arXiv:2106.11872v1 [cs.LG] 22 Jun 2021

RANDOMNESS IN NEURAL NETWORK TRAINING:
CHARACTERIZING THE IMPACT OF TOOLING

Donglin Zhuang Xingyao Zhang
School of Computer Science Department of Computer Science
The University of Sydney University of Washington
dzhu98870sydney.edu.au xingyaoz@cs.washington.edu
Shuaiwen Leon Song Sara Hooker
School of Computer Science Google Research, Brain
The University of Sydney shooker@google.com

shuaiwen.song@sydney.edu.au

ABSTRACT

The quest for determinism in machine learning has disproportionately focused on charac-
terizing the impact of noise introduced by algorithmic design choices. In this work, we ad-
dress a less well understood and studied question: how does our choice of tooling introduce
randomness to deep neural network training. We conduct large scale experiments across
different types of hardware, accelerators, state of art networks, and open-source datasets, to
characterize how tooling choices contribute to the level of non-determinism in a system, the
impact of said non-determinism, and the cost of eliminating different sources of noise.

Our findings are surprising, and suggest that the impact of non-determinism in nuanced.
While top-line metrics such as top-1 accuracy are not noticeably impacted, model perfor-
mance on certain parts of the data distribution is far more sensitive to the introduction of
randomness. Our results suggest that deterministic tooling is critical for Al safety. However,
we also find that the cost of ensuring determinism varies dramatically between neural net-
work architectures and hardware types, e.g., with overhead up to 746%, 241%, and 196%
on a spectrum of widely used GPU accelerator architectures, relative to non-deterministic
training. The source code used in this paper is available at https://github.com/usyd-
fsalab/NeuralNetworkRandomness.

1 Introduction

In the pursuit of scientific progress, a key desiderata is to eliminate noise from a system. As scientists, we
typically regard noise as all the random variations independent of the signal we are trying to measure. In
the field of machine learning, the urgency to remove noise from training is often motivated by 1) concerns
around replicability of experiment results, 2) having full experimental control and/or 3) the need to precisely
audit Al behavior in safety-critical domains where human welfare may be harmed.

Recent work has disproportionately focused on the impact of algorithm design choices on model replicability
[Nagarajan et al., [2018},[Madhyastha and Jain, 2019, |Summers and Dinneen, 2021, |Snapp and Shamir, [2021),
Shamir et al., 2020, [Lucic et al., [2018, |Henderson et al., |2017]]. Less well explored or understood is how
our choice of tooling impacts the level of noise in a machine learning system. While some recent work has
evaluated the role of software dependencies [Pham et al., 2020, Hong et al., 2013, this has been evaluated
in the context of a single machine. In parallel, the quest for determinism has spurred the design of hardware

RANDOMNESS IN NEURAL NETWORK TRAINING.

< 1.00 30% 1.5 +1.00 30% 1.5
3 @
S0.75- S0.75-
3 c 20%- Elo 2 < 20%: €0
1% f— o [} fu o
g0.50 E = 2050 2 =
w “ 10%- N @ © 10%- o
80.25 0.5- 80.25' 0.5-
E 0, ' v E I | 0, I ' I I I
0'00\/ N O OA’\/ N O N o O 000\/ N O OA’\/ NS N ov O
NI NI NI NI NI NI
o v o v o v o e o v o e
84 & 89 85 84 85
v v v \a v \a
(a) Small CNN CIFAR-10 (b) ResNet-18 CIFAR-10
—~1.00 30% 1.5 ~1.00 30% 1.5
))
50.75 . £0.75-
g E20%- §1.0> § 520%- glioA
;, 0.50 2 = g 0.50 2 B =
@ © 10%- N o O 109 ~
2025 I (° ~05 2025 0 "0.5~| W I
= [
¥0.00 N Qv OI 0% N o O \/- \T 0. ¥0.00 \/. \/ﬂ O. 0% N \/' Qo N \/I o)
NI SIS NI NI NI NI
o~ v o~ e o~ v o~ e o v o~ e
89 NY 89 N 89 ©
\a \a v \a v v
(c) ResNet-18 CIFAR-100 (d) ResNet-50 ImageNet

Figure 1: Comparison of different source of noise on standard deviation of accuracy, predictive churn and L2
distance between trained weights (on V100 GPU). Implementation noise (IMPL) introduces less uncertainty
than algorithmic noise (ALGO) in terms of Churn and L2 distance, but each is a significant source of
uncertainty

that is inherently deterministic Jooybar et al.| [2013]], [Chou et al.| [2020]], Jouppi et al.| [2017] and software
patches that ensure determinism in popular deep learning libraries such as Tensorflow [Abadi et al., 2016]],
Jax [Bradbury et al., [2018]], Pytorch [Paszke et al.,|2019], and cuDNN [Chetlur et al., 2014].

In our rush to eliminate noise from ML systems, we seem to have skipped a crucial step — characterizing
the origins of the problem and the cost of controlling noise in the system. Understanding the sources of
noise in ML systems and the downstream impact is critical in order to weigh the benefits of controlling
noise at different levels of the technology stack. How does the choice of hardware, software and algorithm
individually contribute to the overall system-level noise? Here, we seek to identify individual sources of
randomness at different levels of the technology stack. We separately isolate and evaluate the contribution
of both algorithmic choices (i.e. random initialization, data shuffling, random layers and stochastic data
augmentation), and implementation choices which is the combination of hardware and software used to
train the model. Our work is the first to our knowledge to evaluate the impact of different widely used
hardware types, and also quantify differences in the cost of controlling noise across hardware.

Our results are surprising, and suggest that a more nuanced understanding of noise can also inform our
understanding of how our tooling impacts generalization. We find that both algorithmic and hardware factors
exert minimal difference in top-line metrics. However, we observe a far more pronounced impact on the level
of predictive divergence between different model runs, the standard deviation of per-class metrics and sub-
group performance. Here, we find that the presence of noise can amplify uncertainty disproportionately on
certain subsets of the dataset. While models maintain similar top-line metrics, randomness present during
training often causes unacceptable differences in performance on subsets of the population. Notably, we
find that non-determinism at all levels of the technology stack can amplify model bias by disproportionately
increasing variance in performance on underrepresented sensitive sub-groups.

Our results suggest that deterministic tooling is critical for ensuring Al safety in sensitive domains such
as credit scoring, health care diagnostics [Xie et al., 2019, Gruetzemacher et al., 2018, Badgeley et al.,
2019, |Oakden-Rayner et al., 2019] and autonomous driving [NHTSA| 2017]. However, our work also
establishes that the cost of fully ensuring determinism is large and highly variably due to the sensitivty

RANDOMNESS IN NEURAL NETWORK TRAINING.

Algorithmic Sources of Randomness

Source Method

Random Initialization weights initialized by sampling random distribution [Glorot and Bengiol 2010} [He et al.,
2016]

Data augmentation stochastic transformations to the input data [Kukacka et al.l 2017, [Hernandez-Garcia and

Konig, [2018| |[Dwibedi et al., 2017, [Zhong et al., 2017]

Data shuffling

inputs shuffled randomly and batched during training [[Smith et al.l[2018]

Stochastic Layers e.g. dropout [Srivastava et al.,|2014, |[Hinton et al., 2012, |Wan et al., |2013]], noisy activations
[Nair and Hintonl 2010]

Table 1: Overview of different sources of algorithm (ALGO) noise.

to model design and underlying hardware. Controlling implementation noise comes with non-negligible
training speed overhead for which researchers should weigh the price and benefit based on their tolerance of
uncertainty and the sensitivity of the task.

Our core contributions can be enumerated as follows:

1. We establish a rigorous framework for evaluating the impact of tooling on different measures of
model stability. We establish consistent results across an extensive experimental set-up, conducting
large-scale experiments across different hardware, accelerators, widely used training architectures
and datasets (Section[3.1).

2. Non-determinism must be controlled at all levels of the technical stack or is not worth controlling
at all. Even if algorithmic factors are controlled, the noise from tooling alone is substantial. This
suggests that removing a single source of noise cannot effectively reduce the level of uncertainty
of trained models (Section [3.2). The overall level of system noise is highly dependent on model
design, with choices such as the presence of batch-normalization [loffe and Szegedyl 2015 driving
differences in model stability.

