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Introduction
Readiness is a broad term that simply means
the state of being fully prepared for an action or
event [1]. We all want to be ready: ready for
whatever challenges we face; ready for big
events; ready for life. Readiness long term
means maintaining good readiness short term,
and that's why daily readiness is so important.
Strictly speaking, being fully ‘ready’ means being
physically, physiologically and psychologically
prepared; perhaps best termed ‘whole person
readiness’. Unsurprisingly, since this represents
so many dimensions of human function, there is
no single, stand-alone definitive evidence-based
marker for this. Instead, in health and wellness,
we typically focus either on psychological
readiness (willingness), or on Physiological
readiness. It is the latter that is the subject of this
paper. Physiological readiness reflects the range
of metabolic, hormonal, immunological,
inflammatory, haematological, autonomic and
cardiovascular responses to loads that
significantly influence an individual’s
performance [2, 3]. It is impossible, and
unnecessary, to measure them all. The
complexity of readiness and the science behind
it supports the integration of a small number of
relevant biomarkers that together serve as a
readiness tool. The goal is to identify key
elements that reflect the multitude of influencing
factors, and can be easily measured using a

wrist-worn device in an individual way on a
continuous and reliable basis. The challenge to
achieve this is significant, but the ever improving
quality of sensors and machine learning has
brought us new opportunities to address this
goal.

Readiness to exercise
In those who exercise, the greatest physiological
load imposed upon them typically relates to
training/exercise sessions. Exercise imposes
stresses that, when optimal, result in
improvements in fitness, wellbeing and
ultimately in good performances, and the use of
a readiness tool aims to optimise these benefits.
The aim is clear: promote fitness and avoid
fatigue. However getting the balance right is
challenging. When the loads are too low there is
a lack of progress and goals are not achieved.
When they are too high the consequences can
include underperformance, fatigue, injury, illness
and negative psychological consequences.

Optimising training can be likened to balancing
on a see-saw: too much tips the individual into
the pathway of overtraining, while too little leads
to limited training responses. The balance can
be very fine: pushing the body to achieve the
greatest improvements in fitness can be highly
successful but runs the risk of overload, [2,
4-12]. This is manifested as a range of
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symptoms, from fatigue, low mood, sleep
disruption, disrupted appetite, and weight
changes, to injury and illness.

Physiologically, the numerous changes that
occur in response to exercise loads affect
autonomic control and cardiovascular responses
and hence these are key areas of focus in the
evaluation and monitoring of readiness.
Whereas in the past, exercise scientists have
focused on markers in the saliva and blood (e.g.
cortisol levels) in the hope that this would
indicate stress responses and influence training
recommendations, the results from these
approaches have been disappointing. Wearable
sensors now allow us to measure stress,
autonomic and cardiovascular physiology and
other potentially important predictors of
readiness (e.g. sleep and circadian influences)
that resonate with our understanding of an
individual’s readiness state. Wearable sensors
also allow us to personalise tools. The
susceptibility to ‘overtraining’ differs across
individuals, so measurement must be on an
individual basis [2-12]. The relative weight of
each potential ‘overtraining’ factor may also vary
across individuals meaning personalised
modelling is the preferred goal of any readiness
tool [2-12].

Readiness tools aim to optimise exercise
training and performance load management to
achieve the following goals:

● Daily Readiness: On any given day,
defining an individual's readiness for
different forms of training. Supporting the
best training session(s) to optimise
progression towards one or more goals

● Fitness vs Fatigue: As part of this
optimisation, promoting fitness but
minimising fatigue

● Personalisation: For a given individual,
detecting additional factors,
superimposed upon training loads, that

are influencing that physiological
readiness. Examples include sleep,
stress, recovery strategies, nutrition, and
health conditions.

● The Big Picture: Identifying other
behaviours can be supported to promote
the effects of the training sessions

To address these aims, when considering the
ideal readiness tool and the choice of metrics
that define it, the principal questions are:

● What are the key metrics that reflect an
individual’s physiological readiness?

● How do they represent the various
physiological responses that occur in any
individual?

