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Abstract

The test loss of well-trained neural networks often follows precise power-law scaling relations with either

the size of the training dataset or the number of parameters in the network. We propose a theory that

explains and connects these scaling laws. We identify variance-limited and resolution-limited scaling

behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited

scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the

resolution-limited regime can be explained by positing that models are effectively resolving a smooth

data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain

kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents

are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random

feature and pretrained models and test the predictions empirically on a range of standard architectures

and datasets. We also observe several empirical relationships between datasets and scaling exponents:

super-classing image tasks does not change exponents, while changing input distribution (via changing

datasets or adding noise) has a strong effect. We further explore the effect of architecture aspect ratio on

scaling exponents.

1 Scaling Laws for Neural Networks
For a large variety of models and datasets, neural network performance has been empirically observed to

scale as a power-law with model size and dataset size [1–4]. We would like to understand why these power

laws emerge, and what features of the data and models determine the values of the power-law exponents.

Since these exponents determine how quickly performance improves with more data and larger models, they

are of great importance when considering whether to scale up existing models.

In this work, we present a theoretical framework for explaining scaling laws in trained neural networks.

We identify four related scaling regimes with respect to the number of model parameters P and the dataset

size D. With respect to each of D, P , there is both a resolution-limited regime and a variance-limited regime.

Variance-Limited Regime In the limit of infinite data or an arbitrarily wide model, some aspects of

neural network training simplify. Specifically, if we fix one of D,P and study scaling with respect to the other

parameter as it becomes arbitrarily large, then the loss scales as 1/x, i.e. as a power-law with exponent 1, with

x = D or
√
P ∝ width in deep networks and x = D or P in linear models. In essence, this variance-limited

regime is amenable to analysis because model predictions can be series expanded in either inverse width or

inverse dataset size. To demonstrate these variance-limited scalings, it is sufficient to argue that the infinite

data or width limit exists and is smooth; this guarantees that an expansion in simple integer powers exists.
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Figure 1: Four scaling regimes Here we exhibit the four regimes we focus on in this work. (top-left, bottom-

right) Variance-limited scaling of under-parameterized models with dataset size and over-parameterized models

with number of parameters (width) exhibit universal scaling (αD = αW = 1) independent of the architecture

or underlying dataset. (top-right, bottom-left) Resolution-limited over-parameterized models with dataset or

under-parameterized models with model size exhibit scaling with exponents that depend on the details of the data

distribution. These four regimes are also found in random feature (Figure 3) and pretrained models (see supplement).

Resolution-Limited Regime In this regime, one of D or P is effectively infinite, and we study scaling as

the other parameter increases. In this case, a variety of works have empirically observed power-law scalings

1/xα, typically with 0 < α < 1 for both x = P or D.

We can provide a very general argument for power-law scalings if we assume that trained models map the

data into a d-dimensional data manifold. The key idea is then that additional data (in the infinite model-size

limit) or added model parameters (in the infinite data limit) are used by the model to carve up the data

manifold into smaller components. The model then makes independent predictions in each component of the

data manifold in order to optimize the training loss.

If the underlying data varies continuously on the manifold, then the size of the sub-regions into which

we can divide the manifold (rather than the number of regions) determines the model’s loss. To shrink the

size of the sub-regions by a factor of 2 requires increasing the parameter count or dataset size by a factor of

2d, and so the inverse of the scaling exponent will be proportional to the intrinsic dimension d of the data

manifold, so that α ∝ 1/d. A visualization of this successively better approximation with dataset size is

shown in Figure 2 for models trained to predict data generated by a random fully-connected network.

Explicit Realization These regimes can be realized in linear models, and this includes linearized versions

of neural networks via the large width limit. In these limits, we can solve for the test error directly in terms

of the feature covariance (kernel). The scaling of the test loss then follows from the asymptotic decay of

the spectrum of the covariance matrix. Furthermore, well-known theorems provide bounds on the spectra

associated with continuous kernels on a d-dimensional manifold. Since otherwise generic kernels saturate

these bounds, we find a tight connection between the dimension of the data manifold, kernel spectra, and
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Figure 2: Resolution-limited models interpolate the data manifold Linear interpolation between two training

points in a four-dimensional input space (left). We show a teacher model and four student models, each trained

on different sized datasets. In all cases teacher and student approximately agree on the training endpoints, but as

the training set size increases they increasingly match everywhere. (right) We show 4/αD versus the data manifold

dimension (input dimension for teacher-student models, intrinsic dimension for standard datasets). We find that the

teacher-student models follow the 4/αD (dark dashed line), while the relationship for a four layer CNN (solid) and

WRN (hollow) on standard datasets is less clear.

scaling laws for the test loss. We emphasize, this analysis relies on an implicit model of realistic data only

through the assumption of a generic, power law kernel spectrum.

Summary of Contributions:

1. We identify four scaling regions of neural networks and provide empirical support for all four regions

for deep models on standard datasets. To our knowledge, the variance-limited dataset scaling has not

been exhibited previously for deep networks on realistic data.

2. We present simple yet general theoretical assumptions under which we can derive this scaling behavior.

In particular, we relate the scaling exponent in the resolution-limited regime to the intrinsic dimension

of the data-manifold realized by trained networks representations.

3. We present a concrete solvable example where all four scaling behaviors can be observed and understood:

linear, random-feature teacher-student models.

4. We empirically investigate the dependence of the scaling exponent on changes in architecture and data.

We find that changing the input distribution via switching datasets, or the addition of noise has a

strong effect on the exponent, while changing the target distribution via superclassing does not.

1.1 Related Works

There have been a number of recent works demonstrating empirical scaling laws [1–5] in deep neural networks,

including scaling laws with model size, dataset size, compute, and other observables such as mutual information

and pruning. Some precursors [6, 7] can be found in earlier literature.