3. Non-determinism has a pronounced impact on sub-aggregate measures of model stability. While we
observe minimal impact on top-line metrics, we find that model performance on certain sub-sets of
the distribution is far more sensitive, with underrepresented attributes disproportionately impacted
by the introduction of stochasticity (Section [3.2)).

4. Large variance in overhead introduced by deterministic training. Controlling for implementation
noise poses significant overhead to model training procedures — with overhead up to 746%, 241%,
and 196% on a spectrum of widely used GPU accelerator architectures, relative to non-deterministic
training (Section [)).

2 Methodology

We consider a supervised learning setting,

D{(.%’l,yl),...,(x]\/,y]\/)}CXXJ) (1)
where X is the data space and) is the set of outcomes that can be associated with an instance.

A neural network is a function f,, : X —) with trainable weights w € W. Given training data, our model
learns a set of weights w* that minimize a loss function L. Stochastic factors that impact the distribution of
the learned weights w* at the end of training include both algorithm design choices (ALGO) that introduce
noise to the training process and implementation choices (IMPL).

Algorithmic Factors (ALGO) - model design choices which are stochastic by design. For example, ran-
dom initialization [Glorot and Bengiol 2010, He et al., [2016], data augmentation [Kukacka et al., 2017,
Hernandez-Garcia and Konig, 2018]], data shuffling ordering [[Smith et al.,|2018]], and stochastic layers [Sri+
vastava et al.l 2014, Hinton et al 2012, [Wan et al., 2013} Nair and Hinton, 2010} Merity et al., 2017]. In

RANDOMNESS IN NEURAL NETWORK TRAINING.

1.4 40 2.5
Batch Norm Batch Norm Batch Norm
1.2- B w/ Batch Norm 35- B w/ Batch Norm | B w/ Batch Norm
10 s w/o Batch Norm s w/o Batch Norm 2.0 s w/o Batch Norm
’ 30-
1.5-
25-
1.0-
20-
15- 0.5- I
10 J 0.0
Qr O QQr N O N
N @9 N N @9 N
& X
® ®
(a) STDDEV (Accuracy) (b) Churn (¢) L2 Norm

Figure 2: Model design choices can amplify or curb impact of noise. Comparison of standard deviation of
accuracy, prediction churn and 12 norm of 3-layer small CNN on CIFAR-10 dataset when trained with and
without batch normalization in each layer.

Appendix [A] we include a more detailed treatment of the widely-used model design choices that introduce
stochasticity in DNN training.

Implementation Factors (IMPL) - noise introduced by software choices (e.g. Tensorflow
2016]], PyTorch [Paszke et al.|2019]], cuDNN [Chetlur et al.,2014])) as well as hardware accelerators’ archi-
tectures (e.g., modern GPU hardware designs [NVIDIA| 2016} 2017, [2018])). The following describes two
typical scenarios causing implementation noises.

* Parallel Execution - Popular general-purpose DNN accelerators (e.g., GPUs) leverage highly paral-
lel execution for speed-up in execution. However, these sophisticated software-hardware designs for
fine-grained massive parallelism typically aims to maximize resource utilization for execution speed
and throughput rather than output accuracy/precision. GPUs introduce stochasticity due to random
floating-point accumulation ordering, which often cause inconsistent outputs between multiple runs
due to the truncation of fraction part in floating point number in the accumulation procedure

etal}, 2020].

* Input Data Shuffling and Ordering - While input data shuffling induces algorithmic noise, it also
induces implementation noise due to the different input ordering. Differences in input data ordering
can result in different floating point accumulation orders for the reduction operations across data
points which are often a overlooked source of implementation noise.

2.1 Measures of Model Stability

In this work, we are focused on measuring the impact of randomness on model stability, defined as ensuring
that given the same experimental framework and tooling, the variation of the training outcome for given
input dataset. To this end, we evaluate the impact on both top-line metrics, but also more granular measures
of model stability such as predictive churn, 12 norm and sub-group performance, as different measures of
model stability. We briefly introduce each below.

Churn (churn)- Predictive churn is a measure of predictive divergence between two models. In sensitive do-
mains such as medicine, consistent individualized predictions are of paramount importance, as there can be
severe costs for inconsistent model behavior with a risk to human life 201T]). Thus, understanding
the factors that amplify churn is of considerable research interest with several different proposed definitions

of predictive churn [[Chen et al. 2020, Shamir and Coviello, 2020, [Snapp and Shamir, [2021]. We define
churn between two models f; and f5 as done by [Milani Fard et al., 2016] as the fraction of test examples

Table 2: Test-set accuracy with standard deviation under each type of noise. We report the average of 10

models trained independently from scratch.

RANDOMNESS IN NEURAL NETWORK TRAINING.

Hardware Task

ALGO+IMPL

Test Accuracy
ALGO

IMPL

SmallCNN CIFAR-10
ResNet18 CIFAR-10
ResNet18 CIFAR-100

P100

62.28% + 0.83
93.33% £ 0.14
73.37% £ 0.23

61.44% 4+ 0.41
93.32% £ 0.13
73.42% 4+ 0.26

61.61% + 0.31
93.12% + 0.11
73.36% £ 0.17

SmallCNN CIFAR-10
ResNet18 CIFAR-10
ResNet18 CIFAR-100

RTX5000

62.24% + 0.64
93.34% +0.11
73.30% £ 0.16

62.13% £ 0.85
93.44% £ 0.19
73.52% £ 0.15

62.36% + 0.16
93.13% £ 0.09
73.34% £ 0.24

SmallCNN CIFAR-10
ResNet18 CIFAR-10
ResNet18 CIFAR-100
ResNet50 ImageNet

V100

62.03% £ 0.91
93.32% £ 0.17
73.42% £+ 0.25
76.58% + 0.10

62.35% £ 0.61
93.44% £ 0.05
73.35% + 0.14
76.61% £ 0.10

61.69% + 0.31
93.41% £ 0.13
73.41% 4+ 0.28
76.60% =+ 0.05

where the predictions of two models disagree.:

C(fh f2) =]EX [:H‘{J}I;fl?éj)z;fz}] (2)

where 1 is an indicator function for whether the predictions by each model match.

L2 norm (12) - L2 norm of the trained weights |[w] — wj| between f; and f2 at the end of training
indicates the divergence of each run in function space. We normalize the weight vector to a unit vector
before computing 12 norm, for a consistent visualization scale across a variety of experiments.

Standard Deviation of top-line and sub-group metrics (stdev) - In addition to the standard deviation
of top-1 test-set accuracy over independent runs, we measure deviation in sub-group performance as mea-
sured by sub-group error rate, false positive rate (FPR) and false negative rate (FNR). We compute standard
deviation over 10 independent runs unless indicated otherwise.

2.2 Experimental Setup

We conduct extensive experiments across large-scale datasets (CIFAR-10 and CIFAR-100 [Krizhevsky,
2012]], ImageNet [Russakovsky et al., 2015]] and CelebA [Liu et al., 2015]]) and widely-used networks in-
cluding ResNet-18 and ResNet-50 [He et al.,|2016], DenseNet-121 and DenseNet-201 [Huang et al.,[2017],
Inception-v3 [Szegedy et al., 2015]], MobileNet [Sandler et al., 2018|], EfficientNet [Tan and Lel [2020],
three-layer small CNN and six-layer medium CNN (Appendix [C). For all the experiment variants with the
exception of ImageNet, we report the average performance metric over 10 models independently trained
from scratch. For ImageNet, given the higher training cost, we report average performance across 5 inde-
pendent trains. Table [2]includes the baseline accuracy given each dataset/model combination we train. A
detailed description of training methodology for each dataset and model architecture combination is included
in Appendix [Bl We preserve the same hyperparameter choices across hardware types and use Tensorflow
[Abadi et al., [2016]] 2.4.1, CUDA 11, and cuDNN [Chetlur et al.| 2014 8 for all the experiments.

