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Abstract—Machine learning based classifiers are often a black
box when considering the contribution of inputs to the output
probability of a label, especially with complex non-linear models
such as neural networks. A popular way to explain machine
learning model outputs in a model agnostic manner is through
the use of Shapley values. For our use case of abuse fighting
in digital advertisements, one primary impediment of using
Shapley values in explanations was a problem of instability.
Specifically, the instability problem manifests as explanations for
the same example varying greatly due to random sampling in
the algorithm. We found it useful to view this problem explicitly
as Monte Carlo integration in the form of averaging the model
output while varying only a subset of features in the example to
be explained. In turn, this guides the number of samples needed
to achieve a stable estimate of individual Shapley values and
unlocked the use of Shapley value based explainers for our models
as well as classifiers in general, including neural networks.

Index Terms—Shapley values, model explanations, neural net-
works

I. INTRODUCTION

Digital advertising [1] is the commercial backbone of the
internet. It provides the means for purveyors of products
and services to reach potential buyers in a targeted and
efficient manner, while also providing revenue to publishers
and creators. Unfortunately, due to its reach and scale, it also
attracts abuse by bad actors aiming to serve malicious and
undesirable contents to viewers of advertisements.

Advertising platforms such as Google Ads make extensive
use of machine learning (including deep neural networks [2])
to fight abuse in the ads ecosystem. Fighting abuse effectively,
requires understanding model decisions as well as drawing a
clear link from features to model output. This is important for
humans so that they may understand why an abuse fighting
model might flag an entity and safely leverage the ability
of machine learning models such as deep neural networks to
mine patterns in high dimensional spaces of often thousands
of features. To gain insight into model decisions and feature
importance, we use explanation algorithms. We provide more
details of a practical deployment of these explainers at scale
in Section V.

Shapley value based explainers are a popular way to explain
the output of classification models [3]. Shapely values origi-
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nate from cooperative game theory [25] and have the useful
additive property that they sum to the difference between the
model output on a particular input and the expected output
of the model over all possible inputs. Therefore they are an
intuitive way to present contributions of individual features
for human interpretation. The key challenge in computing
Shapley values is to compute the model output for subsets
of features. Training a new model for every subset would
result in a number of models exponential in the number of
features. A practical approximation is therefore often applied
by substituting a random “background” value for missing
features when computing Shapley values. This however leads
to unstable explanations.

Figure 1, shows two explanations generated for the same
example from the same neural network. We focus on the top
nine features and group the contribution of the next fifteen
features into a tenth bucket. The set of top features, their
rankings and relative contributions all vary widely across the
two runs, a problem we refer to as “instability”. In these
two particular runs the second highest contributing feature is
different across the two and contribute in opposite directions
to the classification. This in turn is detrimental to deploying
Shapley value based explainers in practise.

The instability originates from computing model outputs
given a subset of features by substituting “background val-
ues” for missing features. Figure 2, shows the output of the
underlying neural network as we vary the value of a single
feature (f 20) over 300 forward passes through the model,
keeping the other features fixed. As is evident, the output can
vary widely leading to a large variance in the estimation of the
model output with the feature missing if we were to sample a
single background value for the missing feature.

In this paper, we draw a simple and explicit link between
estimating a model’s output given a subset of features and
Monte-Carlo integration [26], that holds in a model agnostic
way. This has been hinted at before [21] but not explicitly
studied in terms of estimating model output given missing fea-
tures. We make the link explicit and study it specifically in the
context of our deployment. We empirically show a reduction
in variance in the estimate of a model’s output given subsets
of missing features for our models. We also show that the final
explanations become more stable by defining and measuring



Fig. 1: Instability in two explanations generated for the same example from a neural network

Fig. 2: Model predictions on various runs.

multiple divergence metrics between two explanations for the
same example.