● What other factors should be
incorporated that play a significant role in
the overall ‘readiness picture’?

Our ability to address these areas through
information derived from sensors on wearable
devices is ever increasing. We can now
measure many of the markers that play key roles
in our daily readiness, and it is now more a
matter of carefully selecting the best of those for
the job. The strongest contenders are those that
indicate how an individual responds to the
demands and stresses of daily life: one marker
that reflects the response to exercise (training
impulse, ‘TRIMP’ described below), one that
represents generic health status at any given
time (heart rate variability, HRV), and one that
reflects our recovery and nighttime health (sleep
reservoir and circadian influence).

Monitoring Load
A first step towards a measure of readiness
involves measuring load, of which there are two
types: external load, and internal load. External
load means the absolute amount of work done,
for example weight lifted, total power generated,
distance/time/speed travelled. It is independent
of the internal characteristics of the person.
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Internal load relates to the responses of the
individual to imposed stresses - eg a bout of
exercise - and is highly variable across
individuals. Measures include heart rate (HR),

heart rate variability (HRV), rated perceived
exertion (RPE), HR/RPE ratio, HR recovery, and
training impulse (TRIMP).

Table 1: Markers of Internal Load

Marker Type Advantages Disadvantages

Rated perceived
exertion (RPE)

Subjective Accessible to all;
Correlates with steady
state HR;
Sessional RPE shown to
be valid and reliable in
reflecting internal load in
endurance work;
Likely to be of best use
when added to other
markers

Validity only moderate for
HR, VO2max, blood lactate;
Takes conscious effort from
participant;
Some users find it very
difficult to use

Heart rate Sensor Accessible measure of
internal load
Linear relationship with
VO2 in steady state
exercise

Day to day variation can be
high (up to 6.5%), which
dilutes it significantly as a
sensitive marker;
Influenced by environment,
hydration, medication, others

HR/RPE ratio Subjective
& Sensor

May be of use in detecting
fatigue

May not offer superiority over
HR alone and has same
disadvantages as RPE alone

TRIMP Sensor Can be individualised
(iTRIMP)

Models have arbitrary basis
although ‘real world’
experience is good;
limited to aerobic activities

Blood lactate Direct
blood
sampling,
procedure
dependent

Sensitive to changes in
exercise intensity &
duration;
Good versatile aerobic
fitness marker

Regular monitoring difficult,
affected by numerous factors
including diet, hydration,
environment, others

HR Recovery Sensor A marker of autonomic
function and relevant to
readiness, with potential in

Susceptibility to errors
through the same range of
factors that may influence
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monitoring the
accumulation of fatigue.

HR.

HRV Sensor A versatile marker that
reflects autonomic status
and is sensitive to
overtraining;
Can be personalised, and
best if used in longitudinal
monitoring;
Helpful reflection of overall
stress, fatigue, illness and
recovery

No ‘norms’ as wide variation
across population;
Range of different algorithms
to calculate create
inaccuracies and confusion;
Not solely an indicator of
response to exercise loads

Psychomotor
speed (eg
reaction times)

Device
based

Reflects cognitive slowing Not exercise specific, highly
variable across individuals,
multifactorial

Sleep Sensors
Logs

Recording changes in
sleep metrics allow early
detection before
performance decrements

Not a sole indicator of
readiness,
Affected by many variables

Not all markers of internal load are suitable for
monitoring readiness. Some limitations relating
to RPE), HR, HR recovery and HR/RPE are
described in Table One. Blood lactate changes
and psychomotor speed are both potentially
useful aspects in the assessment of readiness,
and in the future the use of sensors in their
assessment will add very useful information to
any tool.

TRIMP
The TRaining IMPulse model (TRIMP) is a
popular expression of aerobic training load that
is amenable to measurement by wearables,
quantified as exercise duration multiplied by
exercise intensity, estimated using HR reserve
(HRR) and a “weighting” factor (y) that adjusts
the intensity to make long-duration low-intensity
activities produce a similar training load score to

that induced by shorter, high-intensity training
activities [13-17 ].