GPU - we evaluate NVIDIA P100 with an older Pascal architecture [NVIDIA, [2016] and later generations
NVIDIA V100 [NVIDIA] 2017], Nvidia RTX5000 and T4 [NVIDIA| 2018]] with Volta and Turing archi-
tecture respectively. Our choice of GPUs allows us to evaluate the impact of different levels of parallelism,
as P100, V100, RTX5000, and T4 GPU are each equipped with 3584, 5120, 3072, and 2560 CUDA Cores
for floating point computation, respectively. In addition, we compare GPUs with and without Tensor Cores
accelerators by evaluating both Pascal and Turing architectures. GPU generations with Turing architectures
have multiple dedicated matrix multiplication units called Tensor Cores to provide massive computation
throughput.

RANDOMNESS IN NEURAL NETWORK TRAINING.

w
o
w
o
w
o

»
o
»
o
by
o

o
=)

Normalized STDDEV(ACC)
o = N w
o o o o
‘I
Normalized STDDEV(FPR)
p = N w
o o o o
N
Normalized STDDEV(FNR)
- N w
o o o

e & Q>
& & S

Qe& «

@/@ I
)
(7
%
O,
o

A
S
i
L

Figure 3: STDDEV(Accuracy) of each sub-group of ResNetl18 trained on CelebA dataset using V100. Y
axes is normalized against corresponding metric of overall dataset. Noise is disproportionately impacting
Old and Male sub-group as these sub-groups have fewer data points for the positive class.

Table 3: Data points distribution in CelebA dataset
Male Female Young Old

Positive Data Points 1387 (0.8%) 22880 (14.1%) 20230 (12.4%) 4037 (2.5%)
Negative Data Points 66874 (41.1%) 71629 (44.0%) 106558 (65.5%) 31945 (19.6%)

TPU - A TPU [Jouppi et al.,[2017] is a custom ASIC which differs from GPUs that employ arithmetic logic
unit (ALU) as the basic building blocks to offer massive parallel computation. In contrast, TPUs leverage
systolic arrays [Kung, |1982] in matrix unit (MXU) to provide massive computation throughput with a single-
threaded, deterministic computation model. Thus, TPUs are designed to be deterministic, which differs from
the time-varying optimizations of CPUs and GPUs such as caches, out-of-order-execution, multithreading,
MIMD/SIMD and prefetching, etc.

We benchmark four key experimental variants which allows us to independently measure the impact of both
algorithm (ALGO) and implementation (IMPL) factors on downstream model performance:

Both Algorithm + Implementation noise - (ALGO + IMPL). Here, we do not control for either algorith-
mic or implementation factors that introduce randomness. This is the default setting of the model training
procedure.

Only Algorithm noise - (ALGO). We measure the impact of stochastic algorithmic factors by fully controlling
all noise introduced by tooling. The implementation noise controlling feature is supported by many prevalent
deep learning frameworks such as Tensorflow [Abadi et al., 2016]] and Pytorch [Paszke et al., 2019]. Note
that controlling implementation noise is far from free (Section @).

Only Implementation noise - (IMPL). We measure the impact of implementation noise by using a fixed
random seed for all stochastic algorithm factors. This results in deterministic weights initialization, data
augmentation and batch shuffling.

Control - This Control variant both sets a fixed random seed to control algorithmic noise and uses software
patches to eliminate implementation noise.

3 Results: Characterizing the Impact of Randomness

In this section we address the following questions: 1) How do implementation and algorithmic noise con-
tribute to system level noise? 2) How do both impact model stability? 3) How does varying choices of
hardware, low-level vendor libraries and architecture impact the level of noise in the system, and (4) Why
are certain model design choices far more sensitive to noise?

RANDOMNESS IN NEURAL NETWORK TRAINING.

1.0

©
o

I Accuracy(ALGO+IMPL) I Accuracy(ALGO+IMPL)
B Per-class Accuracy(ALGO+IMPL) 7.0- B Per-class Accuracy(ALGO+IMPL)
Per-class Accuracy(ALGO) : Per-class Accuracy(ALGO)

0.8- B Per-class Accuracy(IMPL) 6.0 B Per-class Accuracy(IMPL)
5 §
206 £5.0- ©
> Y. 1 o
a a °
= < 4.0-
S ©
©0.4- 2 L
< €3.0
= -
0 [

2.0-
0.2-
1.0-
o
0.0 0.0
(a) CIFAR-10 (b) CIFAR-100

Figure 4: Per-class accuracy variance vs. overall accuracy variance of ResNetl8 trained on V100 under
different factors of noise. Per-class accuracy variance is up to Left: 4X larger for Cifar-10 and Right: 23X
larger CIFAR-100 than overall accuracy.

3.1 Impact of Randomness on Top-Line Metrics

Top-1 Accuracy Across all experiments, we observe small variance in Top-1 accuracy. In Table 2| the max-
imum standard deviation in accuracy is 0.91% for the small cnn trained on CIFAR-10, and the minimum
standard deviation is 0.05% for ResNet-10 trained on ImageNet. Top-line metrics do not differ substan-
tially between algorithmic and implementation factors, we observe there is less than 1% standard deviation
between ALGO, IMPL and ALGO+IMPL aross all datasets and networks. We observe a maximum absolute
difference of 0.84% on the small cnn network trained on CIFAR-10.

Model Stability Metrics A closer inspect of 12, churn and stdev measures in Figure [1| show that both
ALGO and IMPL factors create significant levels of model instability across each of these measures. While
for most networks and measures, ALGO contributes higher levels of instability relative to IMPL factors, this is
not always a pronounced gap. For example, on ResNet-50 ImageNet, the impact of predictive churn of IMPL
factors is 14.68% versus ALGO factors is 14.89%. Our results show that IMPL can be a significant source of
non-determinism accumulated along the trajectory of model training procedure. Due to the non-linearities
in deep neural network training, simply removing a single source of noise cannot effectively reduce the level
of uncertainty of trained models.

Combined sources of noise (ALGO + IMPL) are a non-additive combination of individual factors. For example,
the impact of (ALGO + IMPL) factors on churn for ResNet-18 and ResNet-50 is on par or only slightly higher
than the impact of only IMPL or ALGO noise. The lack of an additive relationship between different sources
of noise suggests there is an upper bound in what level of overall system noise is possible.

The role of model design choices In Figure 1| we observe pronounced amplification of noise in the small
CNN relative to ResNet-18 for CIFAR-10 with far higher stdev, churn and 12 for all sources of noise. The
small CNN is the only architecture we benchmark without batch normalization (BN) [loffe and Szegedyl
2013]], a standard technique for stabilizing training [ab Tessera et al.,2021]]. To understand the role of model
design choices at curbing or amplifying overall noise in the system, we evaluate the impact to training with
and without BN. We compare the small CNN trained without BN to the same architecture trained with BN.
In Figure [2] (a), we show that BN has a pronounced impact with a decline in the stddev of the accuracy
from 0.86% without BN to a much small 0.30% with BN.

We note that architecture appears to play a larger role than dataset in the amplification or curbing of system
noise. For example, in Figure [I] the difference in standard deviation between small CNN (0.91%) and
ResNet-18 (0.17%) is far larger than the difference between ResNet-18 trained on CIFAR-10 (0.17%) vs the
same architecture trained on CIFAR-100 (0.25%).

RANDOMNESS IN NEURAL NETWORK TRAINING.

0.6 30% 0.40
Accelerator Accelerator Accelerator
== P100 == P100 == P100
0.5 o V100 28%" e V100 = V100
= RTX5000 = RTX5000 0.35" wm RTX5000
0.4 mmm RTX5000 TC 25% - mmm RTX5000 TC BN RTX5000 TC
= TPUV2 = TPUV2 = TPUV2
0.3- 22%- 0.30-
0.2- 20%-
0.25-
0.1- 18%- i
0.0 15% 0.20
N O N N @) N (@) N
& @& & @S RIS RS
X e X e X e
& & &
N N N
® ® ?
(a) STDDEV (Accuracy) (b) Churn (c) L2 Norm

Figure 5: Comparison of standard deviation of accuracy, prediction churn and 12 norm of ResNet18 on
CIFAR-100 dataset between different training accelerators.

