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Abstract
Most real-world optimization problems have mul-
tiple objectives. A system designer needs to find a
policy that trades off these objectives to reach a de-
sired operating point. This problem has been studied
extensively in the setting of known objective func-
tions. However, we consider a more practical but
challenging setting of unknown objective functions.
In industry, optimization under this setting is mostly
approached with online A/B testing, which is often
costly and inefficient. As an alternative, we propose
Interactive Multi-Objective Off-policy Optimization
(IMO3). The key idea of IMO3 is to interact with a
system designer using policies evaluated in an off-
policy fashion to uncover which policy maximizes
her unknown utility function. We theoretically show
that IMO3 identifies a near-optimal policy with high
probability, depending on the amount of designer’s
feedback and training data for off-policy estimation.
We demonstrate its effectiveness empirically on sev-
eral multi-objective optimization problems.

1 Introduction
Most real-world optimization problems involve multiple ob-
jectives. Multi-objective optimization (MOO) has been studied
and applied in various fields of system design, including engi-
neering, economics, and logistics, where optimal policies need
to trade off multiple, potentially conflicting objectives [Keeney
and Raiffa, 1976]. The system designer aims to find the opti-
mal policy that respects her design principles, preferences and
trade-offs. For example, when designing an investment portfo-
lio, one’s investment strategy requires trading off maximizing
expected gain with minimizing risk [Liang and Qu, 2013].

Two key issues need to be addressed in MOO before policy
optimization. First, the objectives in most real world problems
do not have explicit functional forms. Given a decision or
policy space, we need a mapping of policies to the expected
values of the objectives in question. These objective values
may be obtained by executing new policies on live traffic,
which is risky and time-consuming [Deaton and Cartwright,
2018; Kohavi et al., 2009]. A more efficient approach could

∗This work started prior to joining Amazon.

be learning a model from data, such as for the expected return
and risk of an investment portfolio. In practice, acquiring
data for learning a model can be costly and the model may be
biased due to the data-gathering policy [Strehl et al., 2010].
Correcting for such biases is the target of the literature on
off-policy evaluation and optimization [Rosenbaum and Rubin,
1983; Strehl et al., 2010; Dudik et al., 2011]. When objective
values can be obtained for a new policy, bandit algorithms
can be used for optimization [Lattimore and Szepesvári, 2020;
Wang et al., 2021]. However, these generally require scalar
rewards that already dictate a decision maker’s desired trade-
offs among the objectives.

This leads to the second issue—the specification of a single
objective function that dictates the desired trade-offs. This can
be viewed as the decision maker’s utility function. In the ex-
ample above, it might specify how much risk a decision maker
can tolerate to attain some expected return. Assessing utility
functions almost always requires interaction with the decision
maker—requiring human judgements that typically cannot be
learned from data in the usual sense [Keeney and Raiffa, 1976].
Moreover, utility elicitation is generally challenging and costly
due to the cognitive difficulty faced by human decision mak-
ers when trying to assess trade-offs among objectives in a
quantitatively precise fashion [Tversky and Kahneman, 1974;
Camerer, 2004]. While some elicitation techniques attempt
to identify the full utility function [Keeney and Raiffa, 1976],
others try to minimize this burden in various ways. One com-
mon principle is to limit trade-off assessments to only those
that are relevant given the feasible or realizable combinations
of objectives w.r.t. the utility model and policy constraints
[Boutilier, 2013].1 This requires that the model is known.