TRIMP=Time (mins)×%HRR×weighting factor (y)

Where %HRR = (mean HR during session −
HRrest ) ÷ (HRmax − HRrest ), and y = a nonlinear
coefficient that models the relationship between
the rise in blood lactate during exercise and the
fractional elevation in HR during exercise above
resting HR. [14].

TRIMP-based models are now widely used in
load management and monitoring. Various
modifications of this model have been made
over time focusing on the balance between
fitness and fatigue, which allow for time spent in
specific heart rate zones, improving sensitivity to
more intensive exercise and interval training and
to promote applicability across different sports
[17-19]. Individualisation of the measure
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(iTRIMP) reduces issues relating to the arbitrary
nature of zones and generic weightings, and
may be more responsive as a measure [20].
Notably, the ‘dose response’ relationships
between exercise and fitness vs fatigue are not
linear, but rather they are complex and vary
across time with cumulative periods of training
and fatigue. However, mathematical modelling
allows differentiation between the influence of
fatigue and positive adaptations on performance,
and the effects of tapering and overtraining
[21-25]. Such modelling allows predictions of
fitness and fatigue over extended periods of time
and hence translation to a readiness tool [21,26,
27].

Measuring internal load beyond responses
during exercise

While TRIMP and fitness-fatigue modelling are
established tools to assess readiness in those
who train regularly, they are much less tested in
those who do not exercise. Furthermore, in any
individual, the evaluation of internal loads
beyond those specifically related to exercise
should also be considered as part of any
comprehensive readiness tool.

HRV
Heart rate variability (HRV), the fluctuation in
the time intervals between adjacent heartbeats,
is a valid metric in this context. The variability of
our heart rates allows us to adapt to
physiological, environmental and psychological
challenges [28,29]. HRV is largely considered to
reflect the highly complex dynamics of the
autonomic nervous system (ANS) and
specifically the relative balance between the
parasympathetic and sympathetic nervous
systems, although non-ANS factors also can
influence HRV [30].

HRV is sensitive to factors such as health status,
hydration, nutrition, and sleep, that can affect

functional capacity of an individual. In general,
people who have an active lifestyle and maintain
a good or high level of physical fitness can
achieve an increase in their basic
parasympathetic activity and thus an increase in
their time domain measured HRV [31-37]. In
contrast, cumulative or too intensive sporting
activity (e.g. competition series, overtraining
syndrome), brings about a decrease in HRV
[38,39] and indeed time domain measurements
mostly decline with decreased health status
[40,41]. These features of HRV have largely
driven the support for its use in readiness
assessment.

The challenge in using HRV as an indicator of
readiness lies not in its validity as a health
metric, but in the pitfalls in the assumption that it
fully reflects readiness status. There remains
much to be understood about this metric and
there are hazards in overestimating its reliability.
These hazards can be divided into (i) those
relating to measurement of HRV itself and (ii) to
human factors that can result in HRV being
unreliable.

Methodologies used in determining HRV

There are multiple methodologies used in HRV
measurement, with variables including the
accuracy of sensors used for signal detection,
sampling time frames, methods of signal
analysis and algorithms used [28-30,39, 42]. A
detailed discussion is beyond the scope of this
text but there are several reviews of this topic
[e.g. 28-30]. Note that a plethora of different
metrics can be generated, all called HRV, but It
is important to note that different variables are
not interchangeable. It is likely that these indices
reflect different physiological phenomena, and
the specific indices chosen depends on the
context, but there is much that is yet not
understood in this respect. Furthermore, some
indices are less stable than others [43].
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RMSSD1, generated from time domain analysis,
is sensitive, stable and a generally accepted
better method of HRV calculation than others
and is applicable to the field of readiness [44].
Measurement when still and in particular during
deep sleep is preferred [44].

Wearable sensors are now the most commonly
used measurement tools in HRV assessment
through analysis of photoplethysmography
(PPG). These systems are particularly accurate
during sleep, which strengthens their use in this
phase [44].