Mode Mode
—— TF Deterministic Mode . —— TF Deterministic Mode
—— TF Default Mode 107 - —— TF Default Mode

i
o
™

=
o
°©

GPU Time Spend on Each
Computation Kernel Type (Sec)

500 500050000 1" GpU Kernel Type '° GPU Kernel Type
Batch Size VGG-19 InceptionV3
Figure 6: Data input order Figure 7: Top-20 GPU kernels cumulative runtime comparison (Top-
introduces additional non- 1 is on the left side). X-axis indicates the different type of kernels
determinism on TPU. scheduled on GPU. Y-axis is in log scale indicates the cumulative time

spend on each type of GPU kernel.
3.2 Impact of Randomness on Sub-Group Performance

How does noise impact sub-group performance? We decompose top-line metrics along class label di-
mension on CIFAR-10/100 dataset [Krizhevsky, 2012]] and CelebFaces Attributes (CelebA) dataset
[2015]]. In Figure [we train models on CIFAR-10/100 under ALGO+IMPL, ALGO, and IMPL respec-
tively. We observe high variance of per-class accuracy of ALGO and IMPL group similar to models trained
under ALGO+IMPL. It is clear that removing partial source of noise does not effectively improve model sta-
bility. The maximum per-class standard deviation of accuracy is 4X and 23X on CIFAR-10 and CIFAR-100
dataset compared to standard deviation of top-1 accuracy.

CelebA is a dataset of celebrity images where each image is associated with 40 binary labels identifying
attributes such as hair color, gender, and age. Our goal is to understand the implications of noise on model
bias and fairness considerations. Thus, we focus attention on two protected unitary attributes Male, Female
and Young and 01d. In Figure 3] we can see that (ALGO+IMPL) noise is resulting unstable metrics on un-
derrepresented Male and Old subgroups leading to disproportionate high-variance up to 3.3X on standard
deviation on accuracy of Old group and 4.6X standard deviation on FNR of Male group. Thus, We conclude
that even if the top-line metric variation is small enough, noise still imposes disproportionate high variance
on dis-aggregated metrics.

Why are certain parts of the data distribution more sensitive to noise? We observe a correlation between
underrepresented sub-groups and the sub-groups with the most pronounced impact in variance. In Figure 3]

RANDOMNESS IN NEURAL NETWORK TRAINING.

300% 800%

® VGG16 e DenseNet201 CNN Kernel Size
275% - VGG19 Inceptionv3

® ResNet50 ® Xception
ResNet152 MobileNet
o DenseNetl121 o EfficientNetBO

700% - LBkl

BES
155
. 77

istic

250% -

ime

o
=3
S
R

225%-
500% -
200% - P

175%- °

Execution GPU Time

Execution GPU T
w s
s 8
X X

150%-

Normalized Determin
Normalized Deterministic

125%- H .

ZOO%I
- ‘ - i
100% Ta

P100 V100

N ¢

100% P100 V100

(a) Across Networks (b) Across Kernels

Figure 8: Comparison of GPU overhead of deterministic setting relative to non-deterministic training setting
on Left: Ten widely used neural networks, Right: A six-layers medium CNN (Appendix [C) plugged with
different size convolution kernels.

the classes disproportionately impacted Male and Old as they are heavily underrepresented in the training
dataset with 0.8% and 2.5% positive labels as a fraction of the entire dataset (see Table. [3]). This suggests
stochasticity disproportionately impact features in the long-tail of the dataset.

3.3 How does noise level vary across hardware types?

We trained ResNet-18 on CIFAR-10 and CIFAR-100 dataset using different accelerators including GPU
using CUDA Cores (P100, V100, RTX5000), GPU using Tensor Cores (RTX5000 TC), and TPUv2-8 chip
[Norrie et al., [2021]. For each hardware except TPU, we measure model divergence under each variant of
source of noise (i.e. ALGO+IMPL, ALGO, and IMPL).

Number of CUDA Cores In Figure [5| we compare all hardware types we evaluate on CIFAR-100. In
the appendix, we include additional breakdowns for each dataset/model/hardware evaluated (Figure [9] and
Figure[I0). For all GPUs we evaluate, V100 results in larger divergence under implementation noise in terms
of both churn and 12. We attribute this to the relatively larger number of CUDA cores in V100 GPUs than
either P100 and RTX5000, which suggests increased parallelism is a key driver of implementation noise.

Accelerator comparison Surprisingly, we find that IMPL impact on churn and 12 is still high for RTX5000
Tensor Cores which employ systolic arrays similar to TPUs to accelerate computation. The high level of
IMPL despite the systolic design appears to be due to the reliance of Tensor Cores on non-deterministic
CUDA cores on GPU for computations that not supported. Thus, model training leveraging Tensor Cores
computation remains non-deterministic and is introducing a similar level of noise compared to CUDA Cores.

In Figure[3] it is visible that for ALGO+IMPL TPUs incurs a lower level of churn and 12 in weights compared
to GPUs. This difference is due to the inherently deterministic design of TPUs, such that any stochasticity is
only introduced algorithmic factors even under ALGO+IMPL setting. We oberve that while TPU lower churn
and 12 relative to GPUs, there is not a pronounced impact on stdev. This is consistently with our wider
observation across experiments, we note that removing individual sources of noise tends to slightly reduce
churn and 12, but does not have an observable relationship with stddev which appears far more sensitive
to the presence of any source of noise.

Non-determinism based upon differences in ordering Both GPUs and TPUs can introduce hardware noise
because of it. In Figure[6] we train ten small CNNs on CIFAR-10 dataset for each batch size, with all source
of noise fixed except data shuffling order. When the batch is 50000, the full dataset is packed into a signal
training batch, mathematically in this case all models should produce identical result. Interestingly, we still
observe divergence of predictions between end runs for all batch size we evaluate. TPUs are designed for
single-threaded, deterministic execution mode but are not ensured to be deterministic to ordering in data.
This is because the difference in input data order will result in different float-point accumulation order in
gradients accumulation stage thus introducing latent implementation noise.

RANDOMNESS IN NEURAL NETWORK TRAINING.

4 Results: The Cost of Ensuring Determinism

Algorithmic noise can be controlled by simply setting a fixed random seed. In contrast, controlling im-
plementation noise comes with non-negligible overhead. Most popular deep learning frameworks leverage
cuDNN for high-performance computation on GPU. Some convolution algorithm implementation in cuDNN
are designed to trade determinism for execution speed. Thus, the cost of controlling implementation noise
should be thoroughly analyzed.

Profiling Experiments We profile the overhead of deterministic settings relative to normal training (ALGO +
IMPL) by measuring GPU time spend on CUDA kernel computation using nvprof profiler [NVIDIAJ. This
metric is well suited for our experiments since it is focusing how much time GPU spends on computation
and excludes time intervals we do not care such as latency on data input pipeline. We select networks that are
widely used such as MobileNet [Howard et al.,2017]], EfficientNets [Tan and Le}, 2020]] , DenseNet-121/201
[Huang et al., 2017], VGG-16/19 [Simonyan and Zisserman), 2015]] and ResNet-50/152 [He et al., 2016].
We profile all models on ImageNet dataset with input shape 224*224 and batch size of 64.

How does the choice of model architecture impact overhead? Figure [8] (a) shows the relative determin-
istic overhead of a variety of popular CNN models. VGG-19 has the most significant overhead among the
models we profiled on all GPUs, with a 185% relative GPU time compared to non-deterministic counterpart
on V100 whereas MobileNet has only 101% relative GPU time compared to to non-deterministic counter-
part. P100 and T4 also present a large variation of deterministic overhead associate with different model
architectures with range 101% ~ 211% and 101% ~ 196% respectively.

The role of filter size To further understand the relative overhead of variation in size of convolutional filters,
we evaluate across different kernel sizes using a six layer medium CNN (Appendix [C). Assembled with
convolution kernel size ranging from 1 1 to 7 x 7. As show in Figure [§] (b), the GPU overhead time is
remarkably sensitive to the size of kernel, with 284% ~ 746% on P100, 129% ~ 241% on V100, and
117% ~ 196% on T4 respectively. For all kernel size we evaluate on each GPU, larger kernel size is always
comes with larger overhead.