There has been comparatively little work on theoretical ideas [8] that match and explain empirical findings

in generic deep neural networks across a range of settings. In the particular case of large width, deep neural

networks behave as random feature models [9–14], and known results on the loss scaling of kernel methods can

be applied [15, 16]. During the completion of this work [17] presented a solvable model of learning exhibiting

non-trivial power-law scaling for power-law (Zipf) distributed features.
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In the variance-limited regime, scaling laws in the context of random feature models [18–20], deep linear

models [21, 22], one-hidden-layer networks [23–25], and wide neural networks treated as Gaussian processes

or trained in the NTK regime [13, 14, 26, 27] have been studied. In particular, this behavior was used in [2]

to motivate a particular ansatz for simultaneous scaling with data and model size.

This work also makes use of classic results connecting the spectrum of a smooth kernel to the geometry it

is defined over [28–31] and on the scaling of iteratively refined approximations to smooth manifolds [32–34].

Recently, scaling laws have also played a significant role in motivating work on the largest models that

have yet been developed [35, 36].

2 Theory

Throughout this work we will be interested in how the average test loss L(D,P ) depends on the dataset size

D and the number of model parameters P . Unless otherwise noted, L denotes the test loss averaged over

model initializations and draws of a size D training set. Some of our results only pertain directly to the

scaling with width w ∝
√
P , but we expect many of the intuitions apply more generally. We use the notation

αD, αP , and αW to indicate scaling exponents with respect to dataset size, parameter count, and width.

2.1 Variance-Limited Exponents

In the limit of large D the outputs of an appropriately trained network approach a limiting form with

corrections which scale as D−1. Similarly, recent work shows that wide networks have a smooth large P limit,

[12], where fluctuations scale as 1/
√
P . If the loss is analytic about this limiting model then its value will

approach the asymptotic loss with corrections proportional to the variance, (1/D or 1/
√
P ). Let us discuss

this in a bit more detail for both cases.

2.1.1 Dataset scaling

Consider a neural network, and its associated training loss Ltrain(θ). For every value of the weights, the

training loss, thought of as a random variable over draws of a training set of size D, concentrates around the

population loss, with a variance which scales as O
(
D−1

)
. Thus, if the optimization procedure is sufficiently

smooth, the trained weights, network output, and test loss will approach their infinite D values plus an

O
(
D−1

)
contribution.

As a concrete example, consider training a network via full-batch optimization. In the limit that D →∞,

the gradients will become exactly equal to the gradient of the population loss. When D is large but finite, the

gradient will include a term proportional to the O(D−1) variance of the loss over the dataset. This means

that the final parameters will be equal to the parameters from the D →∞ limit of training plus some term

proportional to D−1. This also carries over to the test loss.

Since this argument applies to any specific initialization of the parameters, it also applies when we take

the expectation of the test loss over the distribution of initializations. We do not prove the result rigorously

at finite batch size. We expect it to hold however, in expectation over instances of stochastic optimization,

provided hyper-parameters (such as batch size) are fixed as D is taken large.

2.1.2 Large Width Scaling

We can make a very similar argument in the w →∞ or large width limit. It has been shown that the predictions

from an infinitely wide network, either at initialization [9, 10], or when trained via gradient descent [12, 13]

approach a limiting distribution equivalent to training a linear model. Furthermore, corrections to the infinite

width behavior are controlled by the variance of the full model around the linear model predictions. This

variance has been shown to scale as 1/w [14, 26, 37]. As the loss is a smooth function of these predictions, it

will differ from its w =∞ limit by a term proportional to 1/w.

We note that there has also been work studying the combined large depth and large width limit, where

Hanin and Nica [38] found a well-defined infinite size limit with controlled fluctuations. In any such context

where the model predictions concentrate, we expect the loss to scale with the variance of the model output.
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In the case of linear models, studied below, the variance is O(P−1) rather than O(
√
P ) and we see the

associated variance scaling in this case.

2.2 Resolution-Limited Exponents

In this section we consider training and test data drawn uniformly from a compact d-dimensional manifold,

x ∈Md and targets given by some smooth function y = F(x) on this manifold.

2.2.1 Over-parameterized dataset scaling

Consider the double limit of an over-parameterized model with large training set size, P � D � 1. We

further consider well trained models, i.e. models that interpolate all training data. The goal is to understand

L(D). If we assume that the learned model f is sufficiently smooth, then the dependence of the loss on D

can be bounded in terms of the dimension of the data manifold Md.

Informally, if our train and test data are drawn i.i.d. from the same manifold, then the distance from a

test point to the closest training data point decreases as we add more and more training data points. In

particular, this distance scales as O(D−1/d) [39]. Furthermore, if f , F are both sufficiently smooth, they

cannot differ too much over this distance. If in addition the loss function, L, is a smooth function vanishing

when f = F , we have L = O(D−1/d). This is summarized in the following theorem.

Theorem 1. Let L(f), f and F be Lipschitz with constants KL, Kf , and KF . Further let D be a training

dataset of size D sampled i.i.d fromMd and let f(x) = F(x), ∀x ∈ D then L(D) = O
(
KLmax(Kf ,KF )D−1/d

)
.

2.2.2 Under-Parameterized Parameter Scaling

We will again assume that F varies smoothly on an underlying compact d-dimensional manifoldMd. We can

obtain a bound on L(P ) if we imagine that f approximates F as a piecewise linear function with roughly P

regions (see Sharma and Kaplan [8]). Here, we instead make use of the argument from the over-parameterized,

resolution-limited regime above. If we construct a sufficiently smooth estimator for F by interpolating among

P randomly chosen points from the (arbitrarily large) training set, then by the argument above the loss will

be bounded by O(P−1/d).

Theorem 2. Let L(f), f and F be Lipschitz with constants KL, Kf , and KF . Further let f(x) = F(x) for

P points sampled i.i.d from Md then L(P ) = O
(
KLmax(Kf ,KF )P−1/d

)
.

We provide the proof of Theorem 1 and 2 in the supplement.

2.2.3 From Bounds to Estimates

Theorems 1 and 2 are phrased as bounds, but we expect the stronger statement that these bounds also

generically serve as estimates, so that eg L(D) = Ω(D−c/d) for c ≥ 2, and similarly for parameter scaling.