II. SHAPLEY VALUE BASED EXPLAINERS

In this section we discuss the basics of Shapley value based
explainers to set the stage for the rest of the paper. Let F
denote the set of features in our feature space. We use ΩF

to represent the set of all possible examples from the feature
space F . Our machine learning model is a binary classifier
that maps from examples to the probability of a “yes” label.
Put concretely it can represented as fF : ΩF → [0, 1]. We use
fF (xF ) to represent the model fF being applied on a specific
example xF ∈ ΩF to produce the output probability fF (xF ).
The base input-independent expected value of the model is the
average output of the model over all possible inputs in ΩF i.e.
ExF∈ΩF

[fF (xF )]. Note that we assume uniform distribution
in computing the expectation unless specified otherwise in this
paper.

In a continuation of this notation when S ⊆ F is a subset of
features, ΩS is the set of all possible examples in this partial
feature space. Then, fS : ΩS → [0, 1] is a machine learning
model that maps examples in ΩS to the probability of a “yes”
label. Then, for xs ∈ ΩS , fS(xS) is this model being applied
to an example from this partial feature space.

For a subset of features S, we denote the set of missing
features in F as M = F − S.

Given a single example xF ∈ ΩF , we wish to explain
our model’s output, fF (xF ). The Shapley value quantifies the
contribution of a feature i ∈ F and is given by

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})−fS(xS)].

The Shapley values additively explain how to get from the
base input-independent expected value to the model output
for xF [12].

|F |∑
i=1

φi = fF (xF )− EyF∈ΩF
[fF (yF )]. (1)

The Shapley value can therefore be interpreted as the
contribution of the feature in this particular example to the
deviation of the model from its expected output. Note that
the definition and interpretation of Shapley values is model
agnostic.

For a large number of features enumerating over all subsets
can be prohibitively expensive. Therefore, it is common to
instead cast the problem as constrained linear regression
problem using Lasso, that fits the shapley values as weights.
This approach is formalized in KernelSHAP [12] that in turn
leverages LIME [11] as a subroutine. We also use KernelSHAP
where the number of features becomes too large in the case
of wide and deep models. However, we still need to compute
model outputs given partial features fS(xS) in such a setting,
which leaves the problem of instability.

III. HANDLING MISSING FEATURES

We now consider the problem of estimating fS(xS) when
considering a subset of features S ⊆ F . Because we have
a single model, all we have available is fF which uses the
full set of features. For convenience we assume the missing
features are contained in the set M and therefore F = S ∪M
holds. Then, for xS ∈ ΩS and zM ∈ ΩM , we use the notation
(xS , zM ) to denote an example in ΩF with the combined



feature values of xS and zM . We also assume these are binary
classification models (abuse vs. non-abuse) - although our
results are extensible to multi-label classification.

The output of the classification model fS(xS) ∈ [0, 1] is
computing the probability of the classification label y being
of the positive class (in the two class problem), given the
features. This is typical in abuse fighting use cases where we
are interested in whether the entity is bad. We indicate this as
P (yes|xS). We can then derive the following:

fS(xS) = Pr(yes|xS)

=

∫
ΩM

Pr(yes, zM |xS)dzM

=

∫
ΩM

Pr(yes|xS , zM ) Pr(zM |xS)dzM

=

∫
ΩM

fF (xS , zM ) Pr(zM |xS)dzM

The last integral can be estimated via Monte Carlo integra-
tion by keeping xS fixed and averaging fF (xS , zM ) over the
missing features zM sampled from ΩM using the distribution
Pr(zM |xS). The estimator we use is:∑

zM∈Samples fF (xS , zM )

|Samples|

Since it uses the full set of features via fF , we can thus
dispense with the need to build models for subsets of features.
Further, the law of large numbers assures us that increasing the
number of samples leads to a more stable estimate of fS(xS),
something we verify in the next section.

The one wrinkle is to determine the sampling distribution
over the missing features ΩM . We observe immediately that we
do not need labeled samples but merely samples of features
drawn from the underlying distribution. Our deployment of
the explainability service is able to draw samples directly
from inference logs that can hold many millions of unlabeled
(by humans) examples. A number of options then present
themselves here.

Many implementations of Shap explainers [3], [21] assume
that features are independent, which is not unreasonable
since feature correlation is often eliminated during feature
engineering (e.g. with PCA [27]). This assumption maps
to Pr(zM |xS) = Pr(zM ) = Πi∈M Pr(zi) for determining
samples for the Monte Carlo. Therefore we sample each
feature independently to construct zM regardless of xS . We
use this strategy in the paper to demonstrate that we can indeed
obtain a stable estimate of fS(xS) for some of our neural
networks.