The human factor

At any one time, a number of ANS and non-ANS
related factors influence HRV, including age,
race, gender, genetics, circadian rhythm,
environment, nutrition, infections, noise, sleep,
smoking, fitness, alcohol, most diseases and a
variety of medications [28-31, 41, 47]. Elevated
body weight or elevated fat-free mass are also
associated with a decrease in HRV [45]. Such
factors can influence not only HRV itself but also
accuracy of its measurement. For example, even
in more reliable devices, greater errors are seen
in certain populations including males,
individuals with greater body mass index, and
those with darker skin [44].

When HRV is used to indicate readiness, it is the
changes and trends in HRV that are taken as the
key indicators, but there can be significant
inter-individual variation in this respect. The
relative sensitivity to change is potentially
affected by the factors described in Table Two,
and this is a critical consideration in readiness
assessment. Some individuals have blunted
HRV responses due to health conditions,
medications or inherent factors, which make

1 root mean square of successive differences
between normal heartbeats

HRV a less reliable tool [48,49]. Furthermore,
intra-individual variation is also an issue; the
sensitivity of HRV to stressors over time may be
variable and unpredictable. While this does not
exclude HRV in readiness assessment, it
indicates that it should not be used alone.

Table 2: Factors influencing HRV

Physiological Age, gender,
circadian rhythm,
physical stress,
mental stress,
genetics, race, most
diseases, body
composition

Lifestyle behaviours Alcohol intake,
fitness, nutrition,
sleep, smoking

External factors Heat/cold, noise,
pain, circadian
disruption

Sleep
While the usefulness of fitness fatigue models
and HRV has been established, it is also clear
that other metrics must be considered as part of
reliable readiness assessment. There is a risk,
though, that the desire to incorporate other
markers will dilute the effectiveness of the tool
by introducing error. The variability of heart rate
as a metric in this respect has been highlighted
earlier, and the use of resting heart rate, and / or
rate of heart rate stabilisation overnight
potentially adds error, rather than strengthens,
any readiness tool. The value of the use of body
temperature in readiness assessment, though
commonly proposed, is also equivocal since
fluctuations around the norm are physiologically
acceptable in healthy people.

One metric that is indubitably important in
readiness is sleep. Sleep science is complex
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and we still do not have a full understanding of
all of its elements. While we consider sleep
duration, latency, efficiency, consistency, and
perceived quality as important dimensions, and
we recognise the value of measuring HRV
during deep sleep, we also recognise that it is in
essence cumulative sleep deprivation that
strongly influences a lack of readiness, both
cognitively and physically [50-52]. Sleep quality
is linked to sleep regulation which in turn is the
result of our duration of sleep bouts and
awakenings and sleep debt (our ‘sleep
reservoir’) and the influence of the individual’s
circadian rhythm superimposed upon this. One
population in whom this has been researched
most effectively is the military, and modelling
tools utilising sleep reservoir and circadian
variation have been established to regulate
working behaviours to avoid fatigue, with good
effects. Such tools are promising in the
assessment of readiness across wider
populations [50-52].

Summary
Readiness is a complex concept that is not
indicated by a single metric. Assessing daily
readiness to exercise in a balanced and

comprehensive way necessitates consideration
of internal responses to training loads in addition
to wider biomarkers that indicate health state
and recovery. WIth respect to the former, the
fitness-fatigue model is already well established
in assessing internal loads. As to the latter, when
incorporating wider indicators of readiness there
is a risk in attempting to incorporate too many
overlapping and potentially unreliable
biomarkers that do not strengthen the tool. HRV
and sleep are both such strong indicators of
health, wellbeing and performance that they
warrant inclusion in any readiness model.
Downward trends in HRV signal the individual is
not ready to train intensively. Furthermore,
utilising our understanding of the sleep reservoir
and circadian effects acts as a safety net to
avoid overtraining in those with significant
cumulative sleep deprivation. Modelling
readiness based on these three critical areas -
HRV, sleep and internal loads - provides an
excellent, scientifically credible basis for
balanced, progressive and successful training,
and the benefits that follow.
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