We propose an interactive off-policy technique which sup-
ports a system designer to identify the optimal policy that
trades off multiple objectives w.r.t. an unknown utility func-
tion [Branke et al., 2008]. The utility function is modeled
as a linear scalarization of the objectives considered [Keeney
and Raiffa, 1976], where the scalarization parameters specify
the trade-off among the objectives. We use off-policy esti-
mators to evaluate policies in an unbiased way without ever
executing them. To learn the desired scalarization, we present

1Much work in MOO focuses on the identification of Pareto opti-
mal solutions [Mas-Colell et al., 1995]. The selection of a solution
from this set still requires the decision maker to choose and thus
make a trade-off among the objectives, possibly implicitly.



the off-policy estimates of the objective values of candidate
policies to the designer for feedback. The candidate policies
are chosen judiciously to maximize the information gain from
the feedback. Over time, (i) the scalarization converges to the
trade-offs embodied in the unknown utility function by learn-
ing from the designer’s feedback; and (ii) the policy induced
by the scalarization converges to the optimal policy. We ana-
lyze our approach and prove theoretical guarantees for finding
near-optimal policies. Our comprehensive empirical evalua-
tion on four multi-objective optimization problems shows the
effectiveness of our method.2

2 Problem Formulation
We denote the set {1, . . . , n} by [n]. Consider a policy op-
timization problem with d ≥ 1 (potentially conflicting) ob-
jectives. Let X be a context space and A be an action space
with K actions. In each round, x ∈ X is sampled from
a context distribution Px. An action a ∈ A is taken in
response following a stochastic policy π(· | x), which is
a distribution over A for any x ∈ X . The policy space
is Π =

{
π
∣∣π(· | x) ∈ ∆K−1,∀x ∈ X

}
, where ∆K

is the K-simplex with K + 1 vertices. After taking ac-
tion a, the agent receives a d-dimensional reward vector
r ∈ [0, 1]d sampled from a reward distribution Pr(· | x, a),
corresponding to d objectives. The expected value of policy π
is V (π) = Ex∼Px,a∼π(·|x),r∼Pr(·|x,a)

[
r
]
. Note that V (π) is a

d-dimensional vector whose i-th entry Vi(π) is the expected
value of objective i under policy π.

We assume that there exists a utility function uθ, parameter-
ized by θ, which is used by the designer to assess the quality
uθ(v) of any objective-value vector v ∈ Rd. Without loss
of generality, we assume that uθ is absolutely monotonic in
each objective; but the correlations and conflicts among the
objectives are unknown. We adopt the common assumption
that uθ is linear [Keeney and Raiffa, 1976] and determined by
a scalarization uθ(v) = θ>v of the objective values, where
θ ∈ Rd determines the designer’s trade-off among the objec-
tives. We treat θ as a priori unknown and that it is not easy to
specify directly by the designer. Hence, we learn it through
the interactions with the designer.

The optimal policy, for any fixed designer’s trade-off pref-
erences θ∗ ∈ Rd, is defined as

π∗ = arg max
π∈Π

uθ∗
(
V (π)

)
. (1)

Since the interactions can be costly, we consider a fixed bud-
get of T rounds of interactions with the designer. Our goal is
to find a near-optimal policy with high probability after the
interactions. Specifically, we use simple regret [Lattimore and
Szepesvári, 2020] to measure the optimality of a policy π iden-
tified after T rounds of interactions, which is the difference in
the utilities of π∗ and π,

RsimT = uθ∗
(
V (π∗)

)
− uθ∗

(
V (π)

)
. (2)

Note that we do not consider the optimality of policies pre-
sented during the interactions.

2An extended version including all appendices can be found at
https://arxiv.org/abs/2201.09798.

3 General Algorithm Design
We first describe our approach in general terms, motivating it
by the de facto standard approach to A/B testing in industry
[Kohavi et al., 2009]. In the standard “iterative” approach, a
policy designer proposes a candidate policy π and evaluates it
on live traffic for some time period (say, two weeks, to average
out basic seasonal trends). If π outperforms a production pol-
icy (e.g., it improves some metrics/objectives and does not de-
grade others, or it achieves a desired trade-off among all objec-
tives), π is accepted and deployed. If it does not, the designer
proposes a new candidate policy and the process is repeated.
This approach has three major shortcomings. First, each itera-
tion takes a long time and many iterations may be needed to
find a good policy. Second, it is difficult to propose good can-
didate policies, because the policy space is large and it is not a
priori clear which objective trade-offs are feasible. Finally, due
to the difficulty of managing changes in the control and treat-
ment groups in large-scale platforms, online randomized ex-
periments often lead to unexpected results [Kohavi et al., 2009;
Kohavi and Longbotham, 2011], which limit their efficiency
and application in the fast-evolving industrial settings.