How does the choice of hardware impact overhead? We observe that GPU architecture overhead varies
considerably and is highly dependent on model design choices. For example, as shown in Figure [§] (b), we
observe overhead for a 7*7 kernel relative to default mode is up to 746%, 241%, and 196% on P100, V100,
and 74 respectively. Consistently, across all models ranging from six-layer medium CNN to ResNet50,
GPUs with older Pascal architecture (P100) evidence higher overhead than GPUs with later Volta (V100)
and Turing (T4) architecture.

The large and highly variable overhead suggests deterministic training comes with non-negligible overhead
on which researchers should weigh the price and benefit based on their tolerance to uncertainty. However,
even the minimum observed overhead poses significant hurdles to efficient training. In Figure |7} we plot the
time spent using the Top-20 kernels selected across 100 steps of training. The more skewed time allocation
of deterministic mode shows the heavy dependency on a narrower set of kernels instead tuning the best one
heuristically. This cost can be attributed to the narrow range of kernels the compiler is forced to use when
deterministic training is selected.

5 Related Work

Reproducibility in machine learning As numerous works have pointed out [Goodman et al., 2016} |Gunder
sen and Kjensmo), [2018|, Barbal [2018|, [Drummond} [2009]], the word reproducibility can correspond to very
different standards, ranging from the ability to reproduce statistically similar values [Raff, |2019, [McDer
mott et al.,[2019} [Thavasimani and Missier, [2016], to successfully executing code [Collberg and Proebsting,
2016, to the ability to reproduce a relative relationship (a model remains state of art even when the ex-
perimental set-up is changed) [Bouthillier et al., |2019]]. In this work, we are concerned with replicability,
a subset of reproducibility where the standard is reproducing the exact results given the same experimen-
tal framework. Advances in tooling have aimed to simplify replication, ranging from shareable notebooks
[Kluyver et al., [2016]], dockerization [Merkel, [2014]], machine learning platforms where code and data is

10

RANDOMNESS IN NEURAL NETWORK TRAINING.

easily shareable [Isdahl and Gundersen, 2019] and software patches to ensure determinism for a subset of
operations. Less mature ideas include research around automatic generation of code from research papers
[Sethi et al.| 2017]]. In the computer architecture research community, researchers have proposed several
deterministic GPU architectures [Jooybar et al., [2013] [Chou et al., 2020] to boost the reproducibility and
debuggability of GPU workloads.

Impact of Algorithmic Factors A substantial amount of work has considered the impact of different sources
of randomness introduced by algorithm design choices. Several works have evaluated the impact of a random
seed, with [Nagarajan et al., [2018]] evaluating the role of random initialization in reinforcement learning,
and [Madhyastha and Jain, |[2019]] measuring how random seeds impact explanations for NLP tasks provided
by interpretability methods. [Summers and Dinneen, [2021] benchmark the separate impact of choices of
initialization, data shuffling and augmentation. Work mentioned thus far is focused on how design choices
that introduce randomness impact training. However, there is a wider body of scholarship that has focused
on sensitivity to non-stochastic factors including choice of activation function and depth of model [[Snapp
and Shamir, [2021}, Shamir et al., 2020]], hyper-parameter choices [Lucic et al.,|2018| [Henderson et al.| 2017,
Kadlec et al.,[2017]], the use of data parallelism [Shallue et al.,|2019]] and test set construction [S¢gaard et al.,
2021}, |Lazaridou et al., 2021l [Melis et al., [2018]].

Impact of Software Dependencies [Hong et al.l [2013] evaluate the role of different compilers for the
specialized task of weather simulation. Recent work by [Pham et al.,[2020]] and [Alahmari et al.l [2020] in
the machine learning domain evaluates the impact of randomness introduced by popular deep neural network
libraries (Pytorch, CNTK, Theano and Tensorflow). [Alahmari et al., 2020] evaluates a segmentation task
for mouse neo-cortex data and MNIST on LeNet [Lecun et al.,{1998]]. [Pham et al.,|2020] finds the biggest
variance across all deep learning libraries on LeNet5. These works and others only evaluate the role of
software dependencies on a single type of hardware. Our contribution is the first to our knowledge to vary
the hardware, and measure the cost of ensuring determinism across different types of hardware.

Trade-off with fairness objectives Recent work [Hooker, [2021], [Yona et al., 2021}, D’ Amour et al., 2020,
Hooker et al., 2019] has identified that models with similar top-line metrics can evidence unacceptable
performance on subsets of the distribution. Design choices such as compression [Hooker et al., 2020] and
privacy [[Cummings et al.l [2019] can impact disparate impact on sensitive attributes. However, ours is the
first to our knowledge that evaluates the impact of tooling and sources of randomness on disparate harm.

6 Discussion and Future Work

There has been increasing urgency to ensure non-determinism in deep neural network training. However, in
the rush to mitigating or eliminating noise in deep learning system, a natural question that have not been
discussed thoroughly would be: What is the impact of noise? Does the impact merit the cost of controlling
it?.

Limitations In this work, our focus is evaluating the impact of tooling in a non-distributed setting. However,
increasingly training deep neural networks involves data and model parallelism [Shazeer et al., 2018} |Langer
et al., [2020], partition over optimizer state [Rajbhandari et alJ, 2020], and asynchronous gradients update
[Li et al.,[2014]. An important area of future work involves understanding how distributed training impacts
model stability.

7 Conclusion

In this work, we seek to characterize the impact and cost of controlling noise at all levels of the technical
stack. We empirically demonstrate that both algorithmic and implementation noise are significant sources
of noise. Thus, simply removing noise from one part of the technical stack is not a robust way to improve
training stability. Secondly, we show that even with minimal changes to top-line metrics, there is a dispro-
portionately impact on sub-group performance which can incur fairness trade-offs when protected attributes
are underrepresented. Finally, we evaluate the cost of ensuring determinism and find it is highly variable
and dependent on hardware type and model design choices.

11

RANDOMNESS IN NEURAL NETWORK TRAINING.

References

K. ab Tessera, S. Hooker, and B. Rosman. Keep the gradients flowing: Using gradient flow to study sparse
network optimization, 2021.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale machine learning. In
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI, 2016.

S. S. Alahmari, D. B. Goldgof, P. R. Mouton, and L. O. Hall. Challenges for the repeatability of deep
learning models. IEEE Access, 8:211860-211868, 2020. doi: 10.1109/ACCESS.2020.3039833.

M. Badgeley, J. Zech, L. Oakden-Rayner, B. Glicksberg, M. Liu, W. Gale, M. McConnell, B. Percha, and
T. Snyder. Deep learning predicts hip fracture using confounding patient and healthcare variables. npj
Digital Medicine, 2:31, 04 2019. doi: 10.1038/s41746-019-0105-1.

L. A. Barba. Terminologies for reproducible research, 2018.

X. Bouthillier, C. Laurent, and P. Vincent. Unreproducible research is reproducible. In K. Chaudhuri
and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 725-734. PMLR, 09-15 Jun 2019. URL
http://proceedings.mlr.press/v97/bouthillieri9a.htmll

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy pro-
grams, 2018. URL http://github.com/google/jax.

Z. Chen, Y. Wang, D. Lin, D. Z. Cheng, L. Hong, E. H. Chi, and C. Cui. Beyond point estimate: Inferring
ensemble prediction variation from neuron activation strength in recommender systems, 2020.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cuDNN:
Efficient primitives for deep learning. CoRR, abs/1410.0759, 2014.

Y. Chou, C. Ng, S. Cattell, J. Intan, M. D. Sinclair, J. Devietti, T. G. Rogers, and T. M. Aamodt. Deterministic
atomic buffering. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO,
2020.

C. Collberg and T. A. Proebsting. Repeatability in computer systems research. Commun. ACM, 59(3):62-69,
Feb. 2016. ISSN 0001-0782. doi: 10.1145/2812803. URL https://doi.org/10.1145/2812803.