If we assume that F and f are analytic functions on Md and that the loss function L(f,F) is analytic in

f −F and minimized at f = F , then the loss at a given test input, xtest, can be expanded around the nearest

training point, x̂train.1

L(xtest) =

∞∑
m=n≥2

am(x̂train)(xtest − x̂train)m , (1)

where the first term is of finite order n ≥ 2 because the loss vanishes at the training point. As the typical

distance between nearest neighbor points scales as D−1/d on a d-dimensional manifold, the loss will be

dominated by the leading term, L ∝ D−n/d, at large D. Note that if the model provides an accurate piecewise

linear approximation, we will generically find n ≥ 4.

1For simplicity we have used a very compressed notation for multi-tensor contractions in higher order terms
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Figure 3: Random feature models exhibit all four scaling regimes Here we consider linear teacher-student

models with random features trained with MSE loss to convergence. We see both variance-limited scaling (top-left,

bottom-right) and resolution-limited scaling (top-right, bottom-left). Data is varied by downsampling MNIST

by the specified pool size.

2.3 Kernel realization

In the proceeding sections we have conjectured typical case scaling relations for a model’s test loss. We have

further given intuitive arguments for this behavior which relied on smoothness assumptions about the loss

and training procedure. In this section, we provide a concrete realization of all four scaling regimes within

the context of linear models. Of particular interest is the resolution-limited regime, where the scaling of the

loss is a consequence of the linear model kernel spectrum – the scaling of over-parameterized models with

dataset size and under-parameterized models with parameters is a consequence of a classic result, originally

due to Weyl [28], bounding the spectrum of sufficiently smooth kernel functions by the dimension of the

manifold they act on.

Linear predictors serve as a model system for learning. Such models are used frequently in practice when

more expressive models are unnecessary or infeasible [40–42] and also serve as an instructive test bed to

study training dynamics [19, 22, 43–45]. Furthermore, in the large width limit, randomly initialized neural

networks become Gaussian Processes [9–11, 46–48], and in the low-learning rate regime [13, 49, 50] neural

networks train as linear models at infinite width [12, 13, 51].

Here we discuss linear models in general terms, though the results immediately hold for the special cases

of wide neural networks. In this section we focus on teacher-student models with weights initialized to zero

and trained with mean squared error (MSE) loss to their global optimum.

We consider a linear teacher, F , and student f .

F (x) =

S∑
M=1

ωMFM (x), f(x) =

P∑
µ=1

θµfµ(x) . (2)

Here {FM} are a (potentially infinite) pool of features and the teacher weights, ωM are taken to be normal

distributed, ω ∼ N (0, 1/S).

The student model is built out of a subset of the teacher features. To vary the number of parameters in
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this simple model, we construct P features, fµ=1,...,P , by introducing a projector P onto a P -dimensional

subspace of the teacher features, fµ =
∑
M PµMFM .

We train this model by sampling a training set of size D and minimizing the MSE training loss,

Ltrain =
1

2D

D∑
a=1

(f(xa)− F (xa))
2
. (3)

We are interested in the test loss averaged over draws of our teacher and training dataset. In the limit of

infinite data, the test loss, L(P ) := limD→∞ L(D,P ), takes the form.

L(P ) =
1

2S
Tr
[
C − CPT

(
PCPT

)−1 PC] . (4)

Here we have introduced the feature-feature second moment-matrix, C = Ex
[
F (x)FT (x)

]
.

If the teacher and student features had the same span, this would vanish, but as a result of the mismatch

the loss is non-zero. On the other hand, if we keep a finite number of training points, but allow the student

to use all of the teacher features, the test loss, L(D) := limP→S L(D,P ), takes the form,

L(D) =
1

2
Ex
[
K(x, x)− ~K(x)K̄−1 ~K(x)

]
. (5)

Here, K(x, x′) is the data-data second moment matrix, ~K indicates restricting one argument to the D training

points, while K̄ indicates restricting both. This test loss vanishes as the number of training points becomes

infinite but is non-zero for finite training size.

We present a full derivation of these expressions in the supplement. In the remainder of this section, we

explore the scaling of the test loss with dataset and model size.

2.3.1 Kernels: Variance-Limited exponents

To derive the limiting expressions (4) and (5) for the loss one makes use of the fact that the sample expectation

of the second moment matrix over the finite dataset, and finite feature set is close to the full covariance.

1

D

D∑
a=1

F (xa)FT (xa) = C + δC , 1

P
fT (x)f(x′),= K + δK ,

with the fluctuations satisfying ED
[
δC2

]
= O(D−1) and EP

[
δK2

]
= O(P−1), where expectations are taken

over draws of a dataset of size D and over feature sets.

Using these expansions yields the variance-limited scaling, L(D,P )−L(P ) = O(D−1), L(D,P )−L(D) =

O(P−1) in the under-parameterized and over-parameterized settings respectively.

In Figure 3 we see evidence of these scaling relations for features built from randomly initialized ReLU

networks on pooled MNIST independent of the pool size. In the supplement we provide an in depth derivation

of this behavior and expressions for the leading contributions to L(D,P )− L(P ) and L(D,P )− L(D).

2.3.2 Kernels: Resolution-limited exponents

We now would like to analyze the scaling behavior of our linear model in the resolution-limited regimes, that

is the scaling with P when 1� P � D and the scaling with D when 1� D � P . In these cases, the scaling

is controlled by the shared spectrum of C or K. This spectrum is often well described by a power-law, where

eigenvalues λi satisfy

λi =
1

i1+αK
. (6)

See Figure 4 for example spectra on pooled MNIST.

In this case, we will argue that the losses also obey a power law scaling, with the exponents controlled by

the spectral decay factor, 1 + αK .

L(D) ∝ D−αK , L(P ) ∝ P−αK . (7)
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In other words, in this setting, αP = αD = αK .

This is supported empirically in Figure 4. We then argue that when the kernel function, K is sufficiently

smooth on a manifold of dimension d, αK ∝ d−1, thus realizing the more general resolution-limited picture

described above.

From spectra to scaling laws for the loss To be concrete let us focus on the over-parameterized loss.

