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Abstract

For an AI system to be reliable, the confi-
dence it expresses in its decisions must match
its accuracy. To assess the degree of match,
examples are typically binned by confidence
and the per-bin mean confidence and accuracy
are compared. Most research in calibration
focuses on techniques to reduce this empiri-
cal measure of calibration error, ECEbin. We
instead focus on assessing statistical bias in
this empirical measure, and we identify better
estimators. We propose a framework through
which we can compute the bias of a partic-
ular estimator for an evaluation data set of
a given size. The framework involves syn-
thesizing model outputs that have the same
statistics as common neural architectures on
popular data sets. We find that binning-based
estimators with bins of equal mass (number
of instances) have lower bias than estimators
with bins of equal width. Our results indicate
two reliable calibration-error estimators: a
variant of the debiased estimator of Kumar et
al. (2019) using equal mass bins, and a method
we propose, ECEsweep, in which the number
of bins is chosen to be as large as possible
while preserving monotonicity in the calibra-
tion function. With improved estimators, we
observe improvements in the effectiveness of
recalibration methods and in the detection of
model miscalibration.

1 Introduction
Machine learning models are increasingly deployed in
high-stakes settings like self-driving cars (Caesar et al.,
2020; Geiger et al., 2013; Sun et al., 2020) and medical
diagnosis (Esteva et al., 2017, 2019; Gulshan et al.,
2016) where it is critical to recognize when a model is
likely to be incorrect. Unfortunately, models often fail
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in unexpected and poorly understood ways, hindering
our ability to interpret and trust such systems (Azulay
and Weiss, 2018; Biggio and Roli, 2018; Hendrycks
and Dietterich, 2019; Recht et al., 2019; Szegedy et al.,
2013). To address these issues, calibration is used to
ensure that a model produces confidence scores that
reflect its ground truth likelihood of being correct (Platt
et al., 1999; Zadrozny and Elkan, 2001, 2002).

To obtain an estimate of the calibration error, or ECE1,
the standard procedure partitions the model confidence
scores into bins and compares the model’s predicted
accuracy to its empirical accuracy within each bin
(Guo et al., 2017; Naeini et al., 2015). We refer to this
specific metric as ECEbin. Recent work observed that
the calculation of ECEbin is sensitive to implementation
(Kumar et al., 2019; Nixon et al., 2019). Fundamentally,
a key confounding factor is statistical bias, the difference
between the expected ECEbin and the true calibration
error (TCE). Because bias is largely unexplored in
the literature, its magnitude and sign is unknown, as
is its dependence on hyperparameters of the ECEbin
estimator (e.g., number of bins, how bins are formed).
We explain our reasons for focusing on estimator bias
and not variance in Section 4.

Bias in ECEbin measurement has two real world conse-
quences. First, the measurement of calibration error on
a given model may be systematically incorrect. Thus,
our understanding of how well a model knows whether
it is correct may be poor, and may not be accurately
captured by naively reporting ECEbin. Second, many
techniques have been developed to minimize the cali-
bration error, such as post-hoc recalibration techniques
(Guo et al., 2017; Zadrozny and Elkan, 2001, 2002) and,
more recently, calibration-sensitive training objectives
(Karandikar et al., 2021; Krishnan and Tickoo, 2020;
Kumar et al., 2018; Lin et al., 2018; Mukhoti et al.,
2020). Given that the selection of the training objec-
tives and the justification of a recalibration technique
is predicated on the measurement of the calibration

1
Naeini et al. (2015) introduce ECE as an acronym for

Expected Calibration Error. However, ECE is not a proper

expectation whereas the true calibration error is computed

under an expectation. To resolve this confusion, we prefer

to read ECE as Estimated Calibration Error.
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(a) Figure 1: ECEbin exhibits large bias for perfectly cali-

brated models. We simulate data from a perfectly calibrated

model with confidence scores fit to ResNet-110 CIFAR-10

output (He et al., 2016; Kängsepp, 2019) and measure ECEbin
using 15 equal-width-spaced bins. The left panel shows a re-

liability diagram for a sample of size n = 200 (named Sample

B); the right panel has a distribution of ECEbin scores com-

puted across 106 independent simulations. Even though the
model is perfectly calibrated, ECEbin systematically predicts
large calibration errors.

error, reliance on an inaccurate estimator may lead to
a suboptimal choice.

We address this problem by developing a technique
to measure bias in calibration metrics, which we call
the bias-by-construction (BBC) framework. The BBC
framework uses simulation to create a setting where the
TCE can be computed analytically and thus the bias
can be estimated directly. BBC reveals that ECEbin has
systematic non-negligible statistical bias, particularly
for perfectly calibrated models (Figure 1).

Our goal is to identify the least biased estimator of
calibration error using BBC. We consider two estima-
tors previously proposed in the literature: the debiased
estimator of Kumar et al. (2019), which we refer to as
ECEdebias, and the smoothed kernel density estimator
of Zhang et al. (2020), which we refer to as KDE. Addi-
tionally, we propose an extension of ECEbin where the
number of bins is chosen to ensure monotonicity of the
calibration histogram, which we refer to as ECEsweep.
ECEbin, ECEdebias, and ECEsweep all require the bin-
ning of model confidence scores, and under the lens of
bias, we examine two common methods for specifying
bins: partitioning the confidence-score continuum ei-
ther into equal width bins or bins of equal mass—equal
numbers of data instances.

Furthermore, BBC allows us to examine the impact
of biased estimators in downstream decision making,
such as the selection of a post-hoc recalibration method.
For example, when the choices for recalibration include
histogram binning (Zadrozny and Elkan, 2001), temper-
ature scaling (Guo et al., 2017), and isotonic regression
(Zadrozny and Elkan, 2002), Table 1 illustrates that
our bias-reduced measure, ECEsweep, more frequently

selects the ‘optimal’ recalibration method when com-
pared to the standard measure, ECEbin (70% versus
30% correctness, respectively). Optimality is deter-
mined by estimating TCE using numerical integration
on curves arising from maximum likelihood fits across
multiple model families, where we select the best model
via the Akaike information criterion (see Section 6).

To summarize the contributions of this work, the core
contribution is a simulation framework, bias by con-
struction or BBC, that allows us to identify and char-
acterize systematic bias in calibration error metrics for
realistic models and data sets. We show that estima-
tion of calibration error by the predominant method,
ECEbin, is biased, and paradoxically the bias is most
severe for perfectly calibrated models. Bias can lead
not only to the mis-estimation of calibration error but
also to the wrong choice of recalibration method, yield-
ing a poorly calibrated model. Moreover, we find that
the selection of hyperparameters for measuring cal-
ibration (e.g., number of bins) is under-appreciated
and is absolutely critical. To address these issues, we
propose ECEsweep, a simple algorithm based on the
monotonicity principle of calibration curves. We com-
pare the bias of various estimators using predictions
from four popular neural architectures and three data
sets. We find that ECEbin is more biased than either
ECEdebias or ECEsweep, and of these two improved
measures, ECEdebias performs better for perfectly cali-
brated models and ECEsweep for miscalibrated models.
Finally, our analyses provide rigorous empirical evi-
dence that for all binning-based estimators, equal-mass
binning obtains a more accurate estimate of true cal-
ibration error. This finding gives strong guidance to
revise the current practice of equal-width binning.