N. R. Council. Toward Precision Medicine: Building a Knowledge Network for Biomedical Re-
search and a New Taxonomy of Disease. The National Academies Press, Washington, DC, 2011.
ISBN 978-0-309-22222-8. doi: 10.17226/13284. URL https://www.nap.edu/catalog/13284/
toward-precision-medicine-building-a-knowledge-network-for-biomedical-research.

R. Cummings, V. Gupta, D. Kimpara, and J. Morgenstern. On the compatibility of privacy and fairness.
UMAP’19 Adjunct, page 309-315, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450367110. doi: 10.1145/3314183.3323847. URL https://doi.org/10.1145/3314183,
3323847.

A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen, J. Deaton, J. Eisen-
stein, M. D. Hoffman, F. Hormozdiari, N. Houlsby, S. Hou, G. Jerfel, A. Karthikesalingam, M. Lucic,
Y. Ma, C. McLean, D. Mincu, A. Mitani, A. Montanari, Z. Nado, V. Natarajan, C. Nielson, T. F. Osborne,
R. Raman, K. Ramasamy, R. Sayres, J. Schrouff, M. Seneviratne, S. Sequeira, H. Suresh, V. Veitch,
M. Vladymyrov, X. Wang, K. Webster, S. Yadlowsky, T. Yun, X. Zhai, and D. Sculley. Underspecifica-
tion presents challenges for credibility in modern machine learning, 2020.

C. Drummond. Replicability is not reproducibility: Nor is it good science. In Evaluation Methods for
Machine Learning Workshop at the 26th International Conference on Machine Learning, ICML, 2009.

D. Dwibedi, I. Misra, and M. Hebert. Cut, paste and learn: Surprisingly easy synthesis for instance detection,
2017.

12

http://proceedings.mlr.press/v97/bouthillier19a.html
http://github.com/google/jax
https://doi.org/10.1145/2812803
https://www.nap.edu/catalog/13284/toward-precision-medicine-building-a-knowledge-network-for-biomedical-research
https://www.nap.edu/catalog/13284/toward-precision-medicine-building-a-knowledge-network-for-biomedical-research
https://doi.org/10.1145/3314183.3323847
https://doi.org/10.1145/3314183.3323847

RANDOMNESS IN NEURAL NETWORK TRAINING.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Y. W.
Teh and M. Titterington, editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 249-256, Chia
Laguna Resort, Sardinia, Italy, 13—15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/
glorotl0a.html.

S. N. Goodman, D. Fanelli, and J. P. A. Ioannidis. What does research reproducibility mean? Science
Translational Medicine, 8(341):341ps12-341ps12, 2016. ISSN 1946-6234. doi: 10.1126/scitranslmed.
aaf5027. URL https://stm.sciencemag.org/content/8/341/341ps12.

R. Gruetzemacher, A. Gupta, and D. B. Paradice. 3d deep learning for detecting pulmonary nodules in ct
scans. Journal of the American Medical Informatics Association : JAMIA, 25 10:1301-1310, 2018.

O. E. Gundersen and S. Kjensmo. State of the art: Reproducibility in artificial intelligence. In AAAI, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, 2016.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement learning that
matters. CoRR, abs/1709.06560, 2017. URL http://arxiv.org/abs/1709.06560.

A. Hernandez-Garcia and P. Konig. Further advantages of data augmentation on convolutional neu-
ral networks. Lecture Notes in Computer Science, page 95-103, 2018. ISSN 1611-3349. doi:
10.1007/978-3-030-01418-6_10. URL http://dx.doi.org/10.1007/978-3-030-01418-6_10.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors, 2012.

S.-Y. Hong, M.-S. Koo, J. Jang, J.-E. E. Kim, H. Park, M.-S. Joh, J.-H. Kang, and T.-J. Oh. An evaluation
of the software system dependency of a global atmospheric model. Monthly Weather Review, 141(11):
4165-4172,2013. doi: 10.1175/MWR-D-12-00352.1. URLhttps://journals.ametsoc.org/view/
journals/mwre/141/11/mwr-d-12-00352.1.xmll

S. Hooker. Moving beyond “algorithmic bias is a data problem”. Patterns, 2(4):100241, 2021. ISSN
2666-3899. doi: https://doi.org/10.1016/j.patter.2021.100241. URL https://www.sciencedirect|
com/science/article/pii/S2666389921000611.

S. Hooker, A. Courville, G. Clark, Y. Dauphin, and A. Frome. What Do Compressed Deep Neural Networks
Forget? arXiv e-prints, art. arXiv:1911.05248, Nov. 2019.

S. Hooker, N. Moorosi, G. Clark, S. Bengio, and E. Denton. Characterising bias in compressed models,
2020.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261-2269, 2017.
doi: 10.1109/CVPR.2017.243.

S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/abs/1502.03167.

R. Isdahl and O. E. Gundersen. Out-of-the-box reproducibility: A survey of machine learning platforms. In
2019 15th International Conference on eScience (eScience), pages 86-95, 2019. doi: 10.1109/eScience.
2019.00017.

H. Jooybar, W. W. L. Fung, M. O’Connor, J. Devietti, and T. M. Aamodt. GPUDet: a deterministic GPU
architecture. In Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13,
2013.

N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,

13

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://stm.sciencemag.org/content/8/341/341ps12
http://arxiv.org/abs/1709.06560
http://dx.doi.org/10.1007/978-3-030-01418-6_10
https://journals.ametsoc.org/view/journals/mwre/141/11/mwr-d-12-00352.1.xml
https://journals.ametsoc.org/view/journals/mwre/141/11/mwr-d-12-00352.1.xml
https://www.sciencedirect.com/science/article/pii/S2666389921000611
https://www.sciencedirect.com/science/article/pii/S2666389921000611
http://arxiv.org/abs/1502.03167

RANDOMNESS IN NEURAL NETWORK TRAINING.

K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA, 2017.

R. Kadlec, O. Bajgar, and J. Kleindienst. Knowledge base completion: Baselines strike back. In Proceedings
of the 2nd Workshop on Representation Learning for NLP, pages 69—74, Vancouver, Canada, Aug. 2017.
Association for Computational Linguistics. doi: 10.18653/v1/W17-2609. URL https://www.aclweb,
org/anthology/W17-2609.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick,
J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and J. development team. Jupyter note-
books ? a publishing format for reproducible computational workflows. In F. Loizides and B. Scmidt,
editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 87-90. 10S
Press, 2016. URL https://eprints.soton.ac.uk/403913/.

A. Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.
J. Kukacka, V. Golkov, and D. Cremers. Regularization for deep learning: A taxonomy, 2017.

H. T. Kung. Why systolic architectures? Computer, 15(1):37-46, 1982. doi: 10.1109/MC.1982.1653825.
URL https://doi.org/10.1109/MC.1982.1653825.

M. Langer, Z. He, W. Rahayu, and Y. Xue. Distributed training of deep learning models: A taxonomic
perspective. [EEE Transactions on Parallel and Distributed Systems, 31(12):2802-2818, Dec 2020.
ISSN 2161-9883. doi: 10.1109/tpds.2020.3003307. URL http://dx.doi.org/10.1109/TPDS. 2020/
3003307.

A. Lazaridou, A. Kuncoro, E. Gribovskaya, D. Agrawal, A. Liska, T. Terzi, M. Gimenez, C. de Mas-
son d’Autume, S. Ruder, D. Yogatama, K. Cao, T. Kocisky, S. Young, and P. Blunsom. Pitfalls of static
language modelling, 2021.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su. Scaling distributed machine learning with the parameter server. In J. Flinn and H. Levy, editors,
11th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’ 14, Broomfield, CO,
USA, October 6-8, 2014, pages 583—-598. USENIX Association, 2014. URL https://www.usenix.org/
conference/osdild/technical-sessions/presentation/li_mu.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In ICCV, 2015.

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are gans created equal? a large-scale study,
2018.

P. Madhyastha and R. Jain. On model stability as a function of random seed. In Proceedings of the 23rd
Conference on Computational Natural Language Learning (CoNLL), pages 929-939, Hong Kong, China,
Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/K19-1087. URL https://www|
aclweb.org/anthology/K19-1087.