Consider an idealized scenario where V (π) is known for any
policy π ∈ Π. Then we can learn θ∗ in (1) by interacting with
the designer. A variety of preference elicitation techniques
could be used [Keeney and Raiffa, 1976; Boutilier, 2013]. We
study the following approach. In round (interaction) t, we
(i) propose a policy πt; (ii) present the value vector V (πt)
to the designer; and (iii) obtain a noisy response based on
the designer’s true utility uθ∗(V (πt)). The feedback can take
different forms, but ultimately reflects the designer’s perceived
value for πt. We assume a binary feedback of the form “Is
policy π acceptable?”, motivated by our industry example.

In this work, we consider a more realistic but also more
challenging setting where V (π) is unknown. In principle, any
policy π can be evaluated on live traffic. However, online eval-
uation can be costly, inefficient, and time consuming; leading
to unacceptable delays in finding π∗ [Deaton and Cartwright,
2018; Kohavi et al., 2009]. To address this issue, we evaluate π
offline using logged data generated by some prior policy, such
as the production policy [Swaminathan and Joachims, 2015].
In Section 4, we introduce three most common off-policy esti-
mators for this purpose. The off-policy estimated value vector
V̂ (π) is then used in the elicitation process with the designer.
Finally, we learn θ∗ and π∗ based on the estimated values and
noisy feedback from interactions with the designer. We present
our algorithm and analyze it in Section 5.

4 Multi-Objective Off-Policy Evaluation and
Optimization

In this section, we discuss how to evaluate a policy π using
logged data generated by another (say, production) policy, and
optimize π w.r.t. any (fixed and known) scalarization parame-
ters θ. We have a set of logged recordsD =

{
(xj , aj , rj)

}N
j=1

collected by a logging policy π0. For the j-th record, xj is the
context, aj is the action from π0, and rj ∈ Rd is the realized
reward vector corresponding to d objectives. We also assume
that the propensity scores π0(aj | xj) (i.e., the probability that

https://arxiv.org/abs/2201.09798


π0 takes action aj given context xj) are logged. If not, they
can be estimated from logged data [Strehl et al., 2010].

4.1 Evaluation
Off-policy evaluation has been studied extensively in the
single-objective setting [Strehl et al., 2010; Dudik et al., 2011].
Generally, better evaluation leads to better optimization [Strehl
et al., 2010]. By treating the reward as a d-dimensional vector
rather than a scalar, we can adapt existing off-policy estimators
to MOO. We adapt three popular estimators below.

The first estimator, the direct method (DM) [Lambert and
Pregibon, 2007], estimates the expected reward vector E

[
r |

x, a
]

by r̂(a, x) ∈ Rd, where r̂ is some offline-learned reward
model. The policy value is estimated by

V̂ DM(π) =
1

N

N∑
j=1

∑
a∈A

π(a | xj)r̂(a, xj) . (3)

Since the model is learned without knowledge of π, it may
focus on areas irrelevant for estimating V (π), resulting in a
biased estimate of V (π).

The second estimator, inverse propensity scoring (IPS)
[Rosenbaum and Rubin, 1983], is less prone to bias. Instead of
estimating rewards, IPS uses the propensities of logged records
to correct the shift between the logging and new policies,

V̂ IPS(π) =
1

N

N∑
j=1

min

{
M,

π(aj | xj)
π0(aj | xj)

}
rj , (4)

where M > 0 is a hyper-parameter that trades off the bias and
variance in the estimate. The IPS estimator is unbiased for
M =∞, but can have a high variance if π takes actions that
are unlikely under π0. When M is small, the variance is small
but the bias can be high, since the IPS scores are clipped.