Given the large population of unlabeled data flowing
through systems operating at scale, we can drop the inde-
pendence assumption if needed. For instance, one can query
logs for samples that match xS or apply Gibbs sampling [28]
to grow samples from ΩM via sampling individual features
given values of all the others. We can therefore leverage
the plentiful availability of unlabeled data together with the

ability to query big data (such as with Bigquery [22]) to
obtain samples closer to the distribution Pr(zM |xS). Even
with large scale data this still risks running into the curse
of dimensionality. Another direction of future work for us is
to exploit the observation that for fixed xS , Pr(zM |xS) ∝
Pr(zM |xS) Pr(xS) = Pr(xS , zM ). This allows us to build a
density estimator for Pr(xS , zM ) = Pr(xF ) on our unlabeled
data (eg. [23]) and then use Metropolis-Hastings [29] to
sample for Pr(zM |xS).

IV. EVALUATION

We evaluate a Shapley explainer on an abuse fighting model
focusing on the stability problem. For this paper, we have used
a small-scale deep neural network model with under a hundred
features and under 10 layers to enable more detailed ablation
studies. The dataset for this model is just under half a million
examples. We also sample from this dataset, when required,
for background values.

We wish to evaluate whether Monte-Carlo integration as
described in Section III, indeed stabilizes both the model
output when considering a subset of features as well as
explanations as a whole. The key quantity we vary is the
number of samples used to estimate fS(xS). We assume
independence between the features and sample from all data
without regards to availability of a label.

First, we consider the problem of varying model output
when changing a single feature value. As Figure 2, has
already shown the results can vary dramatically from sample to
sample. However, our analysis in Section III suggests that av-
eraging the model output over some number of samples should
lead to a stable estimate of the model output with the feature
missing. We therefore consider the estimator 1

N

∑N
i=1 fF (xF )

where xF are sampled with all but the feature in question fixed.
The question is whether this estimate is more stable with larger
values of N i.e. a larger number of samples?

To answer this, we computed it T = 100 times, measuring
the average and standard deviation of the estimates. Figure 3,
shows the average and the companion Figure 4, shows the
standard deviation. It demonstrates that the estimate indeed
stabilized over a large number of samples. For this particular
feature approximately 60 samples turns out to be sufficient,
which is the case for most of our features.

As it is shown in the figures 5 and 6 the stability holds even
when estimating model output with multiple missing features.

Next, we consider whether the explanations themselves
become more stable when using a larger number of samples.
To test this, we generate explanations parameterized by sample
count N . For any instance where the explainer desires to
compute fS(xS), we instead use the estimate 1

N

∑N
i=1 fF (xF )

where xF = xS ∪ xM and each feature in xM is sampled
independently from the population of examples. We wish to
show that the explanations are more stable with increasing
N . To do this, we run T = 100 trials for each choice of N .
Each trial generates an explanation. We compute an average
“distance” between all pairs of explanations.



0 20 40 60 80 100

0.278

0.280

0.282

0.284

0.286

0.288

Number of Samples

M
ea

n
(
µ
n

)

Fig. 3: Model Output vs Num Samples (single feature)
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Fig. 4: Model Output vs Num Samples (single feature)

We use three notions of distance that capture both the
ranking of features as well as their individual contributions.
This is because we find that most human analysts tend to
focus on rankings between features in terms of importance,
while ML engineers tend to also consider absolute weights
and direction of contribution (Figure 2) when analyzing model
performance for individual examples.

L2 Distance: We consider the shapley values generated for
the features in a chosen order as a vector. We then take the L2

norm of the difference between two vectors (i.e. the Euclidean
distance) as the distance between the explanations.

JS-Divergence: Since the Shapley values must sum to the
same quantity (per Equation 1) we can normalize the vector
of shapley values to sum to one uniformly across all explana-
tions. We can then treat them as probability distributions and
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Fig. 5: Model Output vs Num Samples (multiple features)
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Fig. 6: Model Output vs Num Samples (multiple features)

measure divergence between them.
Let ∆d denote the d-dimensional probability simplex:

∆d = {(x1, . . . , xd) : xi ≥ 0,

d∑
i=1

xi = 1}.