If we introduce the notation ei for the eigenvectors of C and ēi for the eignvectors of 1
D

∑D
a=1 F (xa)FT (xa),

the loss becomes,

L(D) =
1

2

S∑
i=1

λi(1−
D∑
j=1

(ei · ēj)2) . (8)

Before discussing the general asymptotic behavior of (8), we can gain some intuition by considering the case

of large αK . In this case, ēj ≈ ej (see e.g. Loukas [52]), we can simplify (8) to,

L(D) ∝
∞∑
D+1

1

i1+αK
= αKD

−αK +O(D−αK−1) . (9)

More generally in the supplement, following Bordelon et al. [16], Canatar et al. [53], we use replica theory

methods to derive, L(D) ∝ D−αK and L(P ) ∝ P−αK , without requiring the large αK limit.

Data Manifolds and Kernels In Section 2.2, we discussed a simple argument that resolution-limited

exponents α ∝ 1/d, where d is the dimension of the data manifold. Our goal now is to explain how this

connects with the linearized models and kernels discussed above: how does the spectrum of eigenvalues of a

kernel relate to the dimension of the data manifold?

The key point is that sufficiently smooth kernels must have an eigenvalue spectrum with a bounded tail.

Specifically, a Ct kernel on a d-dimensional space must have eigenvalues λn . 1
n1+t/d [30]. In the generic case

where the covariance matrices we have discussed can be interpreted as kernels on a manifold, and they have

spectra saturating the bound, linearized models will inherit scaling exponents given by the dimension of the

manifold.

As a simple example, consider a d-torus. In this case we can study the Fourier series decomposition, and

examine the case of a kernel K(x− y). This must take the form

K =
∑
nI

[anI
sin(nI · (x− y)) + bnI

cos(nI · (x− y))]

where nI = (n1, · · · , nd) is a list of integer indices, and anI
, bnI

are the overall Fourier coefficients. To

guarantee that K is a Ct function, we must have anI
, bnI

. 1
nd+t where nd = N indexes the number of anI

in

decreasing order. But this means that in this simple case, the tail eigenvalues of the kernel must be bounded

by 1
N1+t/d as N →∞.

2.4 Duality

We argued above that for kernels with pure power law spectra, the asymptotic scaling of the under-

parameterized loss with respect to model size and the over-parameterized loss with respect to dataset size

share a common exponent. In the linear setup at hand, the relation between the under-parameterized

parameter dependence and over-parameterized dataset dependence is even stronger. The under-parameterized

and over-parameterized losses are directly related by exchanging the projection onto random features with

the projection onto random training points. Note, sample-wise double descent observed in Nakkiran [44] is a

concrete realization of this duality for a simple data distribution. In the supplement, we present examples

exhibiting the duality of the loss dependence on model and dataset size outside of the asymptotic regime.
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Figure 4: Duality and spectra in random feature models Here we show the relation between the decay of the

kernel spectra, αK , and the scaling of the loss with number of data points, αD, and with number of parameters, αP

(left). The theoretical relation αD = αP = αK is given by the black dashed line. (right) The spectra of random FC

kernels on pooled MNIST. The spectra appear well described by a power law decay.

3 Experiments

3.1 Deep teacher-student models

Our theory can be tested very directly in the teacher-student framework, in which a teacher deep neural

network generates synthetic data used to train a student network. Here, it is possible to generate unlimited

training samples and, crucially, controllably tune the dimension of the data manifold. We accomplish the

latter by scanning over the dimension of the inputs to the teacher. We have found that when scanning over

both model size and dataset size, the interpolation exponents closely match the prediction of 4/d. The dataset

size scaling is shown in Figure 2, while model size scaling experiments appear in the supplement and have

previously been observed in Sharma and Kaplan [8].

3.2 Variance-limited scaling in the wild

Variance-limited scaling can be universally observed in real datasets. The theory describing the variance

scaling in Section 2.1 does not make any particular assumptions about data, model or loss type, beyond

smoothness. Figure 1 (top-left, bottom-right) measures the variance-limited dataset scaling exponent αD and

width scaling exponent αW . In both cases, we find striking agreement with the theoretically predicted values

αD, αW = 1 across a variety of dataset, network architecture, and loss type combinations.

Our testbed includes deep fully-connected and convolutional networks with Relu or Erf nonlinearities and

MSE or softmax-cross-entropy losses. Experiments in Figure 1 (top-left) utilize relatively small models, with

the number of trainable parameteters P ∼ O(1000), trained with full-batch gradient descent (GD) and small

learning rate on datasets of size D � P . Each data point in the figure represents an average over subsets of

size D sampled from the full dataset. Conversely, experiments in Figure 1 (bottom-right) utilize a small, fixed

dataset D ∼ O(100), trained with full-batch GD and small learning rate using deep networks with widths

w � D. As detailed in the supplement, each data point is an average over random initializations, where the

infinite-width contribution to the loss has been computed and subtracted off prior to averaging.

3.3 Resolution-limited scaling in the wild

In addition to teacher-student models, we explored resolution-limited scaling behavior in the context of

standard classification datasets. Experiments were performed with the Wide ResNet (WRN) architecture [54]

and trained with cosine decay for a number of steps equal to 200 epochs on the full dataset. In Figure 2

we also include data from a four hidden layer CNN detailed in the supplement. As detailed above, we find

9
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Figure 5: Effect of data distribution on scaling exponents For CIFAR-100 superclassed to N classes (left),

we find that the number of target classes does not have a visible effect on the scaling exponent. (right) For CIFAR-10

with the addition of Gaussian noise to inputs, we find the strength of the noise has a strong effect on performance

scaling with dataset size. All models are WRN-28-10.

dataset dependent scaling behavior in this context.

We further investigated the effect of the data distribution on the resolution-limited exponent, αD by

tuning the number of target classes and input noise (Figure 5).

To probe the effect of the number of target classes, we constructed tasks derived from CIFAR-100 by

grouping classes into broader semantic categories. We found that performance depends on the number of

categories, but αD is insensitive to this number. In contrast, the addition of Gaussian noise had a more

pronounced effect on αD. These results suggest a picture in which the network learns to model the input

data manifold, independent of the classification task, consistent with observations in Nakkiran and Bansal

[55], Grathwohl et al. [56].