To alleviate the high variance of IPS, we can take advantage
of both r̂ and IPS to construct the doubly robust (DR) estimator
[Dudik et al., 2011]

V̂ DR(π)=
1

N

N∑
j=1

π(aj |xj)
π0(aj |xj)

(rj−r̂(aj ,xj))+V̂ DM(π). (5)

Intuitively, r̂ is used as a baseline for the IPS estimator. If the
model for reward estimation is unbiased or the propensities are
correctly specified, DR can provide an unbiased estimate of
the value. It has been shown that DR achieves lower variance
than IPS [Dudik et al., 2011].

4.2 Optimization
A key component in our approach is policy optimization, i.e.,
finding the optimal policy given a scalarization vector θ,

π̂ = arg max
π∈Π

uθ
(
V̂ (π)

)
= arg max

π∈Π
θ>V̂ (π) , (6)

where V̂ (π) is some off-policy estimator. The optimized vari-
ables are the entries of π ∈ Π that represent the probabilities
of taking actions. In Appendix A, we prove that (6) can be for-
mulated as a linear program (LP) for all off-policy estimators
in Section 4.1 in the tabular case, where the policy is parame-
terized separately for each context. For non-tabular policies,

we suggest using gradient-based policy optimization methods
[Swaminathan and Joachims, 2015], though we provide no
theoretical guarantees for this case.

Since (6) is an LP for all estimators, at least one solution
to (6) is a vertex of the feasible set, corresponding to non-
dominated policies, which cannot be written as a convex com-
bination of other policies. For such policies, we can “learn”
π∗ by first learning θ∗.

5 IMO3: Interactive Multi-Objective
Off-Policy Optimization

Off-policy estimation and optimization in Section 4 assume
that the utility parameters θ∗ are known. Now we turn to inter-
actively estimating θ∗ by querying the designer for feedback
on carefully selected policies over T rounds. Utility elicitation
can be accomplished using a variety of query formats (e.g.,
value queries, bound queries, k-wise comparisons, critiques)
and optimization criteria for selecting queries [Keeney and
Raiffa, 1976; Boutilier, 2002; Boutilier, 2013].

5.1 Response Model
Following a common industrial practice (Section 3), we adopt
a simple query format where we ask the designer to rate an
objective value vector v corresponding to d objectives as “ac-
ceptable” or “not acceptable.” We require a response model
that relates this stochastic feedback to the designer’s underly-
ing utility for v. We adopt a logistic response model

`θ∗(v) = 1/(1 + exp(−uθ∗(v))) , (7)

where uθ∗(v) = θ>∗ v, and the designer responds “accept-
able” with probability `θ∗(v) and “not acceptable” other-
wise. Roughly speaking, this can be understood as a de-
signer’s noisy feedback relative to some implicit baseline
(e.g., the value vector of the production policy). Logis-
tic response of this form arises frequently in modeling bi-
nary or k-wise discrete choice in econometrics, psycho-
metrics, marketing, AI, and other fields [McFadden, 1974;
Viappiani and Boutilier, 2010]; and lies at the heart of feed-
back mechanisms in much of the dueling bandits literature
[Dudı́k et al., 2015]. We defer the study of other types of
feedback to future work.

5.2 Algorithm
Now we introduce IMO3 for engaging the designer in solv-
ing the problem. We approach the problem as fixed-budget
best-arm identification (BAI) [Karnin et al., 2013], where we
minimize the simple regret (2) in T rounds of interactions.
At a high level, IMO3 works as follows. In round t ∈ [T ], it
selects a policy (arm) πt and presents its off-policy estimated
value vector V̂ (πt) to the designer. The designer responds
with Yt ∼ Ber

(
`θ∗(V̂ (πt))

)
, where Ber(µ) is a Bernoulli dis-

tribution with mean µ. After T rounds, IMO3 computes the
maximum likelihood estimate (MLE) θ̂ of θ∗, where V̂ (πt)
serves as the feature vector for response Yt. To incorporate
other feedback and response models, only the MLE would
change. Therefore, our algorithmic template is very general.