2 Related Work
ECEbin. ECEbin with 15 equal-width-spaced bins is
currently the most popular way to measure calibration
error in the literature (Guo et al., 2017; Naeini et al.,
2015). An alternative but less popular implementation
evaluates ECEbin using equal-mass-binning, which par-
titions examples into bins that have an equal number
of examples. Recently, Nixon et al. (2019) observed
that ECEbin with equal-mass-binning produces more
stable rankings of recalibration algorithms, which is
consistent with our conclusion that equal mass ECEbin
is a less biased estimator of TCE.

Sensitivity of ECEbin to implementation hyper-

parameters. Several works have pointed out that
ECEbin is sensitive to implementation details. Kumar
et al. (2019) show that ECEbin increases with number
of bins. Nixon et al. (2019) find that ECEbin is sen-
sitive to several hyperparameters, including `p norm,
number of bins, and binning technique. In contrast to
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CIFAR-10 CIFAR-100 ImageNet

ResNet ResNet WideResNet DenseNet ResNet ResNet DenseNet WideResNet ResNet DenseNet
110 110_SD 32 40 110 110_SD 40 32 152 161

ECEbin 7 3 7 3 7 3 7 7 7 7
ECEsweep 3 3 3 3 7 3 3 3 7 7

Table 1: The selection of a recalibration method is severely affected by poor estimation of calibration error. For
ten models, we report whether either ECEbin or ECEsweep select the same (3) or different (7) recalibration
algorithm as would an estimate of TCE obtained from maximum likelihood fits to empirical data (see Section 6).
Here, the choices for recalibration algorithm are histogram binning, isotonic regression or temperature scaling.

prior work, we explicitly quantify estimation bias in
simulation for realistic model outputs, and we show
precisely how the bias in ECEbin varies with the choice
of sample size, model architecture, datasets, and imple-
mentation hyperparameters for ECEbin such as number
of bins and binning method.

Less biased metrics for calibration error. Moti-
vated by the sensitivity of ECEbin to implementation
hyperparameters, recent work has proposed less bi-
ased estimates of TCE. In particular, Kumar et al.
(2019) propose a debiased estimator, ECEdebias, which
uses a jackknife technique to estimate the per-bin bias
in the standard ECEbin, and subtracts off this bias
to achieve a better binned estimate of the calibra-
tion error. Similarly, Zhang et al. (2020) propose a
smoothed Kernel Density Estimation (KDE) method
for reducing bias when estimating calibration error.
Relative to ECEsweep, both ECEdebias and KDE have
an additional hyperparameter (number of bins or ker-
nel bandwidth, respectively). We compare ECEsweep,
ECEdebias, and KDE, finding circumstances in which
ECEsweep and ECEdebias have relative advantages in
bias reduction.

Alternative definitions of calibration error. Re-
searchers have studied alternatives notions of calibra-
tion error that are distinct from TCE (see Section 3 for
a formal definition of TCE). For example, Widmann
et al. (2019) proposed a kernel-based calibration error,
KCE, which has no explicit dependence on the model’s
calibration function. Gupta et al. (2020) propose a
calibration error metric inspired by the Kolmogorov-
Smirnov (KS) statistical test that estimates the maxi-
mum difference between cumulative probability distri-
butions describing the model’s confidence and accuracy.
The KS is similar to the maximum calibration error
(MCE) (Naeini et al., 2015) in that it computes a
worst-case deviation between confidence and accuracy,
but the KS is computed on the CDF, while the MCE
uses binning and is computed on the PDF. In contrast,
TCE measures the average difference between confi-
dence and accuracy. Both the worst case and average
difference are useful measures but may be applicable
under different circumstances (Guo et al., 2017).

Monotonicity in calibration curves. While
Zadrozny and Elkan (2002) used calibration curve
monotonicity to motivate isotonic regression for recal-
ibration, they observed monotonic calibration curves
empirically on only a handful of pre-deep learning mod-
els, and without theoretical justification. In contrast,
our work is the first to suggest using monotonicity to
improve calibration metrics. We provide both theoret-
ical and extensive empirical evidence that monotonic
calibration curves arise in modern deep networks.

3 Background
Consider a binary classification setup with input X 2
X , target output Y = {0, 1}, and suppose we have
a model f : X ! [0, 1] whose output represents a
confidence score that the true label Y is 1.

True calibration error (TCE). We define true cal-
ibration error as the `p norm difference between a
model’s predicted confidence and the true likelihood of
being correct:2

TCE(f) = (EX [|f(X)� EY [Y |f(X)]|p])
1
p . (1)

Two independent features of a model determine TCE:
(1) the distribution of confidence scores f(x) ⇠ F over
which the outer expectation is computed, and (2) the
true calibration curve EY [Y | f(X)], which governs the
relationship between the confidence score f(x) and the
empirical accuracy (see Figure 2a for illustration).

3.1 Estimates of calibration error

To estimate the TCE of a model f , assume we are given
a dataset containing n samples, {xi, yi}ni=1. We can
approximate TCE by replacing the outer expectation
in Equation 1 by the sample average and replacing the
inner expectation with an average over instances with
similar f(x) values:

ECEN (f) =
⇣

1
n

Pn
i=1

���f(xi)� 1
|Ni|

P
j2Ni

yj

���
p⌘ 1

p

,

(2)
2
In our experiments, we measure calibration error using

the `2 norm because it increases the sensitivity of the error

metric to extremely poorly calibrated predictions, which

tend to be more harmful in applications.
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(a) (b)

Figure 2: (a) Curves controlling true calibration error.
Our ability to measure calibration is contingent on
both the confidence score distribution (e.g., f(X) ⇠
Beta(2.8, 0.05)) and the true calibration curve (e.g.,
EY [Y | f(X) = c] = c

2. (b) ECEbin may underestimate
or overestimate TCE. The number of bins with minimal
bias grows with the sample size.

where Ni is instance i’s set of neighbors in model con-
fidence output space.

Label-binned calibration error (ECElb). Label-
binned calibration error uses binning to define Ni and
estimate the model’s empirical accuracy E[Y |f(X)].
The instances are partitioned into b bins, where Bk

denotes the set of all instances in bin k, expressing
Equation 2 in terms of the binned neighborhood:

ECElb(f) =
⇣

1
n

Pb
k=1

P
i2Bk

|f(xi)� ȳk|p
⌘ 1

p
,

where ȳk = 1
|Bk|

P
j2Bk

yj .