We also explored the effect of network aspect ratio on the dataset scaling exponent. We found that the

exponent magnitude increases with width up to a critical width, while the dependence on depth is more mild

(see the supplement).

4 Discussion
We have presented a framework for categorizing neural scaling laws, along with derivations that help to

explain their very general origins. Crucially, our predictions agree with empirical findings in settings which

have often proven challenging for theory – deep neural networks on real datasets.

The variance-scaling regime yields, for smooth test losses, a universal prediction of αD = 1 (for D � P )

and αW = 1 (for w � D). The resolution-limited regime – more closely tied to the regime in which real

neural networks are trained in practice – yields exponents αD, αP whose numerical value is variable, but we

have traced their origins back to a single simple quantity: the intrinsic dimension of the data manifold d,

which in a general setting is significantly smaller than the input dimension. In linear models, this is also

closely related to αK , the exponent governing the power-law spectral decay of certain kernels. Neural scaling

laws depend on the data distribution, but perhaps they only depend on ‘macroscopic’ properties such as

spectra or a notion of intrinsic dimensionality.

Along the way, our empirical investigations have revealed some additional intriguing observations. The

invariance of the dataset scaling exponent to superclassing (Figure 5) suggests that commonly-used deep

networks may be largely learning properties of the input data manifold – akin to unsupervised learning –

rather than significant task-specific structure, which may shed light on the versatility of learned deep network

representations for different downstream tasks.

In our experiments, models with larger exponents do indeed tend to perform better, due to increased

10



sample or model efficiency. We see this in the teacher-student setting for models trained on real datasets and

in the supplement find that trained features scale noticeably better than random features. This suggests the

scaling exponents and intrinsic dimension as possible targets for meta-learning and neural architecture search.

On a broader level, we think work on neural scaling laws provides an opportunity for discussion in the

community on how to define and measure progress in machine learning. The values of the exponents allow

us to concretely estimate expected gains that come from increases in scale of dataset, model, and compute,

albeit with orders of magnitude more scale for constant-factor improvements. On the other hand, one may

require that truly non-trivial progress in machine learning be progress that occurs modulo scale: namely,

improvements in performance across different tasks that are not simple extrapolations of existing behavior.

And perhaps the right combinations of algorithmic, model, and dataset improvements can lead to emergent

behavior at new scales. Large language models such as GPT-3 (Fig. 1.2 in [35]) have exhibited this in the

context of few-shot learning. We hope our work spurs further research in understanding and controlling

neural scaling laws.
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Supplemental Material

A Experimental setup

Figure 1 (top-left) Experiments are done using Neural Tangents [57] based on JAX [58]. All experiment

except denoted as (CNN), use 3-layer, width-8 fully-connected networks. CNN architecture used is Myrtle-5

network [59] with 8 channels. Relu activation function with critical initialization [10, 60, 61] was used. Unless

specified softmax-cross-entropy loss was used. We performed full-batch gradient descent update for all dataset

sizes without L2 regularization. 20 different training data sampling seed was averaged for each point. For

fully-connected network input pooling of size 4 was performed for CIFAR-10/100 dataset and pooling of size

2 was performed for MNIST and Fashion-MNIST dataset. This was to reduce number of parameters in the

input layer (# of pixels × width) which can be quite large even for small width networks.

Figure 1 (top-right) All experiments were performed using a Flax [62] implementation of Wide ResNet

28-10 [54], and performed using the Caliban experiment manager [63]. Models were trained for 78125 total

steps with a cosine learning rate decay [64] and an augmentation policy consisting of random flips and

crops. We report final loss, though we found no qualitative difference between using final loss, best loss, final

accuracy or best accuracy (see Figure S1).

Figure 1 (bottom-left) The setup was identical to Figure 1 (top-right) except that the model considered

was a depth 10 residual network with varying width.

Figure 1 (bottom-right) Experiments are done using Neural Tangents. All experiments use 100 training

samples and two-hidden layer fully-connected networks of varying width (ranging from w = 64 to W = 11, 585)

with Relu nonlinearities unless specified as Erf. Full-batch gradient descent and cross-entropy loss were used

unless specified as MSE, and the figure shows curves from a random assortment of training times ranging

from 100 to 500 steps (equivalently, epochs). Training was done with learning rates small enough so as to

avoid catapult dynamics [49] and no L2 regularization; in such a setting, the infinite-width learning dynamics

is known to be equivalent to that of linearized models [13]. Consequently, for each random initialization of

the parameters, the test loss of the finite-width linearized model was additionally computed in the identical

training setting. This value approximates the limiting behavior L(∞) known theoretically and is subtracted

off from the final test loss of the (nonlinear) neural network before averaging over 50 random initializations

to yield each of the individual data points in the figure.

A.1 Deep teacher-student models

The teacher-student scaling with dataset size (figure S2) was performed with fully-connected teacher and

student networks with two hidden layers and widths 96 and 192, respectively, using PyTorch [65]. The inputs

were random vectors sampled uniformly from a hypercube of dimension d = 2, 3, · · · , 9. To mitigate noise, we

ran the experiment on eight different random seeds, fixing the random seed for the teacher and student as we

scanned over dataset sizes. We also used a fixed test dataset, and a fixed training set, which was sub-sampled

for the experiments with smaller D. The student networks were trained using MSE loss and Adam optimizer

with a maximum learning rate of 3× 10−3, a cosine learning rate decay, and a batch size of 64, and 40, 000

steps of training. The test losses were measured with early stopping. We combine test losses from different

random seeds by averaging the logarithm of the loss from each seed.

In our experiments, we always use inputs that are uniformly sampled from a d-dimensional hypercube,

following the setup of Sharma and Kaplan [8]. They also utilized several intrisic dimension (ID) estimation

methods and found the estimates were close to the input dimension, so we simply use the latter for comparisons.

For the dataset size scans we used randomly initialized teachers with width 96, and students with width 192.