Algorithm 1 IMO3

Input: Logging policy π0, logged data D, budget T ,
and pre-selection budget L

1: W ← {}
2: for i = 1, . . . , L do
3: Sample θi from a unit ball in Rd
4: πi ← arg max π∈Π uθi

(
V̂ (π)

)
5: W ←W + {πi}
6: PG(W)← G-optimal design overW
7: for t = 1, . . . , T do
8: πt ∼ PG(W)

9: Present V̂ (πt) to the designer and observe Yt
10: θ̂ ← MLE({V̂ (πt), Yt}Tt=1)

11: Return π̃∗ ← arg max π∈Π uθ̂
(
V̂ (π)

)
To make IMO3 statistically efficient in identifying the opti-

mal policy with limited budget, we must design a good dis-
tribution over policies to be presented to the designer. One
challenge is that the policy space Π is continuous and in-
finite. To address this issue, we first discretize Π to a set
W of L diverse policies, which are optimal under different
random scalarizations. The other challenge is learning θ∗
efficiently. We approach this as an optimal design problem
[Wong, 1994]. Specifically, we use G-optimality to design
a distribution over W , from which we draw πt in round t
that minimizes the variance of the MLE θ̂. Since the de-
sign is variance minimizing, IMO3 chooses the final opti-
mal policy π̃∗ solely based on the highest mean utility un-
der θ̂. We experimented with more complex algorithm de-
signs, where the distribution of πt was adapted over time,
analogous to sequential halving in BAI [Karnin et al., 2013;
Jamieson and Talwalkar, 2016]. However, none of these ap-
proaches improved IMO3 under small fixed budgets, and thus
we focus on the non-adaptive algorithm.

We present IMO3 in Algorithm 1. In lines 1–5, the policy
space Π is discretized into L policies W . Any policy πi ∈
W is optimal under its θi. Since θi are sampled uniformly
from a unit ball, representing all scalarization directions, the
policies πi are diverse and allow us to learn about any θ∗
efficiently. Note that we do not interact with the designer in
this stage. In line 6, we compute the G-optimal design overW ,
a distribution overW that minimizes the variance of the MLE
θ̂ after T rounds. In lines 7–10, we interact with the designer
over T rounds. In round t ∈ [T ], we draw πt according to the
G-optimal design, present its values V̂ (πt) to the designer, and
receive feedback Yt. In line 11, we compute the MLE θ̂ from
all collected observations {V̂ (πt), Yt}Tt=1. Finally, we use the
estimated θ̂ to identify the optimal policy π̃∗ w.r.t. off-policy
estimated values using an LP (Section 4.2).

5.3 Regret Analysis
We now analyze the simple regret of IMO3, which is defined in
(2). Due to space constraints, we focus on the IPS estimator
and then discuss extensions to other estimators.

To state our regret bound, we first introduce some notation.

LetW = {πi}Li=1 be the set of pre-selected policies in IMO3

and V = {vi}Li=1 be their estimated values, with vi = V̂ (πi).
Let π̂∗ = arg max π∈Π uθ∗

(
V̂ (π)

)
be the optimal policy un-

der θ∗ in logged data. Let π̂∗ ∈ W and π1 = π̂∗ without loss
of generality. Let µi = v>i θ∗ ∈ [0, 1] be the utility of policy
πi and ∆i = µ1 − µi be its gap. Let ∆min = mini>1 ∆i

be the minimum gap. Let α∗ = arg min α∈∆L−1
g(α) be the

G-optimal design on V , where g(α) = maxi∈[L] v
>
i G
−1
α vi

and Gα =
∑L
i=1 αiviv

>
i . Let h(·) be the sigmoid function

and h′(·) be its derivative.
Theorem 1. Let cmin, δ1 > 0 be chosen such that

min
v∈V

min{h′(v>θ∗), h′(v>θ̂)} ≥ cmin

holds with probability at least 1− δ1. Then RsimT ≤

L exp

[
−∆2

minc
2
minT

2g(α∗)

]
+ 2||θ∗||2

√
dM2 log(2d/δ2)

2N
(8)

holds with probability at least 1− (δ1 + 2δ2), where d is the
number of objectives, M is the tunable parameter in the IPS
estimator, and N is the size of logged data.