M. B. A. McDermott, S. Wang, N. Marinsek, R. Ranganath, M. Ghassemi, and L. Foschini. Reproducibility
in machine learning for health. ArXiv, abs/1907.01463, 2019.

G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language models. ArXiv,
abs/1707.05589, 2018.

S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing Istm language models, 2017.

D. Merkel. Docker: Lightweight linux containers for consistent development and deployment. Linux J.,
2014(239), Mar. 2014. ISSN 1075-3583.

M. Milani Fard, Q. Cormier, K. Canini, and M. Gupta. Launch and iterate: Reducing prediction churn. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information

14

https://www.aclweb.org/anthology/W17-2609
https://www.aclweb.org/anthology/W17-2609
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1109/MC.1982.1653825
http://dx.doi.org/10.1109/TPDS.2020.3003307
http://dx.doi.org/10.1109/TPDS.2020.3003307
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.aclweb.org/anthology/K19-1087
https://www.aclweb.org/anthology/K19-1087

RANDOMNESS IN NEURAL NETWORK TRAINING.

Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips,
cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper . pdf.

P. Nagarajan, G. Warnell, and P. Stone. The impact of nondeterminism on reproducibility in deep rein-
forcement learning. In Reproducibility in ML Workshop at the 35th International Conference on Machine
Learning, ICML, 2018.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on International Conference on Machine Learning, ICML’10, page
807-814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

NHTSA. Technical report, U.S. Department of Transportation, National Highway Traffic, Tesla Crash
Preliminary Evaluation Report Safety Administration. PE 16-007, Jan 2017.

T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young, N. P. Jouppi, and D. A. Patterson.
The design process for google’s training chips: Tpuv2 and tpuv3. [EEE Micro, 41(2):56-63, 2021. doi:
10.1109/MM.2021.3058217. URL https://doi.org/10.1109/MM.2021.3058217.

NVIDIA. Profiler user’s guide. URL https://docs.nvidia.com/cuda/profiler-users-guide/
index.html.

NVIDIA. NVIDIA Tesla P100, 2016. URL https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf.

NVIDIA. NVIDIA TESLA V100 GPU ARCHITECTURE, 2017. URL https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

NVIDIA. NVIDIA TURING GPU ARCHITECTURE, 2018. URL https://images.nvidia.com/
aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf.

L. Oakden-Rayner, J. Dunnmon, G. Carneiro, and C. Ré. Hidden Stratification Causes Clinically Meaningful
Failures in Machine Learning for Medical Imaging. arXiv e-prints, art. arXiv:1909.12475, Sep 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems, NeurIPS, 2019.

H. V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, Y. Yu, and N. Nagappan. Problems
and opportunities in training deep learning software systems: An analysis of variance. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering, ASE °20, page
771-783, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450367684.
doi: 10.1145/3324884.3416545. URL https://doi.org/10.1145/3324884.3416545.

E. Raff. A step toward quantifying independently reproducible machine learning research, 2019.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: memory optimizations toward training trillion
parameter models. In C. Cuicchi, I. Qualters, and W. T. Kramer, editors, Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event
/ Atlanta, Georgia, USA, November 9-19, 2020, page 20. IEEE/ACM, 2020. doi: 10.1109/SC41405.2020.
00024. URL https://doi.org/10.1109/5C41405.2020.00024.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S.
Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis.,
2015.

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Inverted Residuals and Linear Bottlenecks:
Mobile Networks for Classification, detection and segmentation. CoRR, abs/1801.04381, 2018.

A. Sethi, A. Sankaran, N. Panwar, S. Khare, and S. Mani. Dlpaper2code: Auto-generation of code from
deep learning research papers, 2017.

C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring the effects of
data parallelism on neural network training, 2019.

15

https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://doi.org/10.1109/MM.2021.3058217
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1109/SC41405.2020.00024

RANDOMNESS IN NEURAL NETWORK TRAINING.

G. I. Shamir and L. Coviello. Anti-distillation: Improving reproducibility of deep networks. CoRR,
abs/2010.09923, 2020. URL https://arxiv.org/abs/2010.09923.

G. I. Shamir, D. Lin, and L. Coviello. Smooth activations and reproducibility in deep networks, 2020.

N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P. Hawkins, H. Lee,
M. Hong, C. Young, R. Sepassi, and B. A. Hechtman. Mesh-tensorflow: Deep learning for su-
percomputers. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 10435-10444, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
3a37abdeefeldablb30f7c5c7eb81b93-Abstract.html.

I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao, N. Papernot, M. A. Erdogdu, and R. Anderson. Manipu-
lating sgd with data ordering attacks, 2021.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
International Conference on Learning Representations, 2015.

S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le. Don’t decay the learning rate, increase the batch size,
2018.

R. R. Snapp and G. I. Shamir. Synthesizing irreproducibility in deep networks. CoRR, abs/2102.10696,
2021. URL https://arxiv.org/abs/2102.10696.

A. Sggaard, S. Ebert, J. Bastings, and K. Filippova. We need to talk about random splits. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pages 1823—1832, Online, Apr. 2021. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/2021.eacl-main. 156.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929-1958, Jan. 2014. ISSN
1532-4435.

C. Summers and M. J. Dinneen. Nondeterminism and instability in neural network optimization, 2021.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision, 2015.

M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks, 2020.

P. Thavasimani and P. Missier. Facilitating reproducible research by investigating computational metadata.
In 2016 IEEE International Conference on Big Data (Big Data), pages 3045-3051, 2016. doi: 10.1109/
BigData.2016.7840958.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural networks using dropconnect.
In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learning Research, pages 1058-1066, Atlanta, Georgia,
USA, 17-19 Jun 2013. PMLR. URL http://proceedings.mlr.press/v28/wan13.html.

H. Xie, D. Yang, N. Sun, Z. Chen, and Y. Zhang. Automated pulmonary nodule detection in ct images
using deep convolutional neural networks. Pattern Recognition, 85:109 — 119, 2019. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2018.07.031. URL http://www.sciencedirect.com/science/
article/pii/S0031320318302711.

G. Yona, A. Ghorbani, and J. Zou. Who’s responsible? jointly quantifying the contribution of the learning
algorithm and training data, 2021.

Z.Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation, 2017.

16

https://arxiv.org/abs/2010.09923
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://arxiv.org/abs/2102.10696
https://www.aclweb.org/anthology/2021.eacl-main.156
https://www.aclweb.org/anthology/2021.eacl-main.156
http://proceedings.mlr.press/v28/wan13.html
http://www.sciencedirect.com/science/article/pii/S0031320318302711
http://www.sciencedirect.com/science/article/pii/S0031320318302711

RANDOMNESS IN NEURAL NETWORK TRAINING.

8 Appendix

A Sources of Randomness During Deep Neural Network Training

Algorithmic Factors (ALGO) includes model design choices which are stochastic by design. Often, there are
widely used implementation choices as introducing stochasticity to deep neural network training has been
found to improve top-line metrics:

* Random Initialization - the weights of a deep neural network are randomly initialized, typically
with the goal is maintaining variance of activations within a narrow range at the beginning of training
to avoid gradient saturation ((Glorot and Bengio, 2010, |He et al., 2016))).

* Data augmentation - the quality of a trained model depends upon the training data. Often, when
faced with limited data an effective strategy is to generate new samples by applying stochastic trans-
formations to the input data ((Kukacka et al., 2017, Hernandez-Garcia and Konig| |2018))). Examples
of stochastic data augmentation include random crops, noise injection, and random distortions to
color channels ((Dwibedi et al., 2017, Zhong et al., 2017)).

* Data shuffling and ordering - for mini-batch stochastic gradient optimization, datasets are typ-
ically shuffled randomly during training and batched into a subset of observations.. Thus, each
training process will observe a different ordering of inputs. Batching examples introduces noise
through stochastic mini-batch gradient descent ((Smith et al., [2018])). Even when batching is not
used (all data is processed in a single batch), a difference in ordering can introduce stochasticity that
may introduce security vulnerabilities ((Shumailov et al.l 2021)).