We found similar results with other network sizes.

The final scaling exponents and input dimensions are show in the bottom of figure 2. We used the same

experiments for the top of that figure, interpolating the behavior of both teacher and a set of students between

two fixed training points. The students only differed by the size of their training sets, but had the same

random seeds and were trained in the same way. In that figure the input space dimension was four.

1



102 103 104

10 1

100

CIFAR-10
final loss
best loss
final error
best error

102 103 104

100

CIFAR-100
final loss
best loss
final error
best error

103 104 105

10 1

SVHN
final loss
best loss
final error
best error

103 104

10 1

FashionMNIST
final loss
best loss
final error
best error

Figure S1: Alternate metrics and stopping conditions We find similar scaling behavior for both the loss and

error, and for final and best (early stopped) metrics.

Finally, we also used a similar setup to study variance-limited exponents and scaling. In that case we

used much smaller models, with 16-dimensional hidden layers, and a correspondingly larger learning rate. We

then studied scaling with D again, with results pictured in figure 1.

A.2 CNN architecture for resolution-limited scaling

Figure 2 includes data from CNN architectures trained on image datasets. The architectures are summarized

in Table 1. We used Adam optimizer for training, with cross-entropy loss. Each network was trained for

long enough to achieve either a clear minimum or a plateau in test loss. Specifically, CIFAR10, MNIST and

fashion MNIST were trained for 50 epochs, CIFAR100 was trained for 100 epochs and SVHN was trained for

10 epochs. The default keras training parameters were used. In case of SVHN we included the additional

images as training data. We averaged (in log space) over 20 runs for CIFAR100 and CIFAR10, 16 runs for

MNIST, 12 runs for fashion MNIST, and 5 runs for SVHN. The results of these experiments are shown in

figure S3.

The measurement of input-space dimensionality for these experiemnts was done using the nearest-neighbour

algorithm, described in detail in appendix B and C in [8]. We used 2, 3 and 4 nearest neighbors and averaged

over the three.
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Figure S2: This figure shows scaling trends of MSE loss with dataset size for teacher/student models. The exponents

extracted from these fits and their associated input-space dimensionalities are shown in figure 2.

Layer Width

CNN window (3, 3) 50

2D Max Pooling (2, 2)

CNN window (3, 3) 100

2D Max Pooling (2, 2)

CNN window (3, 3) 100

Dense 64

Dense 10

Layer Width

CNN window (3, 3) 50

2D Max Pooling (2, 2)

CNN window (3,3) 100

2D Max Pooling (2, 2)

CNN window (3, 3) 200

Dense 256

Dense 100

Layer Width

CNN window (3, 3) 64

2D Max Pooling (2, 2)

CNN window (3, 3) 64

2D Max Pooling (2, 2)

Dense 128

Dense 10

Table 1: CNN architectures for CIFAR10, MNIST, Fashion MNIST (left), CIFAR100 (center) and SVHN (right)

A.3 Teacher-student experiment for scaling of loss with model size

We replicated the teacher-student setup in [8] to demonstrate the scaling of loss with model size. The resulting

variation of −4/αP with input-space dimensionality is shown in figure S4. In our implementation we averaged

(in log space) over 15 iterations, with a fixed, randomly generated teacher.

B Effect of aspect ratio on scaling exponents
We trained Wide ResNet architectures of various widths and depths on CIFAR-10 accross dataset sizes.

We found that the effect of depth on dataset scaling was mild for the range studied, while the effect of

width impacted the scaling behavior up until a saturating width, after which the scaling behavior fixed. See

Figure S5.

C Proof of Theorems 1 and 2
In this section we detail the proof of Theorems 1 and 2. The key observation is to make use of the fact

that nearest neighbor distances for D points sampled i.i.d. from a d-dimensional manifold have mean

ED,x [|x− x̂|] = O
(
D−1/d

)
, where x̂ is the nearest neighbor of x and the expectation is the mean over
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Figure S3: This figure shows scaling trends of CE loss with dataset size for various image datasets. The exponents

extracted from these fits and their associated input-space dimensionalities are shown in figure 2.
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Figure S4: This figure shows the variation of αP with the input-space dimension. The exponent αP is the scaling

exponent of loss with model size for Teacher-student setup.

4



103 104

Dataset size (D)

100

Lo
ss

CIFAR-10 varying width (d=28)

D: 0.42
D: 0.50
D: 0.54
D: 0.58
D: 0.58

103 104

Dataset size (D)

100

Lo
ss

CIFAR-10 varying depth (k=10)

D: 0.48
D: 0.55
D: 0.58
D: 0.58

1
2

4

10

12
Width factor

10

16

28

40
Depth

Figure S5: Effect of aspect ratio on dataset scaling We find that for WRN-d-k trained on CIFAR-10, varying

depth from 10 to 40 has a relatively mild effect on scaling behavior, while varying the width multiplier, k, from 1 to

12 has a more noticeable effect, up until a saturating width.

data-points and draws of the dataset see e.g. [39].

The theorem statements are copied for convenience. In the main, in an abuse of notation, we used L(f) to

indicate the value of the test loss as a function of the network f , and L(D) to indicate the test loss averaged

over the population, draws of the dataset, model initializations and training. To be more explicit below, we

will use the notation `(f(x)) to indicate the test loss for a single network evaluated at single test point.

Theorem 1. Let `(f), f and F be Lipschitz with constants KL, Kf , and KF and `(F) = 0. Further

let D be a training dataset of size D sampled i.i.d from Md and let f(x) = F(x), ∀x ∈ D then L(D) =

O
(
KLmax(Kf ,KF )D−1/d

)
.

Proof. Consider a network trained on a particular draw of the training data. For each training point, x, let x̂

denote the neighboring training data point. Then by the above Lipschitz assumptions and the vanishing

of the loss on the true target, we have `(f(x)) ≤ KL |f(x)−F(x)| ≤ KL (Kf +KF ) |x− x̂|. With this, the

average test loss is bounded as

L(D) ≤ KL (Kf +KF )ED,x [|x− x̂|] = O
(
KLmax(Kf ,KF )D−1/d

)
. (S1)

In the last equality, we used the above mentioned scaling of nearest neighbor distances.