The proof of Theorem 1 is in Appendix B. The regret bound
decomposes into two terms. The first term is the regret of BAI
w.r.t. estimated policy values and decreases with the amount
of designer’s feedback T . The second term reflects the error
of the IPS estimator and decreases with data size N .

Specifically, the first term in (8) is O(L exp[−T ]). While
it increases with the number of pre-selected policies L, it
decreases exponentially with budget T . Therefore, even rela-
tively small budget sizes of T = O(logL) lead to low simple
regret. This is important, as large L may be needed to guar-
antee that the optimal policy under θ∗ in logged data satisfies
π̂∗ ∈ W , a condition in our theorem. Regarding the other
terms, ∆2

minc
2
min is a problem-specific constant and we mini-

mize g(α∗) by design.
The second term in (8) decreases with data size N at an

expected rate of O(
√

1/N). Now we discuss the errors for
other estimators. For the DM estimator, this error depends
on the quality of the reward model and cannot be directly
analyzed. It could be large when the reward model is biased.
For the DR estimator, it is unbiased if the reward model is
unbiased or the propensity scores are correctly specified. If
the reward model is unbiased, the error can be bounded the
same as in the IPS estimator. Otherwise the error cannot be
directly analyzed due to the bias of the reward model.

6 Experiments
In this section, we evaluate IMO3 on four MOO problems. We
introduce the problems for evaluation in Section 6.1, describe
several baseline methods in Section 6.2, and evaluate IMO3 vs.
baselines from different perspectives in Section 6.3.

Due to space limit, we put the details of how to gener-
ate logged data for each problem in Appendix C. To simu-
late designer feedback, we sample the ground-truth scalariza-
tion θ∗ ∈ Rd from the unit ball, and sample responses from
Ber
(
`(V̂ (π); θ∗)

)
, where V̂ (π) is the off-policy estimated

value vector presented to the designer. We generate feedback
in the same way in all four problems.
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(a) ZDT1.
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(b) Crashworthiness.
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(c) Stock investment.
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(d) Yahoo! news recommendation.

Figure 1: Simple regret of different algorithms for a fixed logged data size N = 20, 000 and varying interaction budget. Each experiment is
averaged over 10 logged data, 10 randomly selected θ∗ and 5 runs under each combination of logged data and θ∗.

6.1 Multi-Objective Optimization Problems
ZDT1. The ZDT test suite [Zitzler et al., 2000] is the most
widely employed benchmark for MOO. We use ZDT1, the
first problem in the test suite, a box-constrained n-dimensional
two-objective problem, with objectives F1 and F2 defined as

F1(x) = 5x1, F2(x) = g(x)

[
1−

√
x1

g(x)

]
, (9)

and g(x) = 1 +
9(
∑n
i=2 xi)

n− 1
,

where x = (xi)
n
i=1 are variables and xi ∈ [0, 1],∀i ∈ [n]. We

use n = 5 in our experiments, treating (x4, x5) as context,
and perform optimization on (xi)

3
i=1. We sample five combi-

nations of (x4, x5) uniformly to create context set X and ten
combinations of (xi)

3
i=1 to create the action set A.