Let p, q ∈ ∆d. Note, p and q define two discrete probability
distributions. Then, the Kullback-Leibler divergence between
p and q, denoted DKL(p, q) is defined as

DKL(p, q) =

d∑
i=1

pi log

(
pi
qi

)
.

This notion of divergence between distributions is not sym-
metric and tends to suffer from computational problems when
pi or qi is close to zero, thus we use the following instead.
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Fig. 7: Stability: L2 Distance

Let p, q ∈ ∆d. Set m := 1
2 (p+ q) ∈ ∆d. Again, p, q and m

each define discrete probability distributions. Then, the Jensen-
Shannon divergence between p and q, denoted DJS(p, q), is
defined as

DJS(p, q) =
1

2
DKL(p,m) +

1

2
DKL(q,m)

Spearman’s rank correlation coefficient: Let x, y ∈ Rd

represent two explanations (such as in Figure 1). We order
the n features in x from greatest to least absolute shapley
value. We can construct a vector rgx ∈ Zd

+ by replacing
each element of x by that element’s rank in our ordering. We
construct rgy ∈ Zd

+ by the same process applied to y. Then,
Spearman’s rank correlation coefficient is given by

rs(x, y) = 1−
6
∑n

i=1[rgx(i)− rgy(i)]2

n(n2 − 1)
,

Figures 7, 8 and 9 show that for all the three metrics
the stability of the explanations increases, evidenced by the
decrease in average distance between them, as we increase
the number of samples we use. We report the results for 5
randomly chosen examples in our data (s = 1, 2, . . . , 5).

This demonstrates that estimating model outputs for subsets
of features via Monte Carlo integration works end-to-end in
our use case thereby solving the problem of instability and
unlocking the path to practical deployment.

The number of samples required to reach stable estimates
of model output for a subset of features, and therefore stable
explanations as a whole, varies from model to model. Although
they need to be determined separately for each model, the
number is small enough for practical deployment.

V. PRACTICAL DEPLOYMENT

The primary uses of explainability algorithms in our ma-
chine learning workflows can be divided into two categories.
• During model development - To help model builders:
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Fig. 8: Stability: Jensen-Shannon Divergence
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Fig. 9: Stability: Spearman’s Rank Correlation Coefficient

– Feature engineering - Understand the effect of input
features on the output by analyzing the contribution
of a particular feature to the ML score. Explainability
allows the model engineers to fine tune modeling by
reasoning about whether those features truly indicate
badness or are simply an artifact of the sampling
process.

– Training/Testing Data cleanup - Explainability can
identify noise, bias or leakage in the training data.
For example a feature with uniformly high contri-
bution to scores across several examples can be an
indication of data leakage.

• During model serving - To help model users:
– Report the model reasoning to humans - Explain-

ability is used as a decision aid by providing the
reasoning behind an ML decision for a particular



Fig. 10: Deployment of Explainability Service

prediction.
– Global analysis of groups of examples. As described

in LIME [11], a submodularity analysis of the feature
contributions of explanations for a group of examples
can reveal surprising artifacts in how the features
are used by the model. We use this to analyse
large batches of examples from the model to try
and discern problematic features. In some cases, this
can reveal upstream issues such as bugs in features
stores [20].

Explainability is available in our machine learning work-
flows in two forms:
• Python notebook environment: We provide a notebook

that enables users to load a machine learning model
checkpoint, pull features from a feature store and run the
explainability algorithm to produce an explanation. This
is the primary usage mode today and was used for the
experiments in this paper. It is slow, due to the number of
generated samples that need to be run through the model
for each explanation.

• Explainability as a service - This is a service that keeps
pre-loaded models in memory. At the backend, it com-
municates with the feature store and samples from the
population of unlabeled data available in inference logs
using query services. It is being built to run at scale.
Notably, generating and inferring samples around an
entity of interest is trivially parallelizable making it easy
to farm out the work across jobs and keep execution
time per example at reasonable levels. This is especially
important as we need approximately 100 samples for a
stable estimate at each invocation of f(xS).