(3)

Binned calibration error (ECEbin). In contrast
to ECElb, which operates on the original instances but
uses binning to estimate empirical accuracy, ECEbin
collapses all instances in a bin together and compares
the per-bin empirical accuracy to the per-bin confidence
score, weighted by the per-bin instance count. Given
b bins, where Bk is the set of instances in bin k, and
letting f̄k and ȳk be the per-bin average confidence
score and label, ECEbin is defined under the `p norm:

ECEbin(f) =
⇣Pb

k=1
|Bk|
n

��f̄k � ȳk

��p
⌘ 1

p
(4)

Importantly, ECElb(f) � ECEbin(f), which follows
by applying Jensen’s inequality on each inner term
k 2 {1, 2, . . . , b} in Eqs. 3 and 4:

1
|Bk|

P
i2Bk

|f(Xi)� Ȳk|p �
��P

i2Bk
f̄k � Ȳk

��p . (5)

4 The BBC framework
We focus on bias rather than variance because the
variance can be estimated from a finite set of samples
through resampling techniques whereas the bias is an
unknown quantity that reflects systematic error. For
completeness, we report variance for various calibra-
tion metrics as we vary the sample size, number of
bins, and binning technique in Appendix A2. We find

empirically that the variance is relatively insensitive to
the estimation technique and number of bins.

The bias of a calibration error estimator, ECEA for
some estimation algorithm A, is the difference between
the estimator’s expected value with respect to the data
distribution and the TCE:

BiasA = E[ECEA]� TCE. (6)

If we assume a specific confidence score distribution F
and true calibration curve T (X) = EY [Y | f(X) = c]
(see Figure 2a for examples), we can compute the TCE
by analytically or numerically evaluating the integral
implicit in the outer expected value of Equation 1.
We then compute a sample estimate of the bias by
generating n samples {f(xi), yi}ni=1 such that f(xi) ⇠
F and EY [Y | f(X) = c] := T (c), and computing the
ECE on the sample. We repeat this process for m

simulated datasets and compute the sample estimate
of bias (hereafter, simply the “bias”) as the difference
between the average ECE and the TCE:

dBiasA(n) = 1
m

Pm
i=1 ECEA � TCE. (7)

Using this bias-by-construction (BBC) framework, we
next investigate the bias in ECEbin as a function of
the number of samples n and the number of bins. We
compute ECEbin with equal width binning and we
assume parametric curves for f(x) and EY [Y | f(X)]
that are fit to the ResNet-110 CIFAR-10 model output.
(Section 6 has details on how we compute fits.)

Proposition 3.3 of Kumar et al. (2019) asserts that
any binned version of calibration error systematically
underestimates TCE in the limit of infinite data. How-
ever, for a finite number of samples n, Figure 2b shows
that ECEbin can either overestimate or underestimate
TCE and that increasing the number of bins does not
always lead to better estimates of TCE. In Appendix
A2, we show how bias and variance vary for several
calibration metrics as we change the binning scheme,
sample size, and number of bins. Regardless of binning
scheme, for ECEbin we find empirically that there ex-
ists a bin number for each sample size that results in
the lowest estimation bias and this optimal bin count
grows with the sample size. Intuitively, having a large
number of bins is generally preferred because we can
obtain a finer-resolution estimate of the calibration
curve. However, if we have a small number of samples,
setting the number of bins too high may result in a
poor estimate of the calibration curve due to the low
number of samples in each bin.

5 Monotonic calibration metrics
Though Section 4 shows that there exists an optimal
number of bins for which ECEbin has the lowest bias,
unfortunately, this number depends on the binning
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technique, the number of samples, the confidence score
distribution, and the true calibration curve. This ob-
servation motivates us to seek a method for adaptively
choosing the number of bins.

Monotonicity in the true calibration curve implies that
a model’s expected accuracy should not decrease as the
model’s confidence increases. Although this require-
ment seems reasonable for any statistical model, it is
not obvious how to prove why or when a “reasonable”
model would attain such a property. We offer a ratio-
nale for why it should be expected of machine learning
models trained with a maximum likelihood objective,
e.g., cross-entropy or logistic loss. Namely, from ROC
(receiver operating characteristic) analysis of maximum
likelihood models, an under-appreciated observation of
ROC curves is that a model trained to maximize the
likelihood ratio must have a convex ROC curve in the
limit of infinite data (see Green et al., 1966, Sec. 2.3).
The slope of the ROC curve is related to the calibration
curve, and a convex ROC curve implies a monotonically
increasing calibration curve (the converse is also true)
(Chen et al., 2018; Gneiting and Vogel, 2018).

In practice, several potential confounds may lead to ob-
serving non-monontonic calibration curves. First, finite
data size may lead to fluctuations in the true positive
or false positive rates, but do not reflect the behavior
of the underlying model. Second, deviations in domain
statistics between cross-validated splits in the data
may lead to unbounded behavior; however, we assume
that such domain shifts are negligible as cross-validated
splits are presumed to be selected i.i.d..3 Given that
deviations from non-monotonic calibration curves are
considered artificial, we posit that any method that
is trying to assess the TCE of an underlying model
may freely assume monotonicity in the true calibration
curve. Note that this proposition already guides the en-
tire field of re-calibration to require that re-calibration
methods only consider monotonic functions (Platt et al.,
1999; Wu et al., 2012; Zadrozny and Elkan, 2002).

Accordingly, we leverage underlying monotonicity in
the true calibration curve and propose the monotonic
sweep calibration error, a metric that chooses the largest
number of bins possible such that the chosen bin size
and all smaller bin sizes preserve monotonicity in the

3
Note that a third potential reason for a non-monotonic

calibration curve is that a classifier could be trained with

a non–likelihood-based statistical criteria, e.g. moment

matching. However, a lack of monotonic behavior in the

calibration curve of such a model may actually be a sign

that the model is not reasonable or admissible model on a

given task (Chen et al., 2018; Pesce et al., 2010).

bin heights ȳk, i.e.,

ECEsweep =
⇣Pb⇤

k=1
|Bk|
n

��f̄k � ȳk

��p
⌘ 1

p
where

b
⇤ = max{b | 1  b  n; 8 b

0  b, ȳ1  . . .  ȳb0}
(8)

Algorithm 1 Monotonic Sweep Calibration Error
for b = 2 to n do

Compute bin heights (ȳk) for ECEbin using b bins
if binning is not monotonic then

b b� 1
break

end if

end for

return ECEbin computed with b bins

We compute the monotonic sweep calibration error
by starting with b = 2 bins (b = 1 is guaranteed to
be a monotonic binning) and gradually increasing the
number of bins until we either reach a non-monotonic
binning, in which case we return the last b that corre-
sponded to a monotonic binning, or until every sample
belongs to its own bin (b = n). In Appendix A4, we
explore the number of bins chosen by ECEsweep for
varying sample sizes and model output.

6 Fitting the calibration curve and
score distribution

TCE is analytically computable when we assume para-
metric forms for the confidence distribution and the
true calibration curve. In order to ensure that the para-
metric forms we use in simulation reflect the diversity
and complexity of realistic model output, we develop
parametric models of empirical logit datasets.