Theorem 2. Let `(f), f and F be Lipschitz with constants KL, Kf , and KF . Further let f(x) = F(x) for

P points sampled i.i.d from Md then L(P ) = O
(
KLmax(Kf ,KF )P−1/d

)
.

Proof. Denote by P the P points, z, for which f(z) = F(z). For each test point x let x̂ denote the closest

point in P, x̂ = argminP (|x− z|). Adopting this notation, the result follows by the same argument as

Theorem 1.

D Random feature models
Here we present random feature models in more detail. We begin by reviewing exact expressions for the loss.

We then go onto derive its asymptotic properties. We again consider training a model f(x) =
∑P
µ=1 θµfµ(x),

where fµ are drawn from some larger pool of features, {FM}, fµ(x) =
∑S
M=1 PµMFM (x).

Note, if {FM (x)} form a complete set of functions over the data distribution, than any target function,

y(x), can be expressed as y =
∑S
M=1 ωMFM (x). The extra constraint in a teacher-student model is specifying

5



the distribution of the ωM . The variance-limited scaling goes through with or without the teacher-student

assumption, however it is crucial for analysing the variance-limited behavior.

As in Section 2.3 we consider models with weights initialized to zero and trained to convergence with

mean squared error loss.

Ltrain =
1

2D

D∑
a=1

(f(xa)− ya)
2
. (S2)

The data and feature second moments play a central role in our analysis. We introduce the notation,

C = Ex
[
F (x)FT (x)

]
, C̄ =

1

D

D∑
a=1

F (xa)FT (xa) , C = PCPT , C̄ = PC̄PT .

K(x, x′) =
1

S
FT (x)F (x′) , K̄ = K

∣∣∣
Dtrain

, K(x, x′) =
1

P
fT (x)f(x′) , K̄ = K

∣∣∣
Dtrain

.

(S3)

Here the script notation indicates the full feature space while the block letters are restricted to the student

features. The bar represents restriction to the training dataset. We will also indicate kernels with one index

in the training set as ~K(x) := K(x, xa=1...D) and ~K(x) := K(x, xa=1...D). After this notation spree, the test

loss can be written for under-parameterized models, P ≤ D as

L(D,P ) =
1

2S
ED
[
Tr
(
C + C̄PT C̄−1CC̄−1PC̄ − 2C̄PT C̄−1PC

)]
. (S4)

and for over-parameterized models (at the unique minimum found by GD, SGD, or projected Newton’s

method),

L(D,P ) =
1

2
Ex,D

[
K(x, x) + ~K(x)T K̄−1K̄K̄−1 ~K(x)− 2 ~K(x)T K̄−1 ~K(x)

]
. (S5)

Here the expectation ED [•] is an expectation with respect to iid draws of a dataset of size D from the input

distribution, while Ex [•] is an ordinary expectation over the input distribution. Note, expression (S4) is

also valid for over-parameterized models and (S5) is valid for under-parameterized models if the inverses are

replaces with the Moore-Penrose pseudo-inverse. Also note, the two expressions can be related by echanging

the projections onto finite features with the projection onto the training dataset and the sums of teacher

features with the expectation over the data manifold. This realizes the duality between dataset and features

discussed above.

D.1 Asymptotic expressions

We are interested in (S4) and (S5) in the limits of large P and D.

Variance-limited scaling We begin with the under-parameterized case. In the limit of lots of data the

sample estimate of the feature feature second moment matrix, C̄, approaches the true second moment matrix,

C. Explicitly, if we define the difference, δC by C̄ = C + δC. We have

ED [δC] = 0

ED [δCM1N1
δCM2N2

] =
1

D
(Ex [FM1

(x)FN1
(x)FM2

(x)FN2
(x)]− CM1N1

CM2N2
)

ED [δCM1N1 · · · δCMnNn ] = O
(
D−2

)
∀n > 2 .

(S6)

The key takeaway from (S6) is that the dependence on D is manifest.

Using these expressions in (S4) yields.

L(D,P ) =
1

2S
Tr
(
C − CPTC−1PC

)
+

1

2DS

P∑
M1,2N1,2=1

TM1N1M2N2

[
δM1M2

(
PTC−1P

)
N1N2

+ (C−1PC2PTC−1)M1M2C
−1
N1N2

−2
(
CPTC−1P

)
M1M2

(
PTC−1P

)
N1N2

]
+O

(
D−2

)
.

(S7)
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Here we have introduced the notation, TM1N1M2N2 = Ex [FM1(x)FN1(x)FM2(x)FN2(x)].

As above, defining

L(P ) := lim
D→∞

L(D,P ) =
1

2S
Tr
(
C − CPTC−1PC

)
. (S8)

we see that though L(D,P )− L(P ) is a somewhat cumbersome quantity to compute, involving the average

of a quartic tensor over the data distribution, its dependence on D is simple.

For the over-parameterized case, we can similarly expand (S5) using K = K + δK. With fluctuations

satisfying,

EP [δK] = 0

EP [δKa1b1δKa2b2 ] =
1

P
(EP [fµ(xa1)fµ(xb1)fµ(xa2)fµ(xb2)]−Ka1b1Ka2b2)

EP [δKa1a1 · · · δKanan ] = O
(
P−2

)
∀n > 2 .

(S9)

This gives the expansion

L(D,P ) =
1

2
Ex,D

[
K(x, x)− ~K(x)T K̄−1 ~K(x)

]
+O(P−1) , (S10)

and

L(D) =
1

2
Ex,D

[
K(x, x)− ~K(x)T K̄−1 ~K(x)

]
. (S11)

Resolution-limited scaling We now move onto studying the parameter scaling of L(P ) and dataset

scaling of L(D). We explicitly analyse the dataset scaling of L(D), with the parameter scaling following via

the dataset parameter duality.