Figure 10, depicts typical data processing pipelines that
would leverage the explainability service. As part of normal
operations, we regularly run inference on various entities to
classify them. The explainability service samples from the
logs and automatically adds an explanation note to predictions
made by the models.

VI. RELATED WORK

Machine learning has been widely used in digital adver-
tising. Examples include its usage in contextual advertising,
sponsored search advertising [32] and display advertising

[31]. Also several ad-targeting models such as state-of-the-
art ad-targeting methods range from logistic regression [31],
to log-linear models [30]. Further, complex and sophisticated
modeling techniques such as factorization machines [33], deep
neural networks, generative adversarial networks [34] and
attention based mechanisms [35] have also been utilized in
digital advertisement industry.

With the advancement and wide-scale usage of complex and
non-linear modes, explainable machine learning has become
an important area of research. Existing solutions to the expla-
nation problem require the usage of interpretable models such
as decision trees [8], additive models [9] and sparse linear
models [10].

However, with the usage of sophisticated non-linear mod-
els, several research has been performed towards explainable
machine learning. In particular, ElShawi et al. [7] presented
a comprehensive experimental evaluation of several recent
and popular local model agnostic inter-pretability techniques,
such as, LIME [11] which aims to interpret individual model
predictions based on locally approximating the model around a
given prediction and SHAP [12] which assigns each feature an
importance value for a particular prediction. They build upon a
new class of additive feature importance measures along with
theoretical results showing there is a unique solution in this
class with a set of desirable properties.

Research has also been performed in summarizing existing
work on explainable machine learning [15], [18], [19]. In par-
ticular, Došilović et al. [14] summarized recent developments
on explainability supervised algorithms, where in they start a
discussion on its connection with artificial general intelligence,
and gives proposals for further research directions. Further, Vu
et al. [6] introduced the c-Eval metric and the corresponding
framework to quantify the explainer’s quality on feature-based
explainers of machine learning image classifiers. Given a pre-
diction and the corresponding explanation on that prediction,
c-Eval is the minimum-power perturbation that successfully
alters the prediction while keeping the explanation’s features
unchanged.

Explainable machine learning has also been studied across
various application areas. In particular, Lundberg et al. [13]
worked on the of explainable machine-learning predictions
for the prevention of hypoxaemia during surgery. Zitnik et al.
[16] worked on interpretable machine learning for integrating
data in biology and medicine. Ghosal et al. [17] extended
the concept of explainable deep machine learning to automate
the process of plant stress identification, classification, and
quantification.

However, to the best of our knowledge this is the first
manuscript related to practical deployment in conjunction with
the stability of the explainable machine learning classifiers at
scale in the digital advertisement industry.

VII. CONCLUSION

Efficient digital advertising platforms aim to map customer
advertisements to a targeted set of audience as this set has a



high propensity to respond positively towards the advertise-
ments. In order to achieve this successful mapping, several
machine learning models are utilized. Further, advertising
platforms are often susceptible to abuse stemming from bad
actors aiming to serve malicious and undesirable content to
viewers of advertisements.

Detection and deterrence of such abuse then requires de-
tailed understanding of complex machine learning model de-
cisions along with establishing a clear link from features to
model output. The importance of understanding model output
usually stems from a human reviewer’s ability to understand
existing model decisions.

Shapely values are an intuitive way to understand model
output for human interpretation. The key challenge in comput-
ing Shapley values usually stems from its inability to compute
the model output for subsets of features, as training a new
model for every subset would result in a number of models
exponential in the number of features.

In order to overcome the aforementioned challenge, in this
manuscript we have shown a simple and explicit link between
estimating a model’s outputs given a subset of features and
Monte-Carlo integration, in a model agnostic way. To the
best of our knowledge, such an explicit study in an applied
setting has not been discussed in terms of estimating model
output given missing features. We also present the reduction in
variance in the estimate of a model’s output given subsets of
missing features for our models. Lastly, we demonstrate how
explanations become more stable (e.g. by measuring multiple
divergence metrics) across explanations for the same example.
We also discuss how this unlocks the application of Shapley
value based explainers in our machine learning models.
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