Crashworthiness. This MOO problem is extracted from a
real-world crashworthiness domain [de Carvalho et al., 2018],
where three objectives factor into the optimization of the crash-
safety level of a vehicle. We refer to Sec. 2.1 of [de Carvalho et
al., 2018] for detailed objective functions and constraints. Five
bounded decision variables (xi)

5
i=1 represent the thickness of

reinforced members around the car front. We use different
combinations of the last two variables as contexts and the first
three as actions. The rest settings are the same as for ZDT1.
Stock Investment. The stock investment problem is a widely
studied real-world MOO problem [Liang and Qu, 2013],
where we need to trade off returns and volatility of an in-
vestment strategy. We consider investing one dollar in a stock
at the end of each day as an action and try to optimize the
relative gain and volatility of this investment at the end of the
next day. Specifically, the relative gain is the stock’s closing
price on the second day minus that on the first day, and we use
the absolute difference as a measure of investment volatility.
Our goal is to maximize the relative gain and minimize the
volatility between two consecutive days of a one-dollar invest-
ment, on average. We use 48 popular stocks (see Appendix C
for the full list) as the action set A, and the four quarters of a
year as the context set X . We collect the closing stock prices
from Yahoo Finance for the period Nov.1/2020–Nov.1/2021
for generating logged data.
Yahoo! News Recommendation. This is a news article rec-
ommendation problem derived from the Yahoo! Today Mod-
ule click log dataset (R6A). We consider two objectives to
maximize, the click through rate (CTR) and diversity of the

recommended articles. In the original dataset, each record
contains the recommended article, the click event (0 or 1),
the pool of candidate articles, and a 6-dimensional feature
vector for each article in the pool. The recommended article
is selected from the pool uniformly at random. We adopt the
original click event in the logged dataset to measure CTR
of the recommendation, and use the `2 distance between the
recommended article’s feature and the average feature vector
in the pool to represent the diversity of this recommendation.
For our experiments, we extract five different article pools as
contexts and all logged records associated with them from the
original data, resulting in 1,123,158 records in total. Each
article pool has 20 candidates as actions.

6.2 Baselines
Random Policy (Rand-P). The random policy [Jamieson
and Talwalkar, 2016] is a standard baseline in BAI, which
selects a policy (arm) πt ∈ Π uniformly at random from the
policy space in each round t. The off-policy value estimate
V̂ (πt) is presented to the designer for feedback Yt. After T
rounds, the value estimates and their feedback are used to form
the maximum likelihood estimate of θ∗, θ̂, which is used to
solve (6) for the final identified policy.
Random Trade-off (Rand-T). Instead of sampling a random
policy, Rand-T samples a trade-off vector θt uniformly at ran-
dom from a d-dimensional unit ball, which is used to identify
a policy πt in each round by policy optimization in (6). The
rest is the same as the Rand-P baseline.
Logistic Thompson Sampling (Log-TS). Many cumulative
regret minimization algorithms with guarantees exist [Abeille
and Lazaric, 2017; Kveton et al., 2020]. We also consider
a cumulative-to-simple regret reduction as a baseline. We
adapt Thompson sampling (TS) for generalized linear bandits
[Abeille and Lazaric, 2017; Kveton et al., 2020] to the BAI
problem, and output the “best” policy as the average of its se-
lected policies. In each round t, we sample a trade-off vector θt
from the current posterior over θ with Log-TS, which is used to
identify a policy πt in each round by policy optimization using
(6). Then V̂ (πt) and feedback Yt are used to update the poste-
rior. The final output policy is the average of all policies se-
lected in T rounds, π̃∗ =

∑T
t=1 πt/T. This reduction of Log-

TS leads to a simple regret of R̂simT = Õ(d
3
2

√
T log(1/δ)),

where Õ stands for the big-O notation up to logarithmic fac-
tors in T . The proof is in Appendix C.

https://finance.yahoo.com/videos?ncid=dcm_23657983_265755135_460682638_127471542&gclid=Cj0KCQiAoab_BRCxARIsANMx4S5Lsnu5vNLGQXcm_125QN5VdHiPxaXGrXQdM57Y6FF_yHHhVeSd3pIaAlQuEALw_wcB
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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(a) ZDT1.
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(b) Crashworthiness.
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(c) Stock investment.
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(d) Yahoo! news recommendation.

Figure 2: Simple regret of different algorithms for a fixed interaction budget T = 100 and varying logged data size. Each experiment is
averaged over 10 logged data, 10 randomly selected θ∗ and 5 runs under each combination of logged data and θ∗.