We consider 10 publicly available logit datasets
(Kängsepp, 2019) that arise from training four different
architectures (ResNet, ResNet-SD, Wide-ResNet, and
DenseNet) (He et al., 2016; Huang et al., 2017, 2016;
LeCun et al., 1998; Zagoruyko and Komodakis, 2016)
on three different image datasets (CIFAR-10/100 and
ImageNet) (Deng et al., 2009; Krizhevsky and Hin-
ton, 2009). For each example in a given dataset, we
compute top-label confidence scores by selecting the
maximum softmax score across all classes and we com-
pute whether or not the example resulted in a “hit,”
i.e. whether the model’s predicted class corresponds to
the true class. By using only the top-label confidence
score and determining whether the top and true labels
match, we can treat the calibration problem as binary.

For the parametric fits, we model confidence score dis-
tributions f(X) using a Beta density fit via maximum
likelihood estimation. For calibration curves, we fit
multiple (binary) generalized linear models (GLM) to
the top-label output and then select the best model
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Figure 3: Maximum likelihood fits to empirical datasets illustrate large skew in their density distribution and
calibration function. For each dataset, we fit (a) confidence distributions with Beta distribution and (b) calibration
curves with generalized linear models across multiple model families, selecting the best model via the Akaike
information criterion (details in Appendix A1). We find the dataset source has a greater influence over the curves
than the model architecture. (c) We plot the overall quality of the fits by computing the ECEbin on the original
data vs. the ECEbin averaged over 1000 simulated trials. Curves well-fit to the data lie close to the identity line.

using the Akaike Information Criteria (AIC). The
GLM models considered include logit, log, and "logflip"
(log(1 � x)) link and transformation functions, up to
first order in the transformed domain, which all result
in monotonic calibration functions. See Appendix A1
for additional details.

We find that the parametric forms for the calibration
curve and distribution of scores are well captured by
simple GLM and beta models. Figures 3a,b show the
resulting fits with parameters summarized in Appendix
A1. We observe significant skew in the score distribu-
tion which, as discussed in Section 7.1, poses a challenge
to measuring calibration error with equal-width bins.
We find that the dataset has more influence on the
fits than the neural model, with ImageNet models the
least skewed and CIFAR-10 the most (correlating with
model accuracy). Figure 3c demonstrates that ECEbin
scores computed on simulated data from the fits closely
match ECEbin scores computed on the real data.

7 Results

7.1 Estimating bias on real models and data

Our bias-by-construction (BBC) framework uses the
parametric fits to real models and datasets from Section
6 to estimate bias as follows. Each fit permits the
analytical or numerical computation of TCE and can
also be used in generative fashion to draw a synthetic
set of examples. ECE can then be estimated from these
samples, and the difference between the estimated ECE
and TCE across many samples—1,000 in results to be
presented—yields the bias (Equation 7).

We estimate bias for ECEbin, ECEdebias, and ECEsweep
using both equal-mass and equal-width binning, and
also for the KDE estimator. Following Guo et al. (2017),
we choose 15 bins for ECEbin and ECEdebias. (Ap-
pendix A2 includes an analysis that varies the number

of bins and finds that the optimal number of bins for
bias minimization depends on the number of samples.
This Appendix also includes calculations of variance
across estimators, bin numbers, and sample sizes.)

Figure 4 plots the bias versus sample size for seven
estimators, shown separately for each of three datasets.
Because the curves for individual architectures look
very similar to one another for a given data set, we
have averaged over model architectures. The black
dotted line indicates an unbiased estimator.

Equal-width versus equal-mass binning. The
dashed and solid lines correspond to equal width (ew)
and equal mass (em) bins, respectively, and the colors
indicate the metric. For the three binning-based met-
rics, em consistently obtains a smaller magnitude bias
than ew. This finding is not well appreciated in the
literature: ew is the common practice. For instance,
Kumar et al. (2019) proposed ECEew

debias and did not
consider ECEem

debias. However, our results show that
ECEem

debias is a consistently less biased estimator than
ECEew

debias. Our work therefore provides immediate
and strong guidance to researchers and practitioners
concerned with model calibration. An explanation for
the advantage of em over ew stems from the fact that,
as shown in Figure 3a, models trained on CIFAR-10
and CIFAR-100 have highly skewed confidence distribu-
tions. Consequently, ew binning places most instances
in the top bin. As we increase the number of samples,
we increase the likelihood that we generate a sample
that populates one of the lower bins, which, due to
their low sample density, may have a poorer average
estimate of the TCE. On ImageNet, where the confi-
dence distribution is less skewed, the advantage of em
over ew is still consistent but less pronounced.

Comparing metrics. Across the three datasets and
various sample sizes, ECEem

sweep appears to perform the
best. ECEem

debias also performs well but not as well as
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Figure 4: ECEem
sweep is less biased than alternative calibration metrics. We plot bias versus number of samples n

for calibration metrics on simulated data drawn from the CIFAR-10, CIFAR-100, and ImageNet fits (Section 6).
The dataset the model was trained on has a greater influence on bias than the model architecture. Metrics based
on equal mass binning consistently outperform equal width binning. Exploiting monotonicity in the ECEem

sweep
metric helps the most at small sample sizes.

ECEem
sweep at low sample sizes. To determine whether

the difference between ECEem
sweep and ECEem

debias is sta-
tistically reliable, we conducted a paired t-test on ab-
solute bias. Across datasets, models, and number of
samples, we find a statistically significant difference: a
mean absolute bias is 0.504 for ECEem

debias and 0.347 for
ECEem

sweep (t = 5.10, p < 1e�5). Appendix A2 demon-
strates higher variance for ECEem

debias than ECEem
sweep.

The KDE metric has much larger bias across the three
datasets than any of the other metrics. This finding
suggests that the heuristic used to choose the kernel
bandwidth and the specific ‘triweight’ kernel worked
well for the synthetic example evaluated in Zhang et al.
(2020), but fails to generalize to the more realistic
examples we study. Specifically, Zhang et al. (2020) as-
sume a Gaussian distribution for P (X|Y ) and a logistic
confidence score distribution, which result in notably
different qualitative shapes than the logit distributions
we obtain from models trained on CIFAR-10/100 or
ImageNet (see Figure 3a,b or the reliability diagrams
and score distributions of Kängsepp, 2019).

7.2 How well can we detect miscalibration?

Pragmatically, practitioners may be less concerned
about bias per se than being able to answer a straight-
forward question about a model: is the model miscali-
brated? If the validation set provides clear evidence of
miscalibration, further steps must be taken to correct
the miscalibration. However, given bias in the ECE
metrics, the mere observation of an ECE > 0 is not
sufficient to raise alarm.

Consider the situation with a model of unknown TCE,
and we wish to perform hypothesis testing to deter-
mine if we can reject the null hypothesis that TCE=0.
Our ability to detect miscalibration depends on TCE,
the sample size (n), and the method for estimat-

ing calibration error. We conduct a simulation with
f(x) ⇠ Beta(1, 1) and true calibration curve from the
family EY [Y | f(X) = c] = c

d, where d is varied to
obtain a range of TCE. Allowing for a type I error rate
of .05 (also known as the false-alarm rate, or the rate
of mistakenly claiming miscalibration despite perfect
calibration), we obtain type II error rates (also known
as the miss rate, or the rate of failing to detect a mis-
calibration). Figure 5 shows the type II error rate as a
function of TCE and n for the metric typically used in
practice (ECEew

bin) and the best performing metric iden-
tified in the previous section (ECEem

sweep). ECEem
sweep

obtains a significantly lower failure rate than ECEew
bin,

particularly for under 10,000 samples. More generally,
we note limitations with both methods: to detect a
miscalibration of 2%, over 10,000 samples are needed;
and if one has under 500 samples, the miscalibration
must be greater than 10% to be detected reliably.