Much work has been devoted to evaluating the expression, (S11) [66–68]. One approach is to use the

replica trick – a tool originating in the study of disordered systems which computes the expectation of a

logarithm of a random variable via simpler moment contributions and analyticity assumption [69]. The replica

trick has a long history as a technique to study the generalization properties of kernel methods [16, 70–75].

We will most closely follow the work of Canatar et al. [53] who use the replica method to derive an expression

for the test loss of linear feature models in terms of the eigenvalues of the kernel C and ω̄, the coefficient

vector of the target labels in terms of the model features.

L(D) =
κ2

1− γ
∑
i

λiω̄
2
i

(κ+Dλi)
2 ,

κ =
∑
i

κλi
κ+Dλi

, γ =
∑
i

Dλ2i

(κ+Dλi)
2 .

(S12)

This is the ridge-less, noise-free limit of equation (4) of Canatar et al. [53]. Here we analyze the asymptotic

behavior of these expressions for eigenvalues satisfying a power-law decay, λi = i−(1+αK) and for targets

coming from a teacher-student setup, w ∼ N (0, 1/S).

To begin, we note that for teacher-student models in the limit of many features, the overlap coefficients ω̄

are equal to the teacher weights, up to a rotation ω̄i = OiMwM . As we are choosing an isotropic Gaussian

initialization, we are insensitive to this rotation and, in particular, Ew
[
ω̄2
i

]
= 1/S. See Figure S8 for empirical

support of the average constancy of ω̄i for the teacher-student setting and contrast with realistic labels.

With this simplification, we now compute the asymptotic scaling of (S12) by approximating the sums

with integrals and expanding the resulting expressions in large D. We use the identities:∫ ∞
1

dx
x−n(1+α)(

κ+Dx−(1+α)
)m = κ−m

Γ
(
n− 1

1+α

)
(1 + α)Γ

(
n+ α

1+α

) 2F1

(
m,n− 1

1 + α
, n+

α

1 + α
,
−D
κ

)
2F1 (a, b, c,−y) ∝ y−a + By−b + . . . ,

(S13)
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Figure S6: Duality between dataset size vs feature number in pretrained features Using pretrained

embedding features of EfficientNet-B5 [76] for different levels of regularization, we see that loss as function of

dataset size or loss as a function of the feature dimension track each other both for small regularization (left)

and for tuned regularization (right). Note that regularization strength with trained-feature kernels can be

mapped to inverse training time [77, 78]. Thus (left) corresponds to long training time and exhibits double

descent behavior, while (right) corresponds to optimal early stopping.
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Figure S7: Four scaling regimes exhibited by pretrained embedding features Using pretrained

embedding features of EfficientNet-B5 [76] for fixed low regularization (left) and tuned regularization (right),

we can identify four regimes of scaling using real CIFAR-10 labels.

Here 2F1 is the hypergeometric function and the second line gives its asymptotic form at large y. B is a

constant which does not effect the asymptotic scaling.

Using these relations yields

κ ∝ D−αK , γ ∝ D0, and L(D) ∝ D−αK , (S14)

as promised. Here we have dropped sub-leading terms at large D. Scaling behavior for parameter scaling

L(P ) follow via the dataset parameter duality.

D.2 Duality beyond asymptotics

Expressions (S4) and (S5) are related by changing projections onto finite feature set, and finite dataset even

without taking any asymptotic limits. We thus expect the dependence of test loss on parameter count and

dataset size to be related quite generally in linear feature models. See Section E for further details.
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E Learned Features
In this section, we consider linear models with features coming from pretrained neural networks. Such features

are useful for transfer learning applications (e.g. Kornblith et al. [79], Kolesnikov et al. [80]). In Figures S6

and S7, we take pretrained embedding features from an EfficientNet-B5 model [76] using TF hub2. The

EfficientNet model is pretrained using the ImageNet dataset with input image size of (456, 456). To extract

features for the (32, 32) CIFAR-10 images, we use bilinear resizing. We then train a linear classifier on top of

the penultimate pretrained features. To explore the effect feature size, P , and dataset size D, we randomly

subset the feature dimension and training dataset size and average over 5 random seeds. Prediction on test

points are obtained as a kernel ridge regression problem with linear kernel. We note that the regularization

ridge parameter can be mapped to an inverse early-stopping time [77, 78] of a corresponding ridgeless model

trained via gradient descent. Inference with low regularization parameter denotes training for long time while

tuned regularization parameter is equivalent to optimal early stopping.

In Figure S7 we see evidence of all four scaling regimes for low regularization (left four) and optimal

regularization (right four). We speculate that the deviation from the predicted variance-limited exponent

αP = αD = 1 for the case of fixed low regularization (late time) is possibly due to the double descent

resonance at D = P which interferes with the power law fit.

In Figure S6, we observe the duality between dataset size D (solid) and feature size P (dashed) – the loss

as a function of the number of features is identical to the loss as function of dataset size for both the optimal

loss (tuned regularization) or late time loss (low regularization).

In Figure S8, we also compare properties of random features (using the infinite-width limit) and learned

features from trained WRN 28-10 models. We note that teacher-student models, where the feature class

matches the target function and ordinary, fully trained models on real data (Figure 1), have significantly

larger exponents than models with fixed features and realistic targets.

The measured ω̄i – the coefficient of the task labels under the i-th feature (S12) are approximately constant

as function of index i for all teacher-student settings. However for real targets, ω̄i are only constant for the

well-performing Myrtle-10 and WRN trained features (last two columns).

2https://www.tensorflow.org/hub
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Figure S8: Loss on the teacher targets scale better than real targets for both untrained and

trained features The first three columns are infinite width kernels while the last column is a kernel built

out of features from the penultimate layer of pretrained WRN 28-10 models on CIFAR-10. The first row

is the loss as a function of dataset size D for teacher-student targets vs real targets. The observed dataset

scaling exponent is denoted in the legend. The second row is the normalized partial sum of kernel eigenvalues.

The partial sum’s scaling exponent is measured to capture the effect of the finite dataset size when empirical

αK is close to zero. The third row shows ω̄i for teacher-student and real target compared against the kernel

eigenvalue decay. We see the teacher-student ω̄i are approximately constant.
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