IMO3 with different value estimators. We fix the pre-
selection budget L = 500, which requires no designer feed-
back. To assess the impact of off-policy estimated values on
optimization performance, we test IMO3 with its off-policy
estimated values replaced by the true expected values (dubbed
IMO3-true). We use the IPS estimator by default. Experiments
with the DM and DR estimators can be found in Appendix C.

6.3 Results and Analysis
For each of the problems, we first fix the size of the logged
dataset and assess how simple regret (lower the better) varies
with the interaction budget T . The results are shown in Fig-
ure 1. Each result is averaged over ten generated logged
datasets, ten randomly sampled θ∗, and 5 repeated runs under
each combination of logged data and θ∗ (error bars represent
standard error). We see that IMO3 outperforms or performs
comparably to our baselines in all four problems. While Rand-
T is similar to the pre-selection phase of IMO3 and performs
relatively well, its exploration is less efficient and limited by
the budget, and thus is worse than IMO3. This illustrates the
advantage of using G-optimal design with a sufficient number
of pre-selected policies to query the designer for feedback.
The gap between IMO3 using estimated vs. true values is due
to errors in value estimation—see the second term in our regret
bound (Theorem 1). This term is invariant w.r.t. T , thus the
gap remains relatively constant as T varies in our experiments.

We further study how the amount of logged data influences
the simple regret of IMO3. We fix T = 100, and vary the
size of the logged dataset used for policy-value estimation.
Intuitively, if the dataset is sufficient to provide an accurate
value estimate for any policy, IMO3 should perform similarly
to directly using true values. Results in Figure 2 show that
when the logged dataset is small, inaccurate value estimates
cause algorithms that rely on off-policy estimates to perform
poorly compared to using true values. As the size of the dataset
increases, the decrease in value-estimation error allows IMO3
to outperform the baselines by selecting the most effective
policies for querying the designer. When the logged dataset is
sufficiently large, more accurate value estimates ensure that
IMO3 converges to that of using true values.

7 Related Work
Drugan and Nowé [2013] is the first work to propose, analyze
and experiment with a Pareto UCB1 algorithm and a UCB1
algorithm with a scalarized objective for MOO. Auer et al.

[2016] formulate the problem of Pareto-frontier identification
as a BAI problem. Thompson sampling in MOO is studied but
not analyzed by Yahyaa and Manderick [2015]. Two recent
works apply Gaussian process (GP) bandits to MOO. Paria
et al. [2019] model the posterior of each objective function
as a GP and minimize regret w.r.t. a known distribution of
scalarization vectors. Zhang and Golovin [2020] show that
this algorithm generates a set of points that maximize random
hypervolume scalarization, an objective often used in practice.
All above works are in the online setting, where the agent
probes the environment to learn about its objective functions.
Our setting is offline and the objective functions are estimated
from logged data collected by some prior policy.

In terms of the motivation, the closest work to ours is that
of Roijers et al. [2017], who treat online MOO as a two-stage
problem, where the objective functions are estimated using
initial interactions with the environment and the scalarization
vector is then estimated via user interaction. Unlike our work,
they do not propose a specific algorithm for their setting, but
only adapt existing bandit algorithms based on learned utility
functions. They also do not formulate their problem as off-
policy optimization, and thus the process can be costly.

8 Conclusions
In this work, we study multi-objective optimization with un-
known objective functions. We propose an interactive off-
policy optimization algorithm for finding the optimal policy
that achieves the desired trade-off among objectives. Specifi-
cally, we adapt off-policy estimators to evaluate policy values
on all objectives, choose policies that effectively elicit de-
signer’s preferences, and learn the optimal policy using best
arm identification. We prove upper bounds on the simple
regret of our method and demonstrate its effectiveness with
experiments on four MOO problems.

For future work, we plan to generalize (and analyze) our
algorithm to more complex utility functions, other types of
feedback and response models. We applied G-optimal design
for BAI to provide theoretical guarantees—using other BAI
algorithms for MOO is of interest.
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