7.3 Perfect calibration

In Section 7.1, we studied realistic scenarios of models
whose outputs have the same statistics as common neu-
ral architectures on popular datasets. The BBC frame-
work also allows us to simulate a continuum of models
that differ systematically in TCE. For all metrics, bias
increases as TCE decreases (details in Appendix A3).

ECE EW
BIN

ECE EM
SWEEP

Figure 5: Proba-
bility of failing to
detect miscalibra-
tion (miss rate) as
a function of TCE
and sample size (n).
ECEem

sweep has lower
failure rate than
ECEew

bin.
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Figure 6: Perfectly calibrated models. Using BBC we set the calibration curve to have 0% calibration error but
use realistic model confidence score distributions. We find that the KDE estimator has the least amount of bias
for perfectly calibrated models, followed by ECEem

debias.

This finding is not surprising because binned metrics
always produce a nonnegative ECE estimate, and in
the limit of a perfectly calibrated model, any deviation
of the binning histogram from the diagonal will result
in positive bias.

In this section, we compare the bias of estimators for
the case of a perfectly calibrated model—the ultimate
aim of designing methods that minimize miscalibration.
To simulate perfect calibration, the calibration curve
of the model is set to EY [Y | f(X) = c] = c, but we
use the realistic confidence score distributions from the
previous section.

Figure 6 illustrates the effect of sample size on bias
for the seven different estimators under perfect cali-
bration. Although the KDE estimator outperforms all
others, it is not a viable candidate because it has a very
high bias for realistic scenarios (Figure 4). Excluding
KDE, ECEem

debias is the least biased metric, obtaining
significantly lower bias than ECEem

sweep.

How do we reconcile these results with our previous
finding (Figure 4) that ECEem

sweep is preferred over
ECEem

debias? The present results assume a well cali-
brated model; the previous results are based on re-
alistic scenarios. Whether one prefers ECEem

sweep or
ECEem

debias ultimately depends on a practitioner’s prior
beliefs about a model’s degree of miscalibration. But
to some degree we are splitting hairs: both ECEem

sweep
and ECEem

debias are consistently superior to common
practice (ECEew

bin) and proposed improvements (e.g.,
ECEew

debias, as recommended by Kumar et al., 2019).

8 Discussion and Conclusions
Calibration research typically focuses on recalibrating
models, i.e., transforming f(x) to f

0(x) (Platt et al.,
1999; Zadrozny and Elkan, 2001, 2002). We focus on es-
timating true calibration error, because without a good
estimate, how is one to select and evaluate recalibration
methods? The preferred recalibration method for a
given model and data set is affected by bias: Table 1

shows that using ECEem
sweep to select a recalibration

method instead of ECEew
bin leads to better choices and

subsequently, better calibration on the test set. Indeed,
bias may have impacted the conclusions of previous
studies of calibration error, such as the well cited work
of Guo et al. (2017). The choice of calibration error es-
timator can also impact the detection of miscalibration:
Figure 5 indicates that ECEem

sweep is a more sensitive
metric than ECEew

bin for detecting if a model is miscali-
brated.

Several authors attempt a different approach to recali-
bration: improving model calibration during training.
For instance, Mukhoti et al. (2020) train a model with
a batch size of 128 across multiple types of losses in-
cluding maximum mean calibration error (Kumar et al.,
2018) and Brier loss (Brier, 1950) which explicitly min-
imizes calibration loss using 128 examples at a time.
However, our results suggest that training a model with
naive estimates of calibration error using a batch size
< O(1000) is a potentially flawed endeavor, particu-
larly because the distribution of scores from the model
changes throughout training, and any potential calibra-
tion measure may be more affected by the distribution
of scores than the true calibration curve.

Relying on the predictions from machine learning mod-
els in high stakes situations like autonomous vehicles,
content moderation, and medicine, requires the ability
to detect predictions that are likely to be incorrect.
Given that the default confidence scores produced by
machine learning models do not necessarily correspond
to the model’s empirical accuracy, recalibration is neces-
sary in order to produce reliable and consistent output.
However, it is impossible to perfectly calibrate a model
if calibration cannot be measured accurately. Our re-
sults show that the statistical bias in current calibration
error estimators grows as we approach perfect calibra-
tion, but this bias can be mitigated by using equal-mass
binning and methods such as the debiased estimator of
Kumar et al. (2019), ECEem

debias, or our own monotonic
estimation technique, ECEem

sweep.



Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, Michael C. Mozer

Acknowledgements
We would like to thank Simon Kornblith, Jize Zhang,
Tengyu Ma, and Ananya Kumar for helpful comments
on this work.

References

Azulay, A. and Weiss, Y. (2018). Why do deep convo-
lutional networks generalize so poorly to small image
transformations? arXiv preprint arXiv:1805.12177.

Biggio, B. and Roli, F. (2018). Wild patterns: Ten years
after the rise of adversarial machine learning. Pattern
Recognition. https://arxiv.org/abs/1712.03141.

Brier, G. W. (1950). Verification of forecasts expressed
in terms of probability. Monthly weather review,
78(1):1–3.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong,
V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G.,
and Beijbom, O. (2020). nuscenes: A multimodal
dataset for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11621–11631.

Chen, W., Sahiner, B., Samuelson, F., Pezeshk, A., and
Petrick, N. (2018). Calibration of medical diagnostic
classifier scores to the probability of disease. Statis-
tical methods in medical research, 27(5):1394–1409.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPR09.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swet-
ter, S. M., Blau, H. M., and Thrun, S. (2017).
Dermatologist-level classification of skin cancer with
deep neural networks. nature, 542(7639):115–118.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov,
V., DePristo, M., Chou, K., Cui, C., Corrado, G.,
Thrun, S., and Dean, J. (2019). A guide to deep
learning in healthcare. Nature medicine, 25(1):24–29.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–
1237.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin,
D. B. (2004). Bayesian Data Analysis. Chapman
and Hall/CRC, 2nd ed. edition.

Gneiting, T. and Vogel, P. (2018). Receiver oper-
ating characteristic (roc) curves. arXiv preprint
arXiv:1809.04808.

Green, D. M., Swets, J. A., et al. (1966). Signal detec-
tion theory and psychophysics, volume 1. Wiley New
York.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu,
D., Narayanaswamy, A., Venugopalan, S., Widner,
K., Madams, T., Cuadros, J., et al. (2016). Develop-
ment and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus
photographs. Jama, 316(22):2402–2410.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q.
(2017). On calibration of modern neural net-
works. International Conference on Machine Learn-
ing (ICML).

Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T.,
Sminchisescu, C., and Hartley, R. (2020). Calibration
of neural networks using splines. arXiv preprint
arXiv:2006.12800.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Computer
Vision and Pattern Recognition (CVPR).

Hendrycks, D. and Dietterich, T. (2019). Benchmarking
neural network robustness to common corruptions
and perturbations. In International Conference on
Learning Representations (ICLR). https://arxiv.
org/abs/1807.01697.

Huang, G., Liu, Z., Van Der Maaten, L., and Wein-
berger, K. Q. (2017). Densely connected convolu-
tional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 4700–4708.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. (2016). Deep networks with stochastic depth.
In European conference on computer vision, pages
646–661. Springer.

Karandikar, A., Cain, N., Tran, D., Lakshminarayanan,
B., Shlens, J., Mozer, M. C., and Roelofs, B. (2021).
Soft calibration objectives for neural networks. In
Advances in Neural Information Processing Systems.

Krishnan, R. and Tickoo, O. (2020). Improving model
calibration with accuracy versus uncertainty opti-
mization. ArXiv, abs/2012.07923.

Krizhevsky, A. and Hinton, G. (2009). Learning mul-
tiple layers of features from tiny images. Technical
report, University of Toronto, Department of Com-
puter Science.

Kumar, A., Liang, P. S., and Ma, T. (2019). Veri-
fied uncertainty calibration. In Neural Information
Processing Systems (NeurIPS).

Kumar, A., Sarawagi, S., and Jain, U. (2018). Trainable
calibration measures for neural networks from kernel
mean embeddings. In International Conference on
Machine Learning (ICML), pages 2805–2814.



Mitigating Bias in Calibration Error Estimation

Kängsepp, M. (2019). Nn_calibration. https://gith
ub.com/markus93/NN_calibration.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár,
P. (2018). Focal loss for dense object detection.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S.,
Torr, P. H., and Dokania, P. K. (2020). Calibrating
deep neural networks using focal loss. arXiv preprint
arXiv:2002.09437.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M.
(2015). Obtaining well calibrated probabilities using
bayesian binning. In AAAI Conference on Artificial
Intelligence. NIH Public Access.

Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G.,
and Tran, D. (2019). Measuring calibration in deep
learning. In CVPR Workshops, pages 38–41.

Pesce, L. L., Metz, C. E., and Berbaum, K. S. (2010).
On the convexity of roc curves estimated from radi-
ological test results. Academic radiology, 17(8):960–
968.

Platt, J. et al. (1999). Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. Advances in large margin classifiers,
10(3):61–74.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V.
(2019). Do imagenet classifiers generalize to ima-
genet? In International Conference on Machine
Learning, pages 5389–5400.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A.,
Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y.,
Caine, B., et al. (2020). Scalability in perception for
autonomous driving: Waymo open dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2446–2454.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Erhan, D., Goodfellow, I. J., and Fergus, R. (2013).
Intriguing properties of neural networks. In Inter-
national Conference on Learning Representations
(ICLR). http://arxiv.org/abs/1312.6199.

Widmann, D., Lindsten, F., and Zachariah, D. (2019).
Calibration tests in multi-class classification: A uni-
fying framework. NeurIPS.

Wu, Y., Jiang, X., Kim, J., and Ohno-Machado, L.
(2012). I-spline smoothing for calibrating predictive
models. AMIA Summits on Translational Science
Proceedings, 2012:39.

Zadrozny, B. and Elkan, C. (2001). Obtaining cali-
brated probability estimates from decision trees and
naive bayesian classifiers. In Icml, volume 1, pages
609–616. Citeseer.

Zadrozny, B. and Elkan, C. (2002). Transforming clas-
sifier scores into accurate multiclass probability esti-
mates. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual
networks. arXiv preprint arXiv:1605.07146.

Zhang, J., Kailkhura, B., and Han, T. (2020). Mix-n-
match: Ensemble and compositional methods for un-
certainty calibration in deep learning. arXiv preprint
arXiv:2003.07329.



SUPPLEMENTARY MATERIALS:
Mitigating Bias in Calibration Error Estimation

Rebecca Roelofs Nicholas Cain Jonathon Shlens Michael C. Mozer
Google Research Google Research Google Research Google Research

A1 Maximum-likelihood fits
A1.1 Confidence score distribution fits
Table A1 provides parameters of best fit for the Beta

distribution for each of 10 empirical datasets, obtained

by fitting the top-label confidence score via maximum

likelihood estimation.

Table A1: Parameters of best fit for Beta distribution

investigated in Section 6.

↵̂ �̂

resnet110_c10 2.7752 0.0478

resnet110_SD_c10 2.1714 0.0394

resnet_wide32_c10 2.3806 0.0379

densenet40_c10 1.9824 0.0397

resnet110_c100 1.1823 0.1081

resnet110_SD_c100 1.1233 0.1147

resnet_wide32_c100 1.0611 0.0650

densenet40_c100 1.0805 0.0808

resnet152_imgnet 1.1359 0.2069

densenet161_imgnet 1.1928 0.2206

Global optimia ↵̂ 2 [0, 200], �̂ 2 [0, 50] are approx-

imately computed using a recursively-refining brute-

force search until both parameters are established to

within an absolute tolerance of 1e�5. Each step in the

recursion contracts a linear sampling grid (N = 11) by

a factor of � = .5 centered on the previously established

optimal parameter, subject to the constraints ↵,� > 0.
Experiments confirmed that the computed optima were

robust to the hyperparameters N, �.

argmin
↵,�

X

i

� ln
x↵�1
i (1� xi)��1

�(↵)�(�)
�(↵+�)

(1)

A1.2 Calibration curve fits
Table A2 provides parameters fit to calibration func-

tions. For each sample image xi in the image dataset,

define si = f(xi) to be the score (the output of the

top-scoring logit after softmax) and yi 2 {0, 1} to be

the classification (yi = 1 when the top-scoring logit cor-

rectly classified image xi) for the sample image. The

loss for the binary generalized linear model (GLM)

across different combinations of link functions g(y) and

transform functions t(s) was optimized via the standard

loss (Gelman et al., 2004):

argmin
b0,b1

X

i

� ln pyi
i (1�pi)

1�yi , pi = g�1(b0+b1t(si))

(2)

For each dataset, the GLM of best fit was selected via

the Akaike Information Criteria using the likelihood at

the optimized parameter values.

A1.3 Comparing ECEbin computed on
simulated data versus real data

In Figure 3c, we compare the ECEbin computed on

the original logit output of each model to the aver-

age ECEbin we obtain after sampling 1,000 simulated

datasets from our parametric fits. Table A3 reports

the ECEbin measurements that we plot in Figure 3.

We observe that the two measurements of ECEbin are

relatively close, indicating that our parametric models

are well-fit to the original data.
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Table A2: Parameters of best fit for calibrations functions investigated in Section 6 (table continues on next

page).

