi and SVD decom-
position):

i

k

jjjjjj
y

{

zzzzzz
i
k
jjjj

y
{
zzzz

α α α β

β α β β
̃ =

̃ ̃

̃ ̃
=A

A A

A A

A B

B C

( , ) ( , )

( , ) ( , ) T
(15)

which is a complex symmetric matrix. Ã(τ,σ) indicates all terms
with two-body operators of the form apτ

† aqτarσ
† asσ. By performing

one of the sum-of-squares decomposition on the A and C blocks
and then the larger matrix involving B and BT, we are guaranteed
the one-particle basis rotations for each sum-of-squares operator
is restricted to a single spin-sector. The A and C blocks can be
implemented simultaneously and can be merged with the single-
particle basis transformation obtained by rearranging ap

†aq
†aras→

ap
†asaq

†ar. Figure 1 shows an example of the circuit compilation for
one of the l terms in the Takagi or SVD decomposition of Ã that
commutes with Sz.

3. COMPRESSING MANY-BODY OPERATORS WITH
SEQUENTIAL ORBITAL OPTIMIZATION

The previous section reviewed methods that allow for a
coefficient tensor associated with a generic operator to be
decomposed into a sum-of-squares of normal operators. It also
explained how the evolution by these sum-of-squares operators
can be efficiently implemented using Fermionic Gaussian
unitaries and Ising interactions. Here, we describe a numerical
algorithm to express A in a sum-of-squares normal matrices
according to eq 13. The procedure is a greedy algorithm that
sequentially finds a single-particle basis such that A has large
coefficients for ninj terms. We then remove this component
leaving a remainder tensor. The protocol is repeated until the
remainder is numerically zero or the remainder norm is below a
preset threshold. We note that this procedure leads to matrices
Jpq(l) (the coefficients associated with the npnq) in eq 5) which
are not restricted to being rank one. We numerically determine
the single-particle basis that maximizes Jpq(l) through gradient
descent on the nonredundant generator coefficients. Derivatives
of the basis rotation unitaries, with respect to the generating

Figure 1. Depiction of a single Trotter slice of the sum-of-squares
decomposition for each spin sector. Each U(τ) is implemented as a

linear depth Givens rotation circuit and each λ∑ei n nij ij i j is also
implemented in a linear depth swap network pattern. Each swap
network or basis change unitary consists of n( )2 gates.
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coefficients, are provided in refs 29 and 30 and have been used in
gradient optimization of the Hartree−Fock equations.27,30 The
algorithm we propose is as follows:

(1) Starting from the desired two-body operator G, we first
maximize the coefficients associated with the ninj terms by
orbital optimization.

(2) Select out the njnj coefficients and store them along with
the orbital rotation generator.

(3) Rotate the operator represented by the diagonal
coefficients back to the original basis just obtained from
the optimization, and then subtract the tensor from the
original, generating a remainder.

(4) Repeat steps 1−3 until the norm of the subtraction
remainder is below a predefined threshold.

Using this approach the iteration cost of our optimization is
never more than the O(n5) cost of orbital rotation. Throughout
the rest of this paper, this recursive fitting procedure will be
referred to as the “unitary compression” technique. We also
emphasize that the classical storage requirement for each sum of
square tensor factor is quadratic in the system size making the
total storage of the unitary compressed tensor O(ln2), where l is
the number of compression terms and n is the basis set size. This
is similar to Cholesky factorized storage requirements if l scaled
linearly with system size. In the results section, we explore the
scaling of l with various systems, in terms of tensor accuracy
under the L2 norm and energy of the reconstructed generator.
To derive a cost function for maximizing Jpq(l) (coefficients

associated with ninj), we consider a one-body transform of a two-
body operator,

∑̂ = † †T t a a a a
ijkl

ij kl i j k l,
(16)

which generates unitary dynamics. Given the single particle basis
transformation operator,

κ = κ∑ †
U e( ) a apq pq p q (17)

the orbital rotated generator is represented below as T̃:

κ κ̃ = ̂ ̂ ̂†U UT ( )T ( ) (18)

∑̃ = ̃ † †t a a a aT
pqrs

pq rs p q r s,
(19)

∑̃ = * *t u u u u tpq rs
ijkl

pi qj rk sl ijkl,
(20)

such that the objective of maximizing the coefficients of the ninj
component of T̃ can be expressed as

∑κ κ κ= | ̃ |κ O O tmax ( ), ( ) ( )
xy

xx yy,
2

(21)

To optimize, we use L-BFGS-B using the following equations
to construct the gradient optimally. The gradient for an arbitrary
continuous cost function, depending on tp̃q,st, can be obtained by
differentiating eq 21 with respect to κab via the chain rule:

i
k
jjjjj

y
{
zzzzz

i

k
jjjjj

y

{
zzzzz∑ ∑κ

κ
κ

κ
κ

κ
∂
∂

= ∂
∂

∂
∂

+ ∂
∂ *

∂ *
∂

O O
u

u O
u

u( ) ( ) ( )

ab cd cd ab cd cd cd a b cd,

(22)

where

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
∑

∑ ∑

κ∂
∂

= *̃
∂ ̃

∂

= [ * * ̃ ] + [ * * * ̃ ]

O
u

t
t

u

t u u u t t u u u t

( )
2 Re

2 Re 2 Re

cd xy
xx yy

xx yy

cd

yikl
ickl id ky ly dd yy

xijk
ijkc ix jx kd xx dd

,
,

, ,

(23)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
∑

∑ ∑

κ∂
∂ * = *̃

∂ ̃

∂ *

= [ * * ̃ ] + [ * * ̃ ]

O
u

t
t

u

t u u u t t u u u t

( )
2 Re

2 Re 2 Re

cd xy
xx yy

xx yy

cd

yjkl
cjkl jd ky ly dd yy

xijl
ijcl ix jx ld xx dd

,
,

, ,

(24)

which, for all {c, d}, is obtained in n( )5 once per gradient call.
The n2 intermediates are reused for each κab derivative. Thus, the
overall scaling is n( )5 . Using the Wilcox identity,29 the {c, d}

element of the partial derivative of the unitary κ
∂

∂( )u

cda b,
or its

Hermitian conjugate is

i
k
jjjjj

y
{
zzzzz ∑

κ
∂

∂
=u

W u
ab cd r

cr
ab

rd
(25)

i
k
jjjjj

y
{
zzzzz ∑

κ
∂ *
∂

= − *u
W u

ab cd r
rc
ab

rd
(26)

where the matrixWab are the coefficients for the anti-Hermitian
operator obtained from the Wilcox formula,29 which is an
analytical expression for the derivative of a unitary, with respect
to its generating parameter κa,b (see Appendix G of ref 27 for a
full derivation). This analytical formula merely requires
diagonalizing the generator matrix κ and requires no truncation
of the matrix exponential Taylor expansion.

4. RESULTS
We examine the performance of the SVD, Takagi, and unitary
compression decomposition for the two-body components of
unitary coupled-cluster operators and two-electron integral
tensors. In this analysis, we compare the number of tensor
factors versus maximum absolute error and L2-norm variation
from the true tensor. We found that, for cluster operator
compilations, the greedy unitary compression technique
requires very few tensors to reach sub-millihartree accuracy
but suffers a substantial slowdown in optimization, because of
the increasing rank of the residual. In the two-electron integral
case, we demonstrate unitary compression optimized through a
global least-squares and the greedy approach both fail to recover
high-quality factorizations for a simple system. All calculations
are accomplished with PySCF,31 OpenFermion,32 the Fer-
mionic Quantum Emulator,33 and a custom implementation of
the tensor decomposition schemes.

4.1. Factorization of Coupled Cluster Doubles.The first
system we examine is the analytical (via SVD and Takagi) and
numerical (unitary compression and global least-squares)
decomposition of the two-body generators constructed from
classical coupled-cluster singles and doubles (CCSD) solutions.
Given the T2 CCSD operator,

∑= † †T t a a a a
1
4 i j a b

i j a b a i b j2
, , ,

, , ,
(27)
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the unitary generator τ2 can be formed by subtracting the
Hermitian conjugate

τ = − †T T2 2 2 (28)

which we decompose into the sum-of-squares form. We apply
the Takagi, SVD, and unitary compression decompositions to
two systems, hydrogen fluoride in a minimal basis and linear H4
in a 6-31G basis both with bond lengths of 1.6 Å. In Figure 2, we
plot the L2-norm difference of the αβ-amplitudes tensor and the
unitary compressed tensor, as a function of the number of tensor
factors considered. For the unitary compression, we consider
random initialization for the basis rotation coefficients or
coefficients obtained from the top vector of the Takagi
decomposition. We also plot the convergence of the correlation
energy, as a function of tensor factors. For these two systems,
there is little difference between the unitary compression seeded
with the top eigenvector of the Takagi decomposition and
random one-body unitaries. The residual L2-norm for the
unitary compression technique drops quickly but eventually
converges with slower scaling than the initial steps. Despite this
slowdown, the initial tensors from unitary compression capture
enough information such that the correlation energy converges
to sub-millihartree levels, with respect to CCSD well before the
Takagi decomposition and the SVD decomposition.
In Figure 2, we also plot the L2-norm and correlation energy

convergence of tensor factors determined by simultaneous
optimization of all sum-of-squares variational parameters. We
call this technique the global least-squares unitary compression.
The objective function and gradient derivation can be found in
the Supporting Information. As reported in ref 12, convergence

of the simultaneous variation of all parameters is extremely slow.
We found that only 4−5 tensor factors could be optimized
within a reasonable amount of gradient calls( (1000)) for these
small systems when the convergence tolerance was set to 1.0 ×
10−5. Furthermore, least-squares simultaneous optimization was
extremely sensitive to initial parameters. When seeded with
random starts gradient descent on all parameters commonly
stopped at a local minimum; producing correlation energies well
above Takagi. In Figure 2, we seed the simultaneous
optimization with Takagi vectors corrupted zero mean Gaussian
random noise with a variance of 0.1. Random noise is added to
help escape local minimum. The computational difficulties
confirm the results of ref 12 and demonstrate the necessity of
unitary compression. The inset plot of the bottom right panel of
Figure 2 demonstrates that unitary compression and full
simultaneous optimization have similar performance for the
first four tensors. Although we expect full least-squares
optimization to always be lower than the greedy unitary
compression, the higher value at the fourth point of the inset
of Figure 2 is due to difficulty in finding good starting
parameters.
The cause of the convergence slowdown for greedy unitary

compression is likely due to the fact that the nuclear norm of the
residual is not being minimized in the greedy procedure. To
show this, we plot the rank of the residual being fit by the unitary
compression procedure and compare against the residual in the
Takagi and SVD case. The residual in the Takagi and SVD cases
are simply the true amplitude tensor minus the reconstructed
tensor with a given number of tensor factors. The rank of the
residual is the number of tensor factors determined using the

Figure 2. Compression of the αβ two-body cluster operator for hydrogen fluoride (left) in a minimal basis (12 orbitals) and H4-linear (right) in a 6-
31G basis (16 orbitals). Unitary compression is labeled with UC. UC-R in red is the unitary compression with random initial starting states for the
orbital optimization. The UC-Takagi in green is unitary compression, starting from the Takagi decomposition of the remainder matrix. The SVD
decomposition and Takagi decomposition are described in the Supporting Information. Least-squares optimization is labeled in black. The starting
parameters for the least-squares optimization are the Takagi decomposition κ matrix and J matrices along with zero-mean and 0.1 variance Gaussian
noise added to each variable. Least-squares only has less than five data points due to excessively long computational run times. Each tensor factor can be
implemented with n( ) depth, where n is the number of orbitals.
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analytical decomposition on the residual. The rank in the greedy
unitary compression case is the number of factors resulting from
the Takagi decomposition. Using all the tensor factors produces
an exact amplitude tensor and, thus, the residual rank for the
Takagi and SVD decomposition asymptotes to zero. In Figure 3,

we show the rank of the residuals for hydrogen fluoride (HF)
molecule and linear H4 molecule as a stacked plot. As expected
for Takagi and SVD decompositions, the rank of the residual (or
remainder tensor) goes to zero. For the unitary compression, the
rank quickly rises to its maximal value. Once the rank is
maximized, the convergence of the unitary tensor fitting slows
substantially, as seen in previous plots. Effectively, the unitary
compression approach partitions the τ2 coefficient tensor into a
low-rank component that captures the majority of the
correlation energy and a maximal rank residual component
with many small amplitudes. This suggests to either include the
nuclear norm of the residual in unitary compression objective or
consider a hybrid scheme where unitary compression is used
until the residual rank is maximal and then switch to a Takagi
decomposition on the remainder tensor.
4.2. Electron Repulsion Interaction Decomposition.

We consider unitary compression on the two-electron integral
tensor for the π-system of naphthalene computed in a cc-pVDZ
basis at the geometry from ref 34. We demonstrate that unitary
compression, both greedy and global least-squares, present
numerical issues when determining high-quality tensor decom-
positions. We modify the greedy unitary compression scheme to
fit Hermitian operators and optimize over the space of spatial
orbital rotations. In Figure 4, we plot the maximum absolute
deviation of the unitary compressed two-electron integral
tensor. The greedy unitary compression protocol is performed
until the residual L2-norm is <1.0 × 10−5. This bound is selected
based on the convergence of second-order Møller−Plesset
perturbation theory (MP2) and coupled-cluster with singles and
doubles (CCSD) with truncated low-rank factorization of the
two-electron integrals for the large metal−organic catalyst
FeMoCo.8 The performance of greedy unitary compression is
compared against a Cholesky factorization of the two-electron
integral matrix and global least-squares optimization of unitary
compression fitting. In the least-squares unitary compression, we
use the basis rotation and charge−charge parameters
determined from the greedy procedure as a starting guess and
allow a maximum of 500 iterations with a stopping criteria of 1.0
× 10−4 in the BFGS gradient. The Cholesky decomposition is
performed via an SVD. Greedy unitary compression succeeds in

lowering the maximum absolute deviation over the Cholesky
decomposition but only up until 20 tensor factors. On the right-
hand side of Figure 4, we plot the absolute error in exact
diagonalization (FCI) energies computed with truncated two-
electron integral operators. The vastly different energies from
FCI indicate that, although both greedy and least-squares global
unitary compression lower the maximum absolute deviation of
the two-electron integral tensor, the resulting Hamiltonian is
very different from the original. This brings into question
whether unitary compression is a useful technique for
compressing operators derived from the Coulomb kernel.

4.3. Many-Body Starting States for Iterative Wave
Function Construction. To further illustrate the utility of
unitary compression, we consider starting states for the iterative
circuit construction technique ADAPT.21 In many classical and
quantum algorithms, the initial state can vastly change the
success probability of the algorithm. Here, we demonstrate a
system where ADAPT converges to a state substantially higher
in energy than the ground state when initialized with a symmetry
preserving Hartree−Fock state and succeeds in finding a low-
energy state when an approximation, through unitary
compression, to a CCSD initial state is used. All ADAPT
calculations used operator pools of Sz-adapted two-body
operators and numerical optimization was performed with
BFGS.35 Gradients were obtained through the dynamic
programming approach described in ref 36. All numerics were
performed with the Fermionic quantum emulator.33

Figure 3. Rank of the residual being fit with Takagi, SVD, and unitary
compression (UC). The Takagi and SVD residual ranks are determined
by reconstructing the tensor with a given number of tensor factors (x-
axis) and computing the rank of the remainder using the Takagi
decomposition. The residual rank for unitary compression is the Takagi
rank of the residual tensor for the next fitting iteration.

Figure 4. (Left) Maximum absolute deviation (MAD) of the unitary
compressed two-electron integral tensor of naphthalene (10 orbital π
system) obtained from canonical Hartree−Fock orbitals in a cc-pVDZ
basis compared against the Cholesky factorized two-electron integral
tensor. Inset plot is the MAD for the first eight tensor factors. (Right)
Absolute difference from FCI energy computed with untruncated two-
electron integrals. In both the left and right plots, we restrict the
compression to real unitary rotations.
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The system we consider is the triplet ground state of O2 in a
minimal STO-3G basis with a bond distance of 2.55 Å. Internal
stability analysis is performed on all self-consistent-field (SCF)
calculations to confirm that the SCF solution is not a saddle
point. The restricted-openshell Hartree−Fock (ROHF) wave
function has less than 1 × 10−5 overlap with the full
configuration interaction (FCI) wave function and the
unrestricted Hartree−Fock (UHF) wave function has ∼35%
overlap with the FCI wave function. This is because UHF should
produce a state that is locally a singlet and triplet on each
respective O atom. Thus, the overlap for the full triplet O2
should be nontrivial. In all cases, ADAPT-VQE and CCSD
calculations are performed on the full space of 10 orbitals and 16
electrons.
In Figure 5, we show that unitary compression can be used to

approximate CCSD as a starting state with very few tensor

factors. We compare convergence of the correlation energy
captured by unitary compression and Takagi on the α,β spin
blocks of τ2 defined in eq 28, as a function of the number of
tensor factors considered. Similar to the results of the previous
section, unitary compression substantially outperforms the
Takagi decomposition, in terms of circuit depth. To achieve a
correlation energy similar to CCSD, unitary compression
requires six factors whereas Takagi requires 25 factors.
On the left panel of Figure 6, we plot the progress of the

ADAPT algorithm starting from a Hartree−Fock starting point

(ROHF) and a coupled-cluster starting point (RO−CCSD)
approximated with six unitary compression factors. In blue open
circles, we show how ADAPT starting from an ROHF wave
function fails to converge to a ground state due to the difficulty
of finding high-quality rotations with a gradient based approach
when the system has almost zero overlap the exact ground state.
Starting from RO−CCSD approximated with six unitary
compression tensors (solid blue circles) ADAPT can succeed,
but with substantial circuit depth. We note here that UHF as a
starting point for ADAPT succeeds but with substantial
symmetry breaking. The varying performance of ADAPT
depending on starting state symmetry breaking hints at the
importance of symmetry breaking for the algorithm overall. For
reference, we also plot the performance of the k = 1 and k = 2
unitary cluster Jastrow ansatz10 (k-uCJ) where the generalized
singles term (restricted such that rotations in the α and β spin
sectors are equivalent) is implemented separately from the pair
doubles term in a similar compilation described in Figure 1. For
O2, in a minimal basis, k-uCJ has k100 parameters.
On the right panel of Figure 6, we plot the maximum absolute

value of the two-body gradient set {⟨ψ|[ap
†aq

†aras, H]|ψ⟩}, as a
function of ADAPT iteration. At each iteration, a single spin-
adapted two-body operator is added to the wave function. Thus,
S2 symmetry can be broken by ADAPT. We use Sz spin-adapted
operators because singlet and triplet two-body operator
implementation require Trotterization, depending on imple-
mentation strategy. With only Sz spin-adapted function, there is
no way to fix S2 expectation values through the ADAPT
protocol, unless a penalty term is added. To demonstrate
symmetry breaking as a mechanism for ADAPT successfully
finding a stationary state, we also plot S2 as a function of ADAPT
iteration. With the improved starting state of approximate RO−
CCSD 17 ADAPT iterations are required to come within 1
millihartree of the k = 2 k-uCJ energy, which is 1 millihartree
from the true FCI value. This highlights that with improved
starting states ADAPT can find high-quality ground states with
very few parameters: 17 vs 100.

5. DISCUSSION

We have explored a variety of compilation techniques for
implementing many-body Fermion dynamics and draw
connections between known implementation strategies, such
as the SVD or Takagi decomposition, circuit ansaẗze like k-uCJ,

Figure 5. Correlation energy convergence of compiled unitary coupled
cluster as a starting state for ADAPT. Blue is unitary compression and
red is the Takagi decomposition.

Figure 6. (Left) Convergence of ADAPT for different starting states. Open blue circles correspond to an ROHF starting point and solid blue circles
correspond to a RO−CCSD starting point approximated with six unitary compression factors. Energies for various methods are also shown as
reference: ROHF (solid black), UHF (dashed black), RO−CCSD (red), k = 1 unitary cluster-Jastrow10 (k-uCJ) (dash-dot green), and k = 2 k-uCJ
(solid green). (Right, upper panel)Maximum absolute deviation of the two-body gradient tensor gpqrs = ⟨ψ|[ap

†aq
†asar,H]|ψ⟩ after each ADAPT iteration

for ROHF starting states and an approximate RO−CCSD starting state. (Right, lower panel) S2 expectation value after each adapt iteration
demonstrating symmetry breaking in ADAPT steps.
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and a sum-of-squares representation of a generic operator. All
the referenced strategies seek to decompose a many-body
operator into a sum-of-squares of normal operators which can be
implemented with Trotter error, using interleaved Givens
rotation networks and Ising interaction networks. The many-
body decomposition schemes based on SVD or Takagi suffer
from a rank deficiency in the Ising interaction matrix,10 which
can be partially alleviated through full variational relaxation.
We proposed a strategy for determining a sum-of-squares

decomposition of a general two-body operator by numerically
searching for a low-depth nonorthogonal one-particle basis
expansion of the operator. The greedy numerical decomposition
has iteration complexity no worse than a single particle basis
transformation. The decomposition can be applied in energy
measurement schemes as in ref 13 or for time evolution or ansatz
construction.
The numerical sum-of-squares decomposition clearly out-

performed analytical decompositions for approximating a
unitarized projected coupled-cluster generator (28), resulting
in substantial circuit depth reduction. Thus, we can recommend
unitary compression as a compilation strategy when the goal is to
implement a many-body operator of unitary coupled-cluster
form. Unitary compression can also be applied to many-body
interaction terms of higher rank with an appropriate increase in
iteration complexity mirroring single particle basis rotation
costs. We demonstrated the use of coupled-cluster compilation
via unitary compression as a starting state for ADAPT-VQE.
Without approximate coupled-cluster initial state ADAPT fails
to converge to the ground state for triplet O2. Although unitary
compression presents a nice starting point, it is important to
note that k = 1 k-uCJ, which is an instance of a Fermionc non-
Gaussian state, is efficiently simulatable37,38 and also provides a
low-depth route for improving the starting state for ADAPT-
VQE. We further note that it may be beneficial to study unitary
compression for implementing dynamics of the generate
determined from the gradient estimation step of ADAPT-
VQE, which would implement a many-body step instead of
implementing a single ADAPT term, which scales linearly with
arbitrary qubit topology, or many-adapt terms, which would
require Trotterization. The linear scaling of a single ADAPT
term compared to the linear scaling circuit depth of a unitary
compression term is an area of potential further investigation.
The numerical sum-of-squares decomposition is a generic and

useful tool for translating low-symmetry many-body operators
into quantum circuits and a unifying framework for many of
today’s algorithms for simulating Fermions on near-term and
future quantum computers.
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