* Stochastic Layers - techniques such as dropout which entails randomly dropping a subset of
weights each iteration ((Srivastava et al., 2014, Hinton et al., 2012, Wan et al., [2013))), noisy activa-
tion functions ((Nair and Hinton, 2010)) or variable length backpropagration through time ((Merity
et al.,2017)).

B Training Methodology

We employ random crop and flip for data augmentation on all experiments except experiments on CelebA
dataset.

CIFAR-10 and CIFAR-100 ((Krizhevsky, [2012)) We train a small CNN on CIFAR-10 which consists of
three convolutional layers, followed by a dense layer and a output layer. Additionally, we evaluate both
CIFAR-10 and CIFAR-100 on ResNet-18. For all networks, we train for 200 epochs with a batch size of
128 and 4e — 4 learning rate which decays by a factor of ten every 50 epochs.

CelebA ((Liu et al., [2015)) CelebA dataset consist of ~200K celebrity’s facial images, each image asso-
ciated with labels with forty binary attributes such as identifying hair color, gender, age. Our goal is to
understand the implications of noise on model bias and fairness considerations. Thus, we focus attention
on two protected unitary attributes Male, Female and Young and 01d. Our goal is to understand the im-
plications of noise on model bias and fairness considerations. we measure standard deviation of sub-group
accuracy, false positive rate (FPR) and false negative rate (FNR). We train ResNet18 on CelebA dataset for
20 epochs with batch size of 128 and learning rate of 1e — 3 decays by a factor of ten every 5 epochs.

ImageNet ((Russakovsky et al.,[2015)) On ImageNet dataset, we train ResNet-50 for 90 epochs with batch
size of 256 with learning rate 0.1 using SGD optimizer with momentum of 0.9, the learning rate is warming
up in the first epoch and using cosine decay in the following epochs. We conduct out experiment on Imagenet
dataset based on ResNet50 implementation from Tensorflow Model GardenE]

"https://github.com/tensorflow/models

17

RANDOMNESS IN NEURAL NETWORK TRAINING.

C CNN Architecture

Architecture of three-layer small CNN and six-layer medium CNN. Downsampling is performed in pooling
layers, all convolutional layers are using stride=1. For six-layer small CNN, kernel size X can be 1, 3, 5,
and 7.

Three-layer small CNN Six-layer medium CNN

Layer Output Shape \ Layer Output Shape
Input 32%32%3 | Input 224 % 224 % 3
Conv 3 %3 Con%ﬁ * X
Relu 16 % 16 * 16 112 %112 % 16
MaxPool Relu
| MazxPool |
[Conv 3 * 3 Con%ﬁ * X
Relu 8 % 8 * 32 56 * 56 * 32
MazxPool Relu
- B | MaxPool |
[Conv 3 * 3 Con%ﬁ # X
Relu 4 x4 %32 28 % 28 * 64
MaxPool Relu
- - | MaxPool |
[Conv X * X]
BN
Relu 14 % 14 % 128
| MaxPool |
[Conv X * X]
BN
Relu 7% T * 256
| MaxPool |
[Conv X * X
BN
Relu 3+3%512
| MaxPool |
GlobalAveragePooling
Dense 32
Dense 10 Dense 1000

18

RANDOMNESS IN NEURAL NETWORK TRAINING.

Dataset | Training/Test Split | Number Classes

Cifar-10 50000/10000 10
Cifar-100 50000/10000 100
ImageNet 1281167/50000 1000

CelebA 162770/19962 40 (Multi-label)

Table 4: Overview of each dataset benchmarked.

D Comparison of Impact of Different Source of Noise

< 1.00 30% 1.5
3
£0.75-
g g 20% Eio
;0 50- é S
i 10%- 3
80.25- I I ° I ~os-
e
‘"0.00\/ N O O%V N O N \/I O
& L QR QU
S S S
& R RS
Y % %
v v v
(a) SmallCNN CIFAR-10
51.00 30% 1.5
©
£0.75-
g g 20%: Eio
2050 E 3
w “ 10% N
80.25' 0.5
Foo M 8 0 L, 001 1 =1
N ov O N o O N o O
NI NI NI
X e X X el
& & &
Y \Y \%
v v v
(b) ResNet18 CIFAR-10
< 1.00 30% 1.5
®
£0.75
§ £ 20%: §10
:;,o.sor E 3
@ ©10%- N
9025 0.5
& 1
"”0.00\/ N O 0%\/ x O N o O
NI NI NI
X e X e X el
& & &
\Y % %
¥ ¥ ¥

(c) ResNet18 CIFAR-100

Figure 9: Comparison of impact of different source of noise across on four tasks trained on P100

19

RANDOMNESS IN NEURAL NETWORK TRAINING.

-
o
o
w
3
S
-
[§]

<)
N
%

STDDEV(Accuracy)
o o
N w
(6] o

o

g 20%: E10
.50- 2 =
© 10%- N
.25 0.5-
00 | 0% I

Q¥ L QL & QL
X\V“\\“v\/(’ AN NG x\é‘\ﬁ“v\«(’

%,
%

%
%

%,
%

(a) SmallCNN CIFAR-10

=1.00 30% 15
®
2o.75-
3 c 20%: E1o-
1) f St
<0.50 3 2
s ©10%: 3y
Q0.
oo M W i 0% 111 1«1
N O N o O N o O
NI SIS SRR
o e o e o v
vVo ?\9 v&
(b) ResNet18 CIFAR-10
~1.00 30% 15
>
®
fo.75
g c 20% €10
<050 3 2
o ©10%- q
8025 0.5
el . R
0‘00\/ N O OA’\/ N O N oo O
& & Q& Q&
S S S
& & &
w v v

(c) ResNet18 CIFAR-100

Figure 10: Comparison of impact of different source of noise across on four tasks trained on RTX5000

20

RANDOMNESS IN NEURAL NETWORK TRAINING.

Subgroup ALGO+IMPL ALGO IMPL
STDDEV (Accuracy)
All 0.045 (1X) 0.051 (1X) 0.090 (1X)
MALE 0.049 (1.07X) 0.048 (0.94X) 0.058 (0.64X)
FEMALE 0.062 (1.36X) 0.083 (1.62X) 0.126 (1.39X)
YOUNG 0.050 (1.10X) 0.047 (0.93X) 0.091 (1.00X)
OLD 0.151 (3.31X) 0.094 (1.83X) 0.214 (2.36X)
STDDEV(FPR)
All 0.077 1X) 0.051 (1X) 0.070 (1X)
MALE 0.039 (0.50X) 0.052 (1.01X) 0.043 (0.61X)
FEMALE 0.133 (1.71X) 0.094 (1.81X) 0.103 (1.48X)
YOUNG 0.077 (1.00X) 0.051 (0.99X) 0.065 (0.93X)
OLD 0.122 (1.57X) 0.093 (1.81X) 0.155 (2.21X)
STDDEV(FNR)
All 0.537 (1X) 0.389 (1X) 0.445 (1X)
MALE 2475 (4.60X) 1.816 (4.66X) 1.610 (3.61X)
FEMALE 0.527 (0.98X) 0.349 (0.89X) 0.399 (0.89X)
YOUNG 0.585(1.08X) 0.430 (1.10X) 0.566 (1.27X)
OLD 0.815 (1.51X) 0.335(0.86X) 0.939 (2.10X)

Table 5: Standard deviation of mean accuracy, false positive rate (FPR), and false negative rate (FNR) across
10 models trained under baseline setting on the CelebA dataset (trained on V100 (using cuda cores)). Metrics
are dis-aggregated across two binary dimensions Male/Female and Young/Old. In parentheses, we report
relative scale of standard deviation metrics relative to overall dataset.

21

	1 Introduction
	2 Methodology
	2.1 Measures of Model Stability
	2.2 Experimental Setup

	3 Results: Characterizing the Impact of Randomness
	3.1 Impact of Randomness on Top-Line Metrics
	3.2 Impact of Randomness on Sub-Group Performance
	3.3 How does noise level vary across hardware types?

	4 Results: The Cost of Ensuring Determinism
	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	8 Appendix
	A Sources of Randomness During Deep Neural Network Training
	B Training Methodology
	C CNN Architecture
	D Comparison of Impact of Different Source of Noise