AIC b0 b1
dataset_name glm_name

resnet110_c10 logflip_logflip_b0_b1 2779.22 -0.24 0.30

logit_logflip_b0_b1 2790.40 -0.55 -0.38

logit_logflip_b1 2827.51 -0.31

logit_logit_b0_b1 2840.70 -0.38 0.36

logit_logit_b1 2900.02 0.30

logflip_logflip_b1 2932.09 0.34

log_log_b0_b1 3221.72 -0.06 2.53

logit_logit_b0 3799.63 1.99

logflip_logflip_b0 3811.98 -2.13

log_log_b0 3829.05 -0.13

logit_logflip_b0 3868.40 1.95

log_log_b1 4281.78 4.75

resnet110_SD_c10 logit_logflip_b0_b1 2498.98 -0.27 -0.35

logit_logit_b1 2502.52 0.30

logit_logflip_b1 2508.70 -0.30

logit_logit_b0_b1 2538.41 -0.26 0.33

logflip_logflip_b0_b1 2550.29 -0.36 0.27

logflip_logflip_b1 2572.85 0.35

log_log_b0_b1 2594.91 -0.08 1.98

log_log_b0 3137.19 -0.19

logflip_logflip_b0 3150.42 -1.80

logit_logit_b0 3175.58 1.58

logit_logflip_b0 3179.67 1.56

log_log_b1 3697.37 3.77

resnet_wide32_c10 logit_logit_b1 2483.34 0.26

logflip_logflip_b0_b1 2487.69 -0.47 0.22

logit_logit_b0_b1 2511.39 -0.13 0.28

logit_logflip_b0_b1 2558.45 -0.26 -0.28

logit_logflip_b1 2586.47 -0.25

log_log_b0_b1 2647.03 -0.12 1.87

logflip_logflip_b1 2713.17 0.30

log_log_b0 2981.24 -0.21

logflip_logflip_b0 2983.05 -1.70

logit_logit_b0 2989.90 1.49

logit_logflip_b0 3055.55 1.45

log_log_b1 4582.09 4.61

densenet40_c10 logit_logflip_b1 2910.62 -0.26

logit_logit_b0_b1 2961.31 -0.40 0.31

logit_logflip_b0_b1 3000.23 -0.38 -0.31

logflip_logflip_b0_b1 3001.78 -0.31 0.24

logit_logit_b1 3021.54 0.25

logflip_logflip_b1 3027.78 0.31

log_log_b0_b1 3153.38 -0.12 2.04

log_log_b0 3531.22 -0.22

logflip_logflip_b0 3589.11 -1.60

logit_logit_b0 3601.85 1.37

logit_logflip_b0 3679.95 1.30

log_log_b1 4735.18 4.27

resnet110_c100 logflip_logflip_b0_b1 8181.97 -0.11 0.28

logit_logit_b0_b1 8206.19 -0.88 0.39

logflip_logflip_b1 8301.28 0.31

logit_logflip_b0_b1 8371.53 -1.01 -0.40

logit_logit_b1 8732.11 0.25

log_log_b0_b1 8918.21 -0.16 2.35

logit_logflip_b1 8926.99 -0.23

logit_logflip_b0 10903.83 0.74

logit_logit_b0 10943.95 0.72

logflip_logflip_b0 10964.91 -1.12

log_log_b0 11002.20 -0.40

log_log_b1 11850.89 4.26
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AIC b0 b1
dataset_name glm_name

resnet110_SD_c100 logit_logit_b0_b1 7873.61 -0.88 0.49

logflip_logflip_b0_b1 7878.19 -0.09 0.35

logflip_logflip_b1 7932.28 0.38

logit_logflip_b0_b1 7944.61 -1.04 -0.52

logit_logit_b1 8315.51 0.32

log_log_b0_b1 8437.82 -0.11 2.18

logit_logflip_b1 8510.36 -0.30

log_log_b1 9988.07 3.30

logit_logit_b0 10803.27 0.80

log_log_b0 10810.90 -0.37

logflip_logflip_b0 10823.15 -1.16

logit_logflip_b0 10834.48 0.78

resnet_wide32_c100 logflip_logflip_b0_b1 7183.93 -0.13 0.21

logit_logit_b0_b1 7219.14 -0.98 0.33

logflip_logflip_b1 7233.51 0.25

logit_logflip_b0_b1 7297.00 -1.06 -0.34

logit_logit_b1 7626.21 0.19

log_log_b0_b1 7650.97 -0.24 2.51

logit_logflip_b1 7795.28 -0.17

logflip_logflip_b0 8977.39 -0.98

logit_logflip_b0 8987.38 0.49

log_log_b0 9000.24 -0.49

logit_logit_b0 9009.51 0.49

log_log_b1 11911.51 5.48

densenet40_c100 logit_logit_b0_b1 8158.28 -0.97 0.34

logflip_logflip_b0_b1 8229.43 -0.12 0.22

logit_logflip_b0_b1 8267.77 -1.08 -0.35

logflip_logflip_b1 8368.86 0.25

logit_logit_b1 8783.50 0.19

log_log_b0_b1 8832.20 -0.25 2.26

logit_logflip_b1 8918.57 -0.18

logit_logit_b0 10138.24 0.47

logit_logflip_b0 10182.61 0.45

logflip_logflip_b0 10242.15 -0.94

log_log_b0 10261.01 -0.50

log_log_b1 13322.10 5.25

resnet152_imgnet logflip_logflip_b0_b1 18729.85 -0.12 0.58

logit_logit_b0_b1 18783.22 -0.29 0.65

log_log_b0_b1 18785.44 -0.03 1.32

logflip_logflip_b1 18872.14 0.65

logit_logit_b1 19074.37 0.57

logit_logflip_b0_b1 19095.40 -0.82 -0.79

log_log_b1 19840.25 1.53

logit_logflip_b1 20062.10 -0.50

logflip_logflip_b0 26935.09 -1.41

log_log_b0 26968.50 -0.28

logit_logflip_b0 27012.77 1.12

logit_logit_b0 27084.11 1.11

densenet161_imgnet log_log_b0_b1 18202.41 -0.03 1.27

logit_logit_b0_b1 18460.70 -0.25 0.68

logflip_logflip_b1 18521.48 0.67

logflip_logflip_b0_b1 18534.07 -0.10 0.61

logit_logit_b1 18822.25 0.60

logit_logflip_b0_b1 18913.25 -0.77 -0.80

log_log_b1 19493.85 1.44

logit_logflip_b1 19562.58 -0.54

logit_logflip_b0 26426.38 1.19

logflip_logflip_b0 26445.91 -1.46

logit_logit_b0 26519.76 1.18

log_log_b0 26662.65 -0.27
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Table A3: ECEbin reported in Figure 3c.

ECEbin (%) <ECEbin> (%, simulated)

resnet110_c10 6.67 8.42

resnet110_SD_c10 6.54 8.79

resnet_wide32_c10 6.09 8.44

densenet40_c10 6.70 8.09

resnet110_c100 20.26 18.87

resnet110_SD_c100 17.44 15.78

resnet_wide32_c100 20.40 17.53

densenet40_c100 23.12 19.69

resnet152_imgnet 6.85 9.26

densenet161_imgnet 6.15 6.87
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A2 Bias and variance in calibration
metrics

A2.1 Bias
We evaluate bias for various calibration metrics using

both equal-width and equal-mass binning as we vary

both the sample size n and the number of bins b. These

plots should be seen as an alternative visualization to

4 where we additionally compare to different choices

for the fixed number of bins b. Since the ECEsweep
metrics adaptively choose a different number of bins

for each sample size, we display the bin number for this

metric as �1.

We find that ECEbin can overestimate the true calibra-

tion error and there exists an optimal number of bins

that produces the least biased estimator that changes

with the number of samples n. Additionally, equal

mass binning generally results in a less biased metric

than equal width binning.

CIFAR-10 ResNet-110. Figure A1 assume para-

metric curves for p(f(x)) and EY [Y | f(X) = c] that

we obtain from maximum-likelihood fits to CIFAR-10

ResNet-110 model output.

CIFAR-100 Wide ResNet-32. Figure A2 assume

parametric curves for p(f(x)) and EY [Y | f(X) = c]
that we obtain from maximum-likelihood fits to CIFAR-

100 Wide ResNet-32 model output.

ImageNet ResNet-152. Figure A3 assume para-

metric curves for p(f(x)) and EY [Y | f(X) = c] that

we obtain from maximum-likelihood fits to ImageNet

ResNet-152 model output.

Figure A1: Bias for various calibration metrics
assuming curves fit to CIFAR-10 ResNet-110
output. We plot bias for various calibration metrics

using both equal-width binning (left column) and equal-

mass binning (right column) as we vary both the sample

size n and the number of bins b.
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Figure A2: Bias for various calibration met-
rics assuming curves fit to CIFAR-100 Wide
ResNet-32 output. We plot bias for various cali-

bration metrics using both equal-width binning (left

column) and equal-mass binning (right column) as we

vary both the sample size n and the number of bins b.

Figure A3: Bias for various calibration metrics
assuming curves fit to ImageNet ResNet-152
output. We plot bias for various calibration met-

rics using both equal-width binning (left column) and

equal-mass binning (right column) as we vary both the

sample size n and the number of bins b.
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A2.2 Variance
We also compute the variance for various calibration

metrics using both equal-width and equal-mass binning

as we vary both the sample size n and the number

of bins b. As expected, the variance decreases with

number of samples, but, unlike the bias, there is no

clear dependence on the number of bins.

CIFAR-10 ResNet-110. Figure A4 assume para-

metric curves for p(f(x)) and EY [Y | f(X) = c] that

we obtain from maximum-likelihood fits to CIFAR-10

ResNet-110 model output.

CIFAR-100 Wide ResNet-32. Figure A5 assume

parametric curves for p(f(x)) and EY [Y | f(X) = c]
that we obtain from maximum-likelihood fits to CIFAR-

100 Wide ResNet-32 model output.

ImageNet ResNet-152. Figure A6 assume para-

metric curves for p(f(x)) and EY [Y | f(X) = c] that

we obtain from maximum-likelihood fits to ImageNet

ResNet-152 model output.

Figure A4:
p

Variance for various calibration
metrics assuming curves fit to CIFAR-10
ResNet-110 output. We plot

p
Variance for vari-

ous calibration metrics using both equal-width binning

(left column) and equal-mass binning (right column)

as we vary both the sample size n and the number of

bins b.
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Figure A5:
p

Variance for various calibration
metrics assuming curves fit to CIFAR-100 Wide
ResNet-32 output. We plot

p
Variance for various

calibration metrics using both equal-width binning (left

column) and equal-mass binning (right column) as we

vary both the sample size n and the number of bins b.

Figure A6:
p

Variance for various calibra-
tion metrics assuming curves fit to ImageNet
ResNet-152 output. We plot

p
Variance for various

calibration metrics using both equal-width binning (left

column) and equal-mass binning (right column) as we

vary both the sample size n and the number of bins b.
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A3 Controlling true calibration error
using BBC

We evaluate the estimation bias of calibration esti-

mators as we systematically vary the TCE. Figure

A7 shows the average estimated calibration error for

ECE
ew
bin and ECE

em
sweep versus the TCE. The average

calibration error is computed across m = 1,000 simu-

lated datasets, and we include results for two sample

sizes, n = 200 and n = 5,000, and two score distribu-

tions, f(x) ⇠ Uniform(0, 1) and f(x) ⇠ Beta(1.1, 0.1),
the beta distribution fit to the CIFAR-100 Wide

ResNet_32. To control the TCE, we assume EY [Y |
f(X) = c] = cd and vary d 2 [1, 10]. When d = 1 the

true calibration curve is EY [Y | f(X) = c] = c, which

means the model’s predicted confidence score is exactly

equal to its empirical accuracy and thus the TCE is

0%. As we increase d, we move the true calibration

curve farther away from the perfect calibration curve,

which increases the TCE of the model.

The estimation bias can be seen visually as the differ-

ence between the ECE and the y = x line. Perfect

estimation (0 bias) corresponds to the y = x line. Bias

is highest when the model is perfectly calibrated (TCE

is 0%) and generally decreases as TCE increases. A

larger sample size of n = 5, 000 reduces the bias, but

with perfectly calibration ECEbin can still be off by 2%.

The ECE
em
sweep metric significantly reduces this bias.

A4 What number of bins does
ECEem

sweep choose?
For Figure A8, the uncalibrated plot assumes EY [Y |
f(X) = c] = logistic(10 ⇤ c � 5) while the calibrated

ECE EW
BIN ECE EM

SWEEP

Figure A7: Bias in calibration estimation increases as

TCE decreases. Average ECE (%) for ECE
ew
bin (left) and

ECE
em
sweep (right) versus the TCE (%), with varying

sample size and score distributions. The estimator bias

is systematically worse for better calibrated models,

and the effect is more egregious with fewer samples. At

n = 200 samples, depending on the score distribution,

an ECE
ew
bin estimate of 12% could either correspond to

5% or 8% TCE. ECE
em
sweep somewhat mitigates the

bias and ambiguity in calibration error estimation.

(a) Uncalibrated model.

(b) Perfectly calibrated model.

Figure A8: Bins chosen by equal mass ECEsweep
method. We plot equal mass ECEbin % versus number

of bins for various sample sizes n. We highlight the

TCE with a horizontal dashed line and show the average

number of bins chosen by the ECEsweep method for

different sample sizes with vertical dashed lines. When

the model is uncalibrated (left) ECEsweep chooses a bin

number that is close to optimal. However, for perfectly

calibrated models (right), the optimal number of bins

is small (<=4), and ECEsweep does not do a good job

of selecting a good bin number. The incorrect bin

selection may partially explain why ECEsweep still has

some bias for perfectly calibrated models. However,

we note that any binning-based technique that always

outputs a positive number will never be completely

unbiased for perfectly calibrated models.

plot assumes EY [Y | f(X) = c] = c. Both experiments

assume f(x) ⇠ Uniform(0